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Abstract— Achieving safe control under uncertainty is a key
problem that needs to be tackled for enabling real-world
autonomous robots and cyber-physical systems. This paper
introduces Probabilistic Safety Programs (PSP) that embed
both the uncertainty in the environment as well as invariants
that determine safety parameters. The goal of these PSPs is
to evaluate future actions or trajectories and determine how
likely it is that the system will stay safe under uncertainty.
We propose to perform these evaluations by first compiling the
PSP to a graphical model then using a fast variational inference
algorithm. We highlight the efficacy of the framework on the
task of safe control of quadrotors and autonomous vehicles in
dynamic environments.

I. INTRODUCTION

Real-world deployment of autonomous robots and cyber-
physical systems (CPS) requires not only reasoning about
the uncertain environment, but also using those inferences
about the state of the world for safely completing the
assigned mission. For example, autonomous vehicles can
be instrumented with various sensors, such as lidar, radar,
cameras etc [1]. The safety reasoning task then is to consider
all the observed data and then determine if the future sequence
of actions will yield safe progress towards the goal. However,
reasoning about safety of such future actions or control inputs
is non-trivial as it requires integrating over all plausible
configurations of the environment that would explain the
observed data.

We introduce Probabilistic Safety Programs (PSP), that
allow inferences about safety of a cyber-physical system in
an uncertain environment given a future course of actions.
Specifically, a PSP is a stochastic program [2], [3], [4], [5],
[6] that allows us to both 1) consider uncertainty in the
environment and 2) conditioned on the environment express
safety invariants that need to hold. Intuitively, a single run
of the PSP draws a sample from the distribution of plausible
worlds, and then evaluates if the safety conditions holds for the
proposed action sequence. Such probabilistic programs have
the advantage of embedding a complex set of graphical models
that describe the environment. Furthermore, the rich set of
programming constructs allow a wide variety of expressions
that describe the safety invariants.

The utility of PSPs can be demonstrated by combining
them with existing planners and or control policies. For
example, receding horizon planners [7] can use PSPs to
check for safety of the proposed trajectories. Similarly,
Rapidly Exploring Random Trees (RRT/RRT#*) [8], [9] style
planners can use PSPs to prune those paths that do not
meet the safety requirements. All such real-time applications
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need an efficient inference algorithm. Most of the existing
work on Probabilistic Programming relies on sampling based
methodologies [3], [10], [11], [12]; consequently, many of
the existing inference algorithms are impractical for real-time
applications on robots and CPS.

This paper alleviates these computational issues via a very
fast variational inference algorithm for PSPs. The key aspect
enabling such fast inference is the fact that there exists an
equivalent graphical model representation of the underlying
semantic structure of PSPs. We also provide an algorithm to
recover such equivalent representation. Consequently instead
of resorting to sampling, we use fast approximate Bayesian
inference.

We demonstrate Probabilistic Safety Programs on three
different scenarios: obstacle avoidance with quadrotors, safe
battery management and safe maneuvering of autonomous
vehicles in dynamic environments. We also show how Proba-
bilistic Safety Programs can help achieve safe performance
efficiently when embedded inside an off-the-shelf planning
algorithm.

II. PROBABILISTIC SAFETY PROGRAMS

Our work on Probabilistic Safety Programs builds upon
the prior research in Probabilistic Signal Temporal Logic
(PrSTL) [13], and also incorporates ideas from approximate
Bayesian inference for fast computation necessary for real-
time implementation. The PrSTL framework was designed
for safe controller synthesis in a hybrid dynamic system,
where the safety invariants are defined via a distribution of
logical expressions that operate on real-valued, dense-time
signals. These signals could be functions of the robot state,
environment and other safety parameters. The safe controller
synthesis then is reduced to a constraint optimization problem,
where the mixed-integer constraints are generated from PrSTL
specifications. However, optimization under such mixed-
integer constraints is computationally intensive and thus
real-time implementation of such strategies is non-trivial.
Furthermore, the prior work on PrSTL does not easily extend
to more complex planning problems, especially in cases
where the overall objective function cannot be explicitly
expressed. This paper alleviates these problems by considering
the probabilistic programming paradigm that enable rich
sets of safety expressions under stochasticity and allow for
fast inference for real-time applications. Furthermore, such
efficient inferential framework also enables embedding of
these probabilistic programs as fast safety checks in a wide
variety of existing planners and policy generators.



X S Vars

uop = C unary operators

bop = C binary operators

¢, Y = logical formula

£ = expression
|z variable
I e constant
| & bop & binary operation
| uop & unary operation

S = statement
le=¢& deterministic assignment
| & ~ Dist(0) probabilistic assignment
| S1; S sequential composition
| For x = ¢1 to c2  For loop
ldo S

P = S returns (€) program

TABLE I: Syntax of Probabilistic Safety Programs. The syntax
representation is borrowed from [3].

We chose to define Probabilistic Safety Programs using a
restricted version of PROB [3], which is a C-like imperative
probabilistic programming language. The syntax to define the
PSPs is shown in Table 1, and it includes the definition of
expressions either as taking deterministic value or a stochastic
one. There are three key differences in the syntax of PSPs
with that of PROB.

1) Replace while with for loop where the iteration count
can be determined at the compilation.

2) The syntax does not allow 1f then else statements.

3) Only exponential families are allowed in the probabilistic
assignments.

The key reason behind these modifications is the need for
computational efficiency. Specifically, replacing the while
loop with a for loop with pre-specified iteration allows for
a static unrolling of the program at the time of compilation.
Similarly absence of any if then statements means that
the sequence of evaluations can be pre-determined. The big
consequence of this is that we can represent the probabilistic
program as a graphical model, over which we then can run
inference algorithms. Finally, only allowing for exponential
families in the probabilistic assignments means that fast
approximate inference methods such as variational methods
can be used easily.

We would like to point out that even with this restricted
syntax, PSPs allow for fairly expressive safety specifications.
In fact, it is easy to show that PSPs subsume PrSTL. The
proof follows from the observation that PSPs allow for all the
logical operators used in PrSTL. Furthermore, the temporal
constructs of Globally, Eventually and Until defined in PrSTL
can be trivially implemented in a for loop.

Given the capabilities that PSP provides, we can formally
define the temporal properties over uncertainties that are
present in sensors and classifiers of the system. For example,
we can write Probabilistic Safety Program that checks if the
output of a Bayesian linear predictor would lie in a desired

bool AvoidObstacle (double[10, 2] x, double[2] Mu,
double[2,2] Sigma)
{
//Sample the Bayesian linear obstacle classifier
w = Gaussian(Mu, Sigma);

bool isSafe = True;
for (int i = 0; 1 < x.GetLength(0); i++)
{
//Safety invariant for obstacle avoidance
bool ClearOfObstacles =
((w[0]*x[1,0] + w[l]l*x[i,1]) > 0);
isSafe = isSafe && ClearOfObstacles;
}

return isSafe;

}

Fig. 1: Probabilistic Safety Program for Example 1 - Obstacle
Avoidance.

range for time steps in the future. This is illustrated in the
example below:

Example 1: Consider the problem of obstacle avoidance for
a robot. Assume that the robot has access to a Bayesian
linear predictor w ~ N (u, 3) that determines if an obstacle
exists at a location x via sign(w’x). The corresponding
probabilistic safety prograrrﬂ is depicted in Figure 1. Specif-
ically, inputs to the program are 2D vector x of 10 future
locations, the mean Mu and the variance Sigma of the
Bayesian classifier. The program first draws a sample from
the Gaussian distribution of the linear predictors and then
for all future locations checks if the safety condition holds.
The program returns true only if the dot product of the
sampled classifier would predict no obstacle condition for
every location.

Given this probabilistic program, we are now inter-
ested in the query of the form: what’s the probability
that the proposed trajectory defined by the set of future
locations is safe. Formally, we would like to evaluate
Pr(AvoidObstacle (x, Mu, Sigma) = True) and if
this quantity is greater than a threshold then we deem the
trajectory safe. Efficient computation of these quantities is
one of the big technical challenges which we show how to
tackle next.

Finally, we would like to point out that as the system begins
to traverse the trajectory, it has the opportunity to observe
new data and update its beliefs over the parameters of the
probability distribution. Such data observations and belief
updates can naturally be written as probabilistic program
constructs within the same framework.

III. EFFICIENT INFERENCE

The task of inference in Probabilistic Programs is very
challenging. The traditional sampling methods including re-
jection sampling, likelihood weighing algorithm, and Markov
Chain Monte Carlo (MCMC) algorithms could be readily
applied to PSPs. However, we note that there are a couple of
characteristics in case of Probabilistic Safety Programs that

'While the arrays are not explicitly defined in the PSP syntax, we allow
slight abuse of notation for the purpose of expositional clarity. The same
program can easily be written without arrays.



bool BatteryAwareFlight (double[] height,
double[] logbatteryLevel, double variance,
double heightThresh, double batteryThresh)
{
bool isSafe = True;
for (int i = 0; i < height.GetLength(0) - 3; i++)
{
//Check if near future steps has high alt.
bool flyHigh = False;
for (int j =1i; j < i + 3;
flyHigh = flyHigh ||

flight

j+)

(height [j] > heightThresh);

//Sample battrylevel from the provided distribution
double batteryNow =

Gaussian (logbatteryLevel[i], isvariance);
bool batteryGood = (batteryNow > batteryThresh);

//Safe invariant that require that high alt. flight
// requires a healthy battery level
isSafe = isSafe && (!flyHigh || batteryGood);

}

return isSafe;

}

Fig. 2: Probabilistic Safety Program for Example 2 - Battery
Aware Quadrotor Flight.

can help with this challenge. First, we are only interested in
inferring the probability that a PSP would return true. This
is in stark contrast with traditional probabilistic programs
where general purpose probabilistic queries can be made.
Second, as described in the previous section, the syntax
of PSPs allow fully unrolling the code at the compilation
time. Consequently it is possible to represent each PSP as a
graphical model. Given this graphical model, then existing
approximate inference algorithms can be readily applied to
infer the required query. We describe these two steps below
in detail:

Recovering the Graphical Model: The key idea here is to
exploit static analysis to first unroll the program and then

induce a graphical model based on the atomic expressions.

Specifically, we instantiate a variable in the macro-expanded
program for every conceived assignment and binary and unary
operations in the original program. The expanded program
now is simply a sequence that consists only of either the
assignments or unary and binary operations on the instantiated
variables.

Once the unrolling is done we then induce a graphical
model by spawning a node 6 for every line of code in the
expanded program that consists of operation over any of the
random variables. Note that € directly corresponds to the

variable that occurs on the lefthand side of the expression.

We then add a directed edge from a node 6; to 0; if the
variable corresponding to #; appears in the righthand side of
the line corresponding to 6;.

Once the edges have been instantiated, we then assign a
conditional probability table for each of the nodes. In order to
do this, we consider all the incoming edges to a node 6. Note
that due to the structure of the expansion, any node can have
at most two incoming edges. If the node 6 and all its parents
are boolean, then the conditional probability table for that
node is completely determined by the corresponding logical
formula. If either 6 or any of its parents are continuous then

bool AvoidCarCrash (double[] x, double[] y, double[] t,
double mu_x, double mu_y, double mu_sx, double mu_sy,
double sigma_sqg, double Thresh)

//Sample location and velocities for the other vehicle
x_other = Gaussian(mu_x, sigma_sq);

y_other = Gaussian(mu_y, sigma_sq);

sx_other = Gaussian(mu_sx, sigma_sq);

sy_other = Gaussian(mu_sy, sigma_sq);

bool isSafe = True;

for (int i = 0; 1 < x.GetLength(0); i++)

{
//Compute distances to the ego vehicle at each step
Xdistance = x[i] - (x_other + time[i]=*sx_other);
Ydistance = y[i] - (y_other + time[i]xsy_other);

//Safety invariants that require min thresh distance

SafeInX = (Xdistance > Thresh) || (Xdistance < -Thresh);
SafeInY = (Ydistance > Thresh) || (Ydistance < -Thresh);
isSafeNow = (SafeInX || SafeInY)

isSafe = isSafe && isSafeNow;

}

return isSafe;

}

Fig. 3: Probabilistic Safety Program for Example 3 - Collision
Avoidance in Autonomous Vehicles.

we simply keep track of the dependency and address it during
the approximate inference phase.

Approximate Inference: The recovered graphical model has
both boolean as well as continuous nodes, thus, inference is
non-trivial in this case. Note that the program always evaluates
to a boolean variable, consequently it is fairly straight forward
to show that all the continuous parents have a boolean node
as their child. We utilize this observation at runtime, where
we marginalize all the continuous nodes upto their discrete
children. Once this marginalization happens, the resulting
graph is a fully-directed graph with only boolean nodes and
their well-defined conditional probability tables. Formally,
each the marginalization operation upto a discrete node 6 can
be written as:

Pr(6  True) ~ / £(6). (1)

peAsc(o)nP

Here Asc(f) denotes the set of all the ascendant nodes and
the set P denotes those nodes that correspond to a direct
probabilistic assignment in the code. Since ¢ arises due to the
exponential family in our framework we compute the quantity
in equation (1) via approximate variational inference. Once all
such quantities are computed, the rest of the remaining graph
is a simply directed acyclic graph with boolean variable, thus
running inference on the remaining graph is straightforward.

Since the variational approximation lower bounds the
integral the resulting approximation has an appealing property
of maintaining safety when the sequence of logical relations to
the final output does not contain any negation of 6. Intuitively,
since the approximation Pr(f = True) <= Pr(f = True),
the trajectories that are deemed safe with approximation will
be safe when there is no negation of § when computing the
final output of the program.
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Fig. 4: Performance comparison of the proposed inference algorithm. The top row depicts the completion time of running
the three procedures as the length of the trajectory is varied. The bottom row shows how many safe trajectories does the
approximate inference procedure misclassifies as unsafe. We observe that the proposed strategy is fast as well as accurate.

IV. EXAMPLES AND EXPERIMENTS

We perform experiments on three different probabilistic
safety programs motivated by real-world applications. The
goal of these experiments is to explore both the efficiency as
well as accuracy of estimating the safety query. In addition, we
also provide a real-world example of how a PSP embedded in
an RRT* planner can be effectively used to build quadrotor
systems that are capable of safe flight in the presence of
unknown obstacles.

Our three simulation examples include the following
scenarios:

Example 1: This is the same scenario as described earlier
in Fig. 1, where the goal is to avoid obstacles via a machine
learning system characterized as a Bayesian linear classifier.
Example 2: The goal in this example is to address quadrotor
flight safety then there is uncertainty about the battery level.
The battery level is a stochastic variable due to uncertain
environment and usage factors, such as radio communications,
etc. Our goal is to derive a safe strategy that considers such
stochasticity. Specifically, we want to avoid flights above
an altitude heightThresh of we do not have enough
battery (less than batteryThresh). Thus, the PSP shown
in Figure 2 first samples from a predictive distribution of the
battery level and enforces the safety constraint that only those
trajectories are allowed that has the minimum battery level
at least three steps before the quadrotor assumes a height
greater than the threshold. Note that the PSP assumes that the
uncertainty in the battery level grows linearly with elapsed
time steps. This is due to the fact that the variance of the
Gaussian distribution from which batteryNow is being
sampled is expressed as i xvariance.

Example 3: The third example illustrates the use of PSPs in

autonomous driving. Assuming that there is another car on the
road with whom we need to maintain safe distance, we write
a PSP shown in Figure 3 right that returns true only if for
all the positions of the ego vehicle, the distance to the other
car is greater than Threshold either in x or y direction.
In this example, we assume that we have a predictive model
corresponding to the other car that provides probability
distribution over both its future positions and speeds. In line
with the previous example, this PSP first samples positions and
velocities from the predictive distribution and then evaluates
the safety invariant.

For our experiments we statically compile each of these
probabilistic programs to a Bayesian graphical model as
mentioned in section 3. Next, we generate 50 random
parameters of the probability distribution that are responsible
for the stochasticity in the programs (e.g. v and X in example
1 etc.). For each of the randomly generated parameters we run
the approximate inference algorithm on a set of pre-computed
trajectories. Besides running the approximate inference, we
also run inference in this models via a sampling procedure
based on Markov Chain Monte Carlo (MCMC).

Figure 4 top row shows the running time of the two
inference algorithms for all the three different examples.
The x-axis is the size of the trajectory for which the safety
query is invoked, whereas the y-axis indicates the actual
running time. Besides plotting the running time for the
approximate inference, we also plot the curves for MCMC
procedure with different number of samples. We observe
that the approximate inference procedure has significant
advantages in terms of the running time for all the three
PSPs. Furthermore, this advantage gets even more significant
as the length of the trajectory is increased. Note that we
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Fig. 5: Las Vegas Motor Speedway Air Race course used to showcase safe planning for quadrotors.

were able to run the approximate inference engine in less
than 0.003 secs on average for trajectories of length 300,
highlighting that framework can be run over 300 Hz.

Besides the running time we are also interested in the
accuracy of the approximate inference model. As we have
seen in Section 3 the approximate inference method bounds
Pr(Program is Safe) from below. So while it is impos-
sible for the approach to infer an unsafe trajectory as safe,
it can still infer a safe trajectory as unsafe. Figure 4 bottom
row highlights the percentage of trajectories that are false
negatives (i.e. safe trajectories characterized as unsafe) as we
vary the threshold parameter €. We also plot these curves for
trajectories of different lengths. The figures highlight that if
use the approximate inference then the proportion of false
positives are less than 4% for all the cases that we ran. These
results indicate that the approximate inference procedure is
both computationally efficient and highly accurate.

Online Safe Planning for Quadrotors with PSPs: Next,
we showcase how PSPs can be effectively embedded in
existing planners. We tackle an online planning scenario for
a quadrotor which is tasked with flying through an obstacle
course which can have known as well as unknown obstacles.
Figure [5] shows the Las Vegas Motor Speedway Air Race
course used for this task. We assume that the quadrotor is
equipped with a spinning lidar sensor that is capable of
returning depth to nearest obstacles in its immediate vicinity
(blue circle). Consequently, our probabilistic safety program
looks like Example 1 provided earlier, where the observations
from lidar are used to build a Bayesian predictive model and
then used in the PSP for safety checks.

The quadrotor is tasked with starting at the first gate
(“LAS#1”) and must reach gate “LAS#6” while traversing
through all the gates in sequence. In addition to avoiding
known and unknown obstacles it must also obey rules specific
to the course. These include maintaining minimum altitude
of 75 feet and staying inside the outer crowd line and outside
the inner crowd line. We take a receding-horizon [7] approach
with RRT* [9], a sampling based motion planner that works
by constructing a tree via random samples of the workspace.

Sampled nodes are connected to the tree, only if collision-free
trajectories can be found to them from the nearest node in the
tree. These collision checks for the unknown obstacles are
performed via the Probabilistic Safety Program framework.

Figure shows the generated RRT* tree from the
current location of the quadrotor. While the tree takes into
account known obstacles and other course-specific safety rules,
without PSP it passes through the unknown obstacle right in
front of it. Figure [6b] shows the RRT* tree pruned using the
PSP, which avoids the previously unknown obstacle thanks to
the PSP check. Figure [6c| the shortest path to the goal location
is determined by Dijkstra’s algorithm [14] (indicated by the
blue line) and then partially traversed by the quadrotor. This
process is then repeated from the new location until the goal
is reached. The depth sensor has a radius of 90 meters. 300
valid nodes were sampled by RRT* for each cycle detailed
above. Each edge in the RRT* tree had to satisfy at least
greater than 50% chance of being collision-free to be kept.
Figure [6d| shows the complete path taken by the quadrotor till
the fourth gate while successfully avoiding the two unknown
obstacles along the way.

V. RELATED WORK

Related to this work are several temporal logic specifi-
cation languages that have been developed and adapted for
synthesizing controllers such as Linear Temporal Logic (LTL)
[15], [16], Metric Temporal Logic (MTL) [17], Probabilistic
Temporal Logic (PTL) [18] and Signal Temporal Logic
(STL) [19], [20], [21]. These approaches can be used
for task planning [22], where a system designer a priori
specifies logical specifications composed of disjunctions,
conjunctions, negations as well as temporal permutations
of those combinations. Previous work has also proposed
methods for combining sampling-based motion planners with
such specification languages to do joint task and motion
planning for autonomous robots [23], [17]. However, these
approaches are limited in their capacity to both express the
constraints as well as the capability to account for uncertainty
in sensors and dynamics.
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Fig. 6: The PSP when embedded in a planner based on RRT* helps avoid unknown obstacles.

Also there have been previous efforts to incorporate such
uncertainty into planning [24], [25], [26], however, safety
guarantees have been difficult to provide in such settings
especially under constrained computational budget. One of
the closest approaches to our work is that of [27] who propose
a chance-constrained RRT (CC-RRT) where uncertainty in
dynamic obstacles and sensing is propagated down the tree
and only those paths in the tree are kept such that they
satisfy a real-time constraint. In contrast to chance-constraints,
Probabilistic Safety Programs allows a much richer class
of Boolean and temporal constraints to be specified under
uncertainty.

VI. CONCLUSION AND FUTURE WORK

We have presented Probabilistic Safe Programs that enables
specification and inference over safety constraints when the
system is operating in an uncertain environment. We ensure
their satisfaction via efficient reductions to equivalent graph-
ical models and performing inference via fast approximate
but bounded Bayesian inference. We have demonstrated the
efficiency of the proposed techniques via multiple examples
and in conjunction with widely used planners in real-world
systems. In future, we aim to deploy these on real robots with
multiple sensing modalities and further integrate them with
deliberative planners to help close the gap between perception
and planning.
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