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Cognitive Indoor Positioning and Tracking using

Multipath Channel Information
Erik Leitinger, Paul Meissner, and Klaus Witrisal

Abstract—This paper presents a robust and accurate position-
ing system that adapts its behavior to the surrounding environ-
ment, mimicking the capability of the visual brain to filtering out
clutter and focusing attention on activity and relevant informa-
tion. Especially in indoor environments, which are characterized
by harsh multipath propagation, robust positioning is still hard to
achieve under the constraint of reasonable infrastructural needs.
In such environments it is essential to separate relevant from
irrelevant information and attain an appropriate uncertainty
model for measurements that are used for positioning.

Index Terms—Cognitive dynamic systems, Cramér-Rao
bounds, localization, simultaneous localization and mapping,
radio channel models

I. INTRODUCTION

A. Motivation and State of the Art

For radiobased positioning in indoor environments, which

are characterized by harsh multipath propagation, it is still

elusive to achieve the needed level of accuracy robustly1 under

the constraint of reasonable infrastructural needs. In such

environments it is essential to separate relevant from irrelevant

information and attain an appropriate uncertainty model for

measurements that are being used for positioning.

To approach this objective more closely the four basic

principles for human cognition, namely the perception-action-

cycle (PAC), memory, attention and intelligence [1] are im-

plemented into the positioning systems as schematically il-

lustrated in Fig. 2. To encounter all these principles, the

concepts of multipath-assisted indoor navigation and tracking

(MINT) [2]–[5] are intertwined with the principles of cognitive

dynamic systems (CDS) that were developed in [6]–[10].

Evidently, a perceptive system has to reason with measure-

ments under uncertainty [11], i.e. it has to treat the gained

information probabilistically [12], [13], but it also has to

deliberately take actions on the environment and consequently

influence measurements to reason in favor of relevant informa-

tion instead of irrelevant one. Hence, cognitive processing of

measurement data for positioning seems to be a natural choice

to overcome such severe impairments.

MINT exploit specular multipath components (MPCs) that

can be associated to the local geometry as illustrated in Fig. 1.

MPCs can be interpreted as signals originiating from addi-

tional virtual sources, so-called virtual anchors (VA). These

VAs are mirror-images of a physical anchor w.r.t. the flat

surfaces as illustrated in Fig. 1 [2], [14], [15]. This additional

position-related information can be utilized from the radio

1We define robustness as the percentage of cases in which a system can
achieve its given potential accuracy.

signals. For a proper consideration of uncertainties in the floor

plan and to account for the stochastic nature of the radio

signals a geometry-based probabilistic environment model

(GPEM) and a geometry-based stochastic channel model

(GSCM) where introduced in [16]–[19], extending MINT to

a simultaneous localization and mapping (SLAM) approach.

Such a systems acquires and adapts online information about

its surrounding environment and is able to continuously build-

ing up a consistent memory in a Bayesian sense.

The idea of combing MINT with a CDS is to gain control

over the observed environment information to (i) provide

as much position-related information to the Bayesian state

estimator as possible for achieving the highest level of re-

liability/robustness in position estimation, (ii) to improve the

separation between relevant and irrelevant information, and

(iii) building up a consistent environment and action memory.

By actively planning next control actions on the environment

using the Bayesian memory—in sense of waveform adaptation

[6], [20]–[22] or mobile agent motor-control [23], [24]—

the relevant information-return contained in the signals can

be maximized. The information-flow coupling between the

perceptor-actor system and the surrounding environment is

given by the PAC that plays the key-role when it is coming to

gather relevant environment information [1], [10].

The core feedback loop of the cognitive dynamic system,

the perception-action-cycle resembles the idea of optimally

choosing future measurements based on a physical model

under reasoning with uncertainty. The principle has been

explored by the physics community under the term Bayesian

experimental design [25]. This decision-theoretic process gives

a mathematical justification for selecting the appropriate opti-

mality criterion under uncertainty that maximizes the utility

function of the posterior probability density function, such

that new model information of the acquired measurements

can be predicted. Information theoretic measures such as

the conditional entropy [26], the mutual information [26]

or the determinate of the Fisher information matrix [27],

[28] are suitable utility functions for this process. The active

selection of measurement parameters has a lot in common with

cognitive perception and control at the lowest layer. However,

it lacks an explicit description of a layered memory structure

that, in combination with algorithmic attention leads to an

“intelligent” behavior of the overall system.

II. MINT CONCEPTS

In this section we review basic elements of MINT [3], [29]

starting with the signal model, then discussing the estimation
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of the MPC parameters, and finally introducing position related

information that is of main importance for a proper weighting

of the MPC-VA relations in the Bayesian tracking filter. All

not-geometrically-modeled propagation effects in the signals,

so-called diffuse multipath (DM) [30], constitute interference

to the useful position-related information.

A. Geometry-based Stochastic Signal Model (GSCM)

Our signal model is the following. During time step n, a

baseband radio signal s(t) is transmitted from the j-th physical

anchor located at position a
(j)
1 ∈ R2, j ∈ {1, . . . , J} = J ,

to a mobile agent at position pn ∈ R2. The corresponding

received signal is given as [3]

r(j)n (t) =

K(j)
n∑

k=1

α
(j)
k,ns

(
t− τ

(j)
k,n

)
+ s(t) ∗ ν(j)n (t) + w(t). (1)

Here, the first term describes the contributions from K
(j)
n

specular MPCs with complex amplitudes α
(j)
k,n and delays τ

(j)
k,n,

where k ∈
{
1, . . . ,K

(j)
n

}
= K

(j)
n . The delays τ

(j)
k,n correspond

to the distances between the agent and the j-th physical anchor

(for k = 1) or the VAs of the j-th physical anchor (for k ∈{
2, . . . ,K

(j)
n

}
). Thus, τ

(j)
k,n =

∥∥pn−a
(j)
k

∥∥/c, where a
(j)
k ∈ R2

is the position of the respective (physical or virtual) anchor and

c is the speed of light. The energy of the transmitted signal

s(t) is assumed to be normalized to one. The second term in

(1) denotes the convolution of s(t) with the diffuse multipath

(DM) ν
(j)
n (t), which is modeled as a non-stationary zero-mean

Gaussian random process. Considering uncorrelated scattering

along the delay axis τ , the auto-correlation function of ν
(j)
n (t)

is given by Eν

{
ν
(j)
n (τ)ν

(j)∗
n (u)

}
= S

(j)
ν,n(τ)δ(τ − u), where

S
(j)
ν,n(τ) represents the power delay profile of DM. The DM

process ν
(j)
n (t) is assumed to be quasi-stationary in the spatial

domain, which means that S
(j)
ν,n(τ) does not change in the

vicinity of pn [31]. Note that the DM component interferes

with the useful position-related information. The last term in

(1), w(t), is additive white Gaussian noise with double-sided

power spectral density N0/2.

B. MPC Parameter Estimation

The delays of the MPCs at agent position pn are estimated

from the received signals using a sparse Bayesian channel

estimator [32]. The algorithm estimates up to a predefined

maximum number M of MPCs yielding estimated delays

τ̂
(j)
m,n and according complex amplitudes α̂

(j)
m,n, with m ∈

{1, . . . ,M
(j)
n } = M

(j)
n . The estimated delays are scaled by

the speed of light c and used as noisy distance measurements

z
(j)
m,n = cτ̂

(j)
m,n in the proposed multipath-assisted SLAM

algorithm. Furthermore, in a real-world MINT system, the

amplitude estimates α̂
(j)
m,n (after being associated with the k-

th anchor) are fed into a higher-level, non-Bayesian algorithm

that determines the signal-to-interference-plus-noise power ra-

tio (SINR) between the useful specular MPC and the DM plus

noise. This SINR is related to the range standard deviation

σ
(j)
m,n (see [29], [33] for details). Note that an extension to

additional parameters besides the delay (and the corresponding

amplitude), as for example the angle-of-arrival and angle-of-

departure of the MPCs, is straightforward.

C. Position and Range Uncertainty

As a performance measure and lower bound on the position

error we use the Cramer-Rao-Lower Bound (CRLB) defined

by the inequality E{||p − p̂||} ≥ tr{J−1
p }, where Jp is the

equivalent Fisher information matrix (EFIM) [3], [34], [35] for

the position vector and tr{·} is the trace operator. Assuming

no path overlap between MPCs, the EFIM Jp is formulated

for a set of anchors in a canonical form by [3]

IIIp,n =
8π2β2

c2

J∑

j=1

K(j)
n∑

k=1

SINR
(j)
k,nIIIr

(
φ
(j)
k,n

)
, (2)

where β denotes the effective (root mean square) bandwidth

of s(t) and IIIr(φ
(j)
k,n) is the ranging direction matrix, which is

a rank-one matrix with an eigenvector in direction φ
(j)
k,n from

the agent to the k-th VA. The signal-to-interference-plus-noise

ratios (SINRs) are described by the ratio between the energy

of the deterministic MPCs to the interfering DM plus noise

SINR
(j)
k,n =

|α
(j)
k,n|

2

N0 + TpS
(j)
ν,n(τ

(j)
k,n)

(3)

The according MPC range uncertainties σ
(j)2
k,n = var

{
z
(j)
k,n

}

to already associated VAs is given as

σ
(j)2
k,n ≥

(
8π2β2

c2
SINR

(j)
k,n

)−1

. (4)

D. Geometry-based Probabilitstic Environment Model

(GPEM)

Fig. 1 illustrates the probabilistic geometric environment

model. A signal exchanged between an anchor at position

a
(j)
1 and an agent at p(m) contains specular reflections at

the room walls, indicated by the black lines2. These reflec-

tions can be modeled geometrically using the VA a
(j)
k with

k = 1, . . . ,K(j) that are mirror-images of the j-th anchor

w.r.t. walls [2], [14], [15]. The number of VAs per anchor

j is defined as K(j). The VAs of all anchors are comprised

in An =
{
A

(j)
n

}J
j=1

, where A
(j)
n =

{
a
(j)
k,n

}K(j)
n

k=1
. To be able

to cope with uncertainties in the floor plan the deterministic

geometric model of the VA positions a
(j)
k of the j-th anchor,

is extended to a probabilistic one as shown in Fig. 1. The

VA positions and the agent position p(m) are represented by

a joint PDF p
(
p(m), a

(j)
1 , a

(j)
2 , . . . , a

(j)

K
(j)
n

)
. If the position of

the j-th anchor is assumed to be known exactly, the joint PDF

reduces to p
(
p(m), a

(j)
2 , . . . , a

(j)

K
(j)
n

)
.

The joint PDF of the agent and the VA positions is rep-

resented by a multivariate Gaussian RV, where the figure

shows the marginal distributions of the agent p
(
p(m)

)
(dashed

black ellipses) and the VA positions p
(
a
(j)
k ) (red ellipses). The

2Since the radio channel is reciprocal, the assignment of transmitter and
receiver roles to anchors and agents is arbitrary and this choice can be made
according to the application scenario.
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Fig. 1. Illustration of the VA for the j-th anchor and an agent with PDF

p
(

a
(j)
k

)

and p
(

p
(m)

)

, respectively. The VA at position afalse represents a
false detected VA.

marginal distribution p
(
afalse

)
(dashed red ellipse) defines a

wrongly detected VA at position afalse. The anchor position

a
(j)
1 is assumed to be known perfectly. Uncertainty in the floor

plan does not just mean that the VA positions are uncertain

and thus described by RV, but also that floor plan information

is incorrect/inconsistent or entirely missing. This means that

positioning and tracking algorithms based on VA, have to

consider this lack of knowledge.

E. Probabilistic Data Association (PDA)

The state of the agent xn = [pT
n ,v

T
n ]

T, where vn is the

velocity, evolves according to the state transition probability

density function (PDF) p(xn|xn−1) over time instances n.

From each VA in A
(j)
n and the predicted agent position, a set

of expected MPC distances D
(j)
n at time step n is computed.

The MPC distances described in Section II-B are subject to

a data association uncertainty, i.e., it is not known which

measurement in z
(j)
n originated from which VA k of the j-

th anchor, and it is also possible that a measurement y
(j)
m,n did

not originate from any VA (false alarm, clutter) or that a VA

did not give rise to any measurement (missed detection). The

probability that a VA is detected is denoted by Pd. Possible

associations at time instance n are described by the K
(j)
n -

dimensional random vector b
(j)
n =

[
b
(j)
1,n · · · b

(j)

n,K
(j)
n

]T
, whose

k-th entry is defined as [5], [17]–[19], [36], [37]

b
(j)
k,n =





m ∈ {1, . . . ,M} , a
(j)
k generates measurement

z
(j)
m,n

0 , a
(j)
k did not give rise to any

measurement.

We also define bn =
[
b
(1)T
n · · ·b

(J)T
n

]T
. False alarms are

modeled by a uniform distribution with mean arrival rate

µ, and the distribution of each false alarm measurement is

described by the PDF fFA

(
z
(j)
m,n

)
[38], [39], factoring in a

likelihood that a measurement correspond to a false alarm.

The statistical dependence of the distance measurement vec-

tors zn =
[
z
(1)
n , · · · , z

(J)
n

]T
on the agent state vector xn and

the association vector bn is described by the global likelihood

function f(yn|xn,bn). Under commonly-used assumptions

about the statistics of the measurements [2], [38], [39], the

global likelihood function at time instances n factors as

f(zn|xn,bn) =

J∏

j=1

(
M∏

m=1

fFA

(
z(j)m,n

)
)

×
∏

k∈Q(xn,b
(j)
n )

f
(
z
(j)

b
(j)
k,n

,n

∣∣∣xn; a
(j)
k , σ

(j)
k,n

)

fFA

(
z
(j)

b
(j)
k,n

,n

) ,

where Q(xn,b
(j)
n ) ,

{
k ∈ {1, . . . ,K

(j)
n } : b

(j)
k,n 6= 0,

}
. The

local likelihood function f
(
z
(j)
m,n|xn; a

(j)
k , σ

(j)
k,n

)
is related to a

noisy measurement of the distance to VA a
(j)
k at agent position

pn which is modeled as

z
(j)
k,n = ‖pn − a

(j)
k ‖+ v

(j)
k,n ,

where vk,n is a zero-mean Gaussian random variable with

standard deviation σ
(j)
k,n as described in (4). Based on the

factorized likelihood model, a probabilistic data association

algorithm is used to compute the associations between the

expected delay to the VAs and the estimated MPCs using

belief propagation as described in [5], [17]–[19], [36], [37].

The most probable MPC-to-anchor associations are obtained

by means of an approximation of the maximum a posterior

(MAP) detector [40]

b̂
(j)MAP

k,n , argmax
b
(j)
k,n

∈{1,...,M}

p
(
b
(j)
k,n

∣∣z
)
. (5)

After the PDA was applied for all anchors, the following union

sets are defined:

• The set of associated discovered (and optionally a-priori

known) VAs An,ass =
⋃

j A
(j)
n,ass.

• The according set of associated measurements Zn,ass =⋃
j Z

(j)
n,ass.

• The set of remaining measurements Zn,ass =
⋃

j Z
(j)
n,ass,

which are not associated to VAs of An,ass.

F. MINT-SLAM

In the most generic form, the prediction equation for the

VAs An and the agent state xn = [pn,xn]
T, can be written

as, using the Markovian assumption,

p(xn,An|Z1:n−1) =

∫
p(xn−1,An−1|Z1:n−1)p(xn|xn−1)

× p(An|An−1)d{xn−1,An−1}, (6)

where p(xn|xn−1) and p(An|An−1) are the state transition

probability distribution functions of the agent and the VAs,

respectively. The latter can be represented by an identity

function. The update equation is then

p(xn,An|Z1:n) =
p(Zn|xn,An)p(xn,An|Z1:n−1)

p(Z1:n|Z1:n−1)
, (7)

where p(Zn|xn,An) is the likelihood function of the current

measurements. Assuming that the agent moves along a path



according to a linear Gaussian constant-velocity motion, the

state space model is defined as,

xn = Fxn−1 +Gna,n

=




1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1


xn +




∆T 2

2 0

0 ∆T 2

2
∆T 0
0 ∆T


na,n, (8)

where ∆T is the discrete time update rate. The driving

acceleration noise term na,n is zero-mean, circular symmetric

with variance σ2
a , and models motion changes which deviate

from the constant-velocity assumption. The transformed noise

covariance matrix is given as Ra = σ2
aGGT. The entire state

space of xn and the associated VAs An,ass described in (6)

are formulated as [4], [16]

x̃n =

[
F 04×2Kn

02Kn×4 I2Kn×2Kn

]
x̃n−1 +

[
G

02Kn×2

]
na,n, (9)

where x̃n = [xT
n , a

T
2,n, . . . , a

T
Kn,n

]T represents the stacked

state vector with {a
(j)
k,n} ∈ An,ass. The covariance matrix of

the state vector consists of the agent covariance matrix Cxn
,

the cross-covariances Cxn,ak,n
between the agent state xn and

the VAs at positions ak,n, the cross-covariances between VAs

Cak,n,ak′,n
with k 6= k′, and the covariances of the VAs Cak,n

.

The measurement model is defined as

zn = h̃n(x̃n) + ñz,n, (10)

where zn is defined in (5) with the according stack measure-

ment noise vector ñz,n. The measurement model h̃n contains

all distance equations ||a
(j)
n,k − pn|| ∀ a

(j)
n,k ∈ An,ass to

update the agent and the VAs, respectively. As Bayesian state

estimator a UKF is used [4]. The measurement covariance

matrix is written as

Rn = diag
{
var
{
z
(j)
k,n

}}
∀ k, j : a

(j)
k,n ∈ An,ass, (11)

where the range variances are defined by (4).

III. COGNITIVE POSITIONING SYSTEM

The basic building blocks of a CDS, namely the perception-

action cycle (PAC), cognitive perceptor (CP), information

feedback and the cognitive controller (CC) are depicted in

Fig. 2. All of these blocks are reciprocally coupled and form

a hierarchical structure to enable the ability to interpret the

environmental observables on different abstraction layers.

A. Multipath-assisted Positioning as CDS

Figure 2 illustrates the block diagram of a cognitive local-

ization and tracking system with a triple layered structure:

• First Layer: Defines (i) the direct Bayesian state esti-

mation p
(
xn

∣∣Zn, cn
)

at the CP holds the agent position

and its velocity, and (ii) the cognitive control parameters

cn at the CC based on the feedback information of the

Bayesian state space filter.

• Second Layer: Represents (i) the memory for the

GPEM described by the VAs with marginal PDF

p
(
A

(j)
n |Z

(j)
n , cn

)
and the memory for the GSCM de-

scribed by the SINR
(j)
k,n of the MPC at the CP and (ii) the

memory of VAs specific waveform parameters at the CC,

which specify on which the cognitive control is based on.

• Third Layer: It represents the highest layer and is dif-

ferent from the two layers below in the sense that it

defines the application driven by the cognitive localiza-

tion/tracking system. The CP memory of applications

holds abstract parameters or structures of the specified

application and the CC enables the motor control for

realizing higher goal planning [41].

The first and second layers describe the signal and information

processing of the model parameters of the surrounding phys-

ical environment and the radio channel. On the other hand,

the third layer holds higher goal parameters, i.e. motor-control

input to fulfill navigation goals, that are based on the physical-

related parameters [41]–[43].

B. Feedback Information

The system is able to adapt online its behavior to the

environment, i.e. perceptual attention is given, through the

following principles:

• At the CP side, the GSCM and GPEM memories are up-

dated using the received signal rn(t, cn) with waveform

parameters chosen by the CC.

• In the actual sensing cycle the attention is put through

the CC using the control parameters cn on the potential

set of VA and their parameters memorized in the GSCM

and GPEM. These model parameters are seen at the CP

side of Fig. 2.

Now the question is, “How to control the environment infor-

mation flow through the received signal and put cognitive

attention on the relevant features in the following sensing

cycle?” The answer to this lies in the CC and the feed-back

and feed-forward information between the perceptor and the

controller as illustrated in Fig. 2.

The control parameter vector cn+1 of the next sensing cycle

is chosen in order to gain the most “valuable” position-related

information from the new set of measurements Z̃n+l using

the predicted posterior p
(
xn+l,An+l|Z̃n+l,bn+l, cn+l

)
the

predicted received signals Z̃n+l that depends on the chosen

signal model, with l = 0, . . . , lfuture as future horizon. This

goal can be reached by minimizing an expected cost-to-go

function, yielding

cn+1 = argmin
cn

C
(
p
(
xn+l,An+l|Z̃n+l,bn+l, cn+l

))
,

(12)

where C(·) is the expected cost-to-go function for optimal

control [25], [43] of the environmental information contained

in Z̃n+l. The expected cost-to-go function is based on an

information-theoretic measure that should depend on the envi-

ronment parameters, like the VA specific SINR
(j)
k,n, and serves

as feedback information in the CDS.

In general, estimation and control problems have to deal

with probabilistic states and observations. As a consequence,

also the control has to be probabilistic, i.e. the cost function

or utility must handle uncertainties. Based on covering the
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Fig. 2. Block diagram of the cognitive indoor positioning and tracking system that uses multipath channel information.

uncertainty of the state with a PDF, a measure of informative-

ness of measurements has to be defined on the posterior state

distribution. Two commonly used information measures of an

RV are the entropy [44] and the Fisher information [28].

C. Information Measures for Feedback

1) Fisher Information: The Fisher information matrix

(FIM) of a RV r, dependent on the deterministic parameter

p, can also be used as a measure of information. Using the

likelihood function ln f(r;p), it is defined as

IIIp = Er;p

{[
∂

∂p
ln f(r;p)

] [
∂

∂p
ln f(r;p)

]T}
. (13)

2) Entropy: For a continuous-valued vector RV p ∈ RL

(in the follow-up sections p represents the agent position), the

conditional entropy is given as [26]

h(p)
.
= −Ep {ln p(p)} = −

∫ ∞

−∞

· · ·

∫ ∞

−∞

p(p) ln p(p)dp,

(14)

The entropy is directly related to the uncertainty of the

according RV. For a multivariate Gaussian RV N (mp,Cp)
this means that the entropy is directly related to the covariance

matrix Cp, yielding

h(p) =
1

2
ln
(
(2πe)L detCp

))
, (15)

where det(·) defines the determinant of a matrix. The de-

terminate of the covariance matrix Cp is a measure of the

“volume” of uncertainty of p. The more compact the volume

is, the smaller is the entropy h(p) and consequently the more

informative is the distribution p(p).

The inverse of the FIM is a lower bound on the covariance

Cp̂ � III
−1
p of the deterministic parameter p of an estimator

p̂ [28]. Looking at the entropy of the estimator’s distribution

N (p̂,Cp̂), the explicit relationship between the FIM IIIp of r

(dependent on p) and the entropy h(p̂) is given as

h(p̂) =
1

2
log
(
(2πe)L det

(
Cp̂

))
(16)

≥ −
1

2
log
(
(2πe)L det

(
IIIp
))

.

As the relationship in (16) shows, one can connect the FIM

of a parameter vector with the entropy, resulting in a scalar

measure of information that is valuable for choosing optimal

waveform parameters, as it is needed for a cognitive posi-

tioning system. As it is shown in Section II-C, the FIM IIIp
on the position of the agent p contains the environment and

signal parameters, e.g. VA positions and the according SINRs.

With this, a direct relationship between the environment, the

feedback information and the control of the sensing is given,

closing the PAC (Figure 2). In the same manner, the system

can also be expanded to information-based control of the agent



state to increase the informativeness in the measurements [23],

[24], [42].

IV. COGNITIVE MINT

A. Cognitice Controller: Reinforcement Learning (RL)

As already stated in Section III, the control parameters

should be chosen in order to optimize the expected cost-to-go

function C (·) of the predicted posterior PDF as defined in (12).

In general, the expected cost-to-go function for a Bayesian

state space filter can be written as

C (p(xn+1,An+1|r̃n+1(t, cn)) = ḡ
(
ǫn+1|n+1(cn)

)
, (17)

where ǫn+1|n+1(cn) is the predicted posterior state-estimation

error depend on the control parameters and ḡ(·) defines the

cost-to-go function of the transmitter. The conditional entropy

was discussed as a possible information measure for the feed-

back, thus a possible cost-to-go function ḡ(·) of the transmitter

is the conditional entropy of the predicted posterior state-

estimation error ǫn+1|n+1(cn), given as ḡ
(
ǫn+1|n+1(cn)

)
=

h
(
ǫn+1|n+1(cn)

)
[26], [45]. This entropy conditioned on

the control parameter vector cn is directly coupled with the

posterior covariance matrix of the Bayesian tracking filter that

is lower bounded by the inverse of the EFIM in (2). The

entropy of the predicted posterior state-estimation error (when

assuming a Gaussian approximation) is given as

h
(
ǫn+1|n+1(cn)

)
∝ det

(
C̃xn+1(cn)

)
, (18)

where C̃xn+1(cn) and IIIxn+1(cn) is the predicted state co-

variance matrix as described in Section II-F of the state vector

provided from the Bayesian state space filter (UKF) dependent

on the control parameter vector cn. Thus, the entropy in

(18) is directly coupled with the position-related information

that is contained in the measurement noise covariance matrix

Rz,n described by (11). How the introduced algorithm is

using the state space and measurement model equations of

the Bayesian state space estimator is described in more detail

in Sections IV-B2 and IV-B3.

For readability of the following derivations of the control

optimization algorithm, the cost-to-go of the CC (18) is

rewritten as ḡ
(
ǫn+1|n+1(cn)

)
= h (xn+1, cn) with cn ∈ A,

where A is the space of cognitive action with size |A| that

represents the waveform library in our case. Consequently,

the next set of waveform parameters has to be chosen in

order to minimize the cost-to-go of the next posterior entropy.

As elaborated in [46], dynamic programming represents an

optimal solution for such problems, but unfortunately it is

based on the assumption that the state to be controlled is

“perfectly” perceivable. Hence, methods have been introduced

that are capable of handling imperfect state information [47]

with the drawback that they are computational complex. In [6],

[45] approximate dynamic programming was used for optimal

control. In there, the trace of the posterior covariance matrix

was used as cost-to-go function to reduce the computational

complexity. The policy for control parameter selection in

the transmitter at time instance n is seeking to find the set

of waveform parameters, for which the cost-to-go function

ḡ(ǫn+1|n+1(cn)) ≈ tr[C̃xn+1(cn)] is minimized for a rolling

future horizon of lfuture predicted states. In practice, it is

difficult to construct all state transition probabilities from one

state to another that are conditioned on the selected actions,

including their cost incurred as a result of each transition. RL3

[48] represents an approximation of dynamic programming

[46], [47] for solving such optimal control and future planning

task with high computationally efficiency. In RL literature

the cost-to-go function is termed value-to-go function Jn(cn)
that is updated online for every PAC based on the immediate

rewards rn. The immediate reward rn is a measure of “quality”

of an action cn taken on the environment. Using the Markovian

assumption and following the way in [8], it is given by

rn = gn (h(xn−1, cn−1)− h(xn, cn)) , (19)

where h(xn, cn) ∝ det
(
Cxn

(cn)
)

and gn(·) is an arbitrary

scalar operator that in its most general form could also depend

on the time instance n [8]. A reasonable function for the

reward is the scaled change in the posterior entropy from one

PAC to the next, i.e.

rn = sign (∆h(xn, cn)
∣∣log

(
|∆h(xn, cn)|

)∣∣ . (20)

A positive reward will be favoring the current action an for the

future action cn+1 and conversely a negative one will lead to

a penalty for these actions. As described in [8], the cognitive

RL algorithm has to find the optimal future action cn+1 for the

next PAC based on the immediate reward rn and the learned

value-to-go function Jn(cn).
For computing the expected costs of future actions as it is

done in dynamic programming, RL divides the computation of

the value-to-go function into two parts, (i) the learning phase

that incorporates the actual measured reward into the value-to-

go function based on actions cn and cn−1, and (ii) the planning

phase that incorporates predicted future rewards into the

value-to-go function. Whereas for learning a “real” reward is

perceived from the environment, for planning just model-based

predicted rewards are perceived from the internal perceptor

memory using the feedforward link. A faster convergence to

the optimal control policy can be achieved in this way.

B. Learning and Planning: Algorithm

The value-to-go function that is used in the cognitive

controller is defined as [8]

Jn(c) = Eπn

{
rn + γrn+1 + γ2rn+2 + · · · |cn = c

}
, (21)

where rn with c ∈ C is the actual reward, rn+l are

the predicted future rewards that are based on the GPEM

and GSCM parameter that are used by the Bayesian filter,

0 < γ ≤ 1 is the discount factor for future rewards based on

action cn ∈ C and the expected value is calculated using the

cognitive policy

πn(c
′, c) = P [cn+1 = c′|cn = c] , c, c′ ∈ C, (22)

3RL represents an intermediate learning procedure that lies between super-
vised and unsupervised learning as stated in [45].



where P[·|·] defines a conditional PMF that describes the tran-

sition probabilities of all actions c ∈ C over time instances n.

Following the derivations in [8], the value-to-go function can

be reformulated in an incremental recursive manner, yielding

Jn(c)← Jn(c)+α

[
R(c) + γ

∑

c′

πn(c, c
′)Jn(c

′)− Jn(c)

]
,

(23)

where R(c) = Eπn
{rn|cn = c} ∀ c ∈ C denotes the expected

immediate reward and α > 0 is the learning rate. The

algorithm for updating the value-to-go function can be found

in the Appendix of [4]. The incremental recursive update in

(23) means that for all actions c ∈ C the value-to-go function

is updated using the expected immediate reward and the policy

πn(c, c
′) for all these actions.

1) Learning from applied Actions: With the value of the

immediate reward rn, a new value is learned for the value-

to-go function for the currently selected action cn using

Jn(cn) ← (1 − α)Jn(cn) + αR(cn) of (23). This accounts

for the “real” physical action on the environment. Hence,

only one parameter set can be chosen as an action for the

PAC at a time; it would take at least |C|T seconds for

applying all actions on the environment and collecting the

according immediate rewards, where T is the time period of

a PAC. Unfortunately, this results in a poor convergence rate

of the algorithm and unacceptable behavior for time-variant

environments. A possible remedy against this is the planning

of future actions based on the state space and measurement

model of the Bayesian state estimator.

2) Planning for Improving Convergence Behavior: Plan-

ning is defined as predicting expected future rewards using

the state and measurement model of the Bayesian state space

filter to improve the convergence rate of the RL algorithm.

As depicted in Fig. 2, the feedforward link is used to connect

the controller with the perceptor. The feedforward information

is a hypothesized future action, which is selected for a future

planning stage. Inspecting (23), one can observe that for every

action c ∈ M, where M ⊂ C is a subset of C depending

on the actual policy πn, the predicted posterior covariance

matrices C̃n+l(c) and the according predicted future rewards

rn+l, are computed with decreasing discount factor γl for

predicted future rewards, for l = 1, . . . , lfuture, where lfuture is

the future horizon. The predicted covariance matrices C̃n+l(c)
for a specific future action c is computed using the state space

(e.g. (9)) and measurement model (e.g. (10)) of the Bayesian

state space estimator and the according GPEM and GSCM

parameters stored in the perceptors’ memory as shown in

Fig. 2. After the planning process is finished, the value-to-

go function is updated for all actions c ∈ M. Finally, the

actual PAC is closed by updating the policy to πn+1 using the

value-to-go function Jn+1 and choosing the new action, i.e. the

waveform parameters, for the next PAC according to this new

policy. This means that the value-to-go function Jn(cn) and

the policy πn are updated iteratively from one another from

one PAC to the next PAC, with one important detail which is

discussed below.

a) Explore/Exploit trade-off:: Both the planning process

and choosing new actions are based on the policy. In planning,

the chosen action-subset M is defined by sampling from

the policy πn and new actions are selected based on the

updated policy πn+1. Hence, the policy is responsible for

the explore/exploit trade-off in the action space. A widely

used method for balancing the exploration of new actions and

exploiting the already learned value-to-go function Jn(cn) is

the ǫ-greedy strategy, meaning that with a small probability of

ǫ a random action is selected, representing pure exploration,

and with probability of 1 − ǫ the action is chosen according

to the maximum of the value-to-go function, representing a

pure exploitation. The random selection of a new action and

the action in the subspace M can either be selected from a

uniform distribution over the action space A or from the policy

πn. The policy is computed using the Boltzmann distribution

πn+l = πn+l−1(c)
exp{∆Jn+l(c)/τ}∑

c′ πn+l−1(c′) exp{∆Jn+l(c′)/τ}
,

where τ defines the exploration degree and is referred to

as the system temperature [49] and ∆Jn+l(c) = Jn+l(c) −
Jn−1+l(c). The cognitive action is selected according to

cn =

{
random action ∼ πn+1 ∈ C if ξ < ǫ
argmaxc∈C Jn(c) otherwise

, (24)

where 0 ≤ ξ ≤ 1 is a uniform random number drawn at

each time step n. As we have said, from the policy in (24) the

new action cn+1 is selected and applied on the environment so

that the next PAC can start. The important concept of attention

at the perceptor as well as the actuator side in the cognitive

dynamic system can be argued with the following:

• Perceptual attention: Is given by the fact that the

environment dependent parameters, i.e. the marginal PDF

of the VA p(ak,n) and their multipath channel dependent

reliability measures, SINRk,n, are learned and updated

online, so that the perceptual Bayesian state space filter

puts its attention on the relevant position-related informa-

tion in the received signal.

• Control attention: Is given by the fact that the policy

πn that is learned over time and the according subset

of actions M put focus on the “more relevant” actions.

These action in turn focus on the relevant position-related

information in the received signal.

3) Waveform Library: The general form of the waveform

library contains the control parameters cn = {Tp,n, f
j
c,n}

J
j=1

for the j-th anchor consisting of carrier frequencies and pulse

durations. Hence, the VA specific MPC parameters are esti-

mated using specific sub-bands of the radio channel spectrum

defined by the parameter pair T j
p,n and f j

c,n, which in turn is

chosen in an “optimal” manner. Optimal in this case means

that the position-related information that is contained in the

MPC parameters is maximized at agent position pn (see for

(2)).

Equations (3) and (2), which describe the parameters

S̃INR
j

k,n, show the relation between the pulse parameter pair

T j
p,n and f j

c,n and the position-related information contained in

the channel. The pulse duration T j
p,n scales the amount of DM

and is directly proportional to the effective root mean square

bandwidth β. The relation to f j
c,n is not that obvious, since
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Fig. 3. Scenario for probabilistic MINT using cognitive sensing in presence

of additional DM interference. The anchors are at the positions a
(1)
1 and

a
(2)
1 . The black line represents the agent trajectory and the red part of the

line indicates the agent positions, where the DM interference is activated.

it describes the frequency dependency of the environment

parameters and thus the GSCM parameters as the complex

amplitudes of the MPC and the DM PDP. The set of selected

VA should lead to the highest overall SINR values (and

accordingly the smallest range variances var
{
d̂jk,n

}
) and the

smallest possible GDOP4, i.e. geometric optimal constellation

of VA positions which is reflected by the ranging direction

matrix IIIr(φ
j
k,n). In a cognitive sense this means that the

actions a ∈ A are chosen to reduce the posterior entropy over

time under quasi-stationary environment conditions.

V. RESULTS

A. Measurement Setup

For the evaluation of this positioning approach, we use

the seminar room scenario of the MeasureMINT database

[51]. The measurements allow for 5 trajectories consisting

of 1000 agent positions with a 1 cm spacing as shown in

Fig. 3. At each position, UWB measurements are available

of the channel between the agent and the two anchors at

the positions a
(1)
1 = [0.5, 7]T and a

(2)
1 = [5.2, 3.2]T. The

measurements have been performed using an M-sequence cor-

relative channel sounder developed by Ilmsens. This sounder

provides measurements over approximately the FCC frequency

range, from 3− 10GHz. On anchor and agent sides, dipole-

like antennas made of Euro-cent coins have been used. They

4The GDOP the ratio between position variance and the range variance [50].
For positioning a small value indicates a high level of confidence that high
precision can be reached. Hence, the GDOP indicates a “good ” geometry for
positioning, i.e. a good geometric placement of the anchors.
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Fig. 4. Performance CDF of the cognitive MINT algorithm using a smaller
restricted set of VA. Visibilities of VA are computed using the SINR instead
of optical ray-tracing.

have an approximately uniform radiation pattern in azimuth

plane and zeroes in the directions of floor and ceiling.

The chosen initial pulse duration is Tp = 0.5 ns (corre-

sponding to a bandwidth of 2GHz) and the center frequency

is fc = 7GHz. The VA for the anchors at the positions a
(1)
1 and

a
(2)
1 were computed a-priori up to order 2. The past window

of agent positions for the SINR estimation is again chosen to

be wpast = 40. For all simulations 30 Monte Carlo runs were

conducted.

B. Initial Experiment Setup

For the sake of simplicity, we reduce the control parameters

to just the carrier frequency cn = fc,n for each PAC for all

anchors and we fix the pulse duration Tp. This means that the

cognitive MINT system adaptively finds the carrier frequency

fc,n from PAC to PAC that yields the highest reward from the

environment by maximizing the position-related information.

Starting from the initial value fc,1 = 7GHz (which represents

the center of the measured bandwidth), the carrier frequency

is adapted over time using the posterior entropy in (18).

The finite space of cognitive actions C contains the discrete

frequency values bounded by the measured bandwidth, i.e.

fc,n,i ∈ C, where i = 1, . . . , |C|. The frequency spacing

between the frequency bins is equidistant, ∆fc = fc,n,i+1 −
fc,n,i. For the experiments, we haven chosen ∆fc = 50MHz,

considering the large signal bandwidth of 2GHz. The start-

ing policy is defined as a uniform distribution π1(c
′, c) =

U(fc,n,1, fc,n,|C|) and the cost-to-go function is chosen to be

J1(c) = 0 ∀c. The size of the planning subspace is |M| = 20;

the size of C is |C| = 40.

C. Discussion of Performance Results

1) Conventional MINT: Fig. 4 shows the overall position

error CDF for “conventional” MINT (which assumes perfect

floor plan knowledge) with and without cognitive waveform

adaptation. To show the advantage of the cognitive MINT

algorithm, a restricted set of VA is chosen and the visibilities

of the VA are computed using the SINR instead of optical

ray-tracing. As the CDF of “conventional” MINT indicates

(blue line with circle marker), the tracking algorithm tends to
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Fig. 5. Performance CDF of cognitive probabilistic MINT using a smaller
restricted set of VA. For probabilistic MINT, the visibilities of VA are always
computed using the SINR.

diverge since too little position-related information is available.

The black and the red lines show the overall position error

CDF for cognitive MINT for a future horizon window of

l = 1 and l = 5, respectively. As one can observe, the perfor-

mance is significantly increased due to the cognitive waveform

adaptation. This means that the cognitive MINT algorithm is

able to increase the amount of position-related information

by changing the sensing spectrum via the carrier frequency

fc,n,i ∈ A to bands that carry more geometry-dependent

information in the MPC. Another interesting observation of

Fig. 4 is that an increase of the planning horizon results in an

increased performance, confirming the correct functionality of

the cognitive algorithm.

2) Probabilistic MINT: Fig. 5 shows the overall position

error CDF for probabilistic MINT with and without cog-

nitive waveform adaptation. Uncertainties in the floor plan

and wrong associations can be robustly handled due to the

probabilistic treatment of VA and thus none of the individual

trajectory runs diverges. The already achieved high accuracy

and robustness of probabilistic MINT are the reasons that

cognitive sensing leads to only a minor additional performance

gain for this scenario. It is suspected that for lower bandwidth

the performance gain induced by the cognitive probabilistic

MINT should be much more distinct.

3) Probabilistic MINT with additional DM Interference:

In the last setup, we additionally have added synthetic DM

interference filtered at a carrier frequency fc = 7GHz, with a

bandwidth of 2GHz. The DM parameters are chosen according

to [52] except for the DM power. The experiments were

conducted with three levels of DM power, Ω1 = 1.1615∗10−9,

Ω1 = 5.8076 ∗ 10−9 and Ω1 = 1.1615 ∗ 10−8.

Fig. 3 illustrates the scenario used for the experiment. The

black line represents the agent trajectory and the red part of

it indicates the agent positions, where the DM interference

is activated. Fig. 6 shows the signals exchanged between the

agent and the Anchors 1 and 2 for one sample position. The

“clean” signals are shown in Fig. 6a, the noisy signal for

DM power of Ω1 = 1.1615 ∗ 10−9 in Fig. 6b. Looking at

Fig. 6b it is quite obvious that this level of DM represents

already a severe interference. The justification of using such

a interference noise model lies in the fact that it can describe
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Fig. 6. Signals exchanged between agent and Anchors 1 and 2 for an example
agent position. The gray lines represent the estimated delays of the MPC.
Fig. 6a shows the “clean” signal and Fig. 6b the noisy signal.
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many kinds of measurement modeling mismatches, e.g. if the

anisotropy of the antenna pattern for different angle of arrivals

is not considered.

Fig. 7 illustrates the mean values of the cognitively adapted

carrier frequency along one of the trajectories at DM power
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Fig. 8. Mean entropy of probabilistic MINT and cognitive probabilistic MINT
over time instances n for DM power Ω1 = 1.1615 ∗ 10−8 . The red and
black dashed lines show a few example entropy realizations along different
trajectories and for different Monte Carlo runs.

Ω1 = 1.1615 ∗ 10−8. The mean is computed using the 30
Monte Carlo simulations of the experiment. The black line

denotes the initial carrier frequency fc,1 and the blue one the

mean of the cognitively adapted carrier fc,n. The blue dashed

lines show a few example realizations of cognitively adapted

carrier frequencies along different trajectories and for different

Monte Carlo runs. The figure shows quite clearly that the

cognitive probabilistic MINT algorithm is avoiding (almost

at all agent positions, where additional DM interference is

present) carrier frequencies fc,n near to the carrier of DM.

Fig. 8 shows the according mean entropy values of proba-

bilistic MINT (red line with diamond markers) and cognitive

probabilistic MINT (black line with triangle markers) over

time instances n for DM power Ω1 = 1.1615 ∗ 10−8. The

red and black dashed lines show a few example entropy

realizations along different trajectories and for different Monte

Carlo runs. Before the noise disturbance starts the entropy of

the probabilistic MINT algorithm is almost the same as of

the cognitive probabilistic MINT algorithm. In the moment

the disturbance is introduced, the entropy of the posterior

increases. The cognitive probabilistic MINT algorithm then

starts to change its carrier frequency fc,n (as shown in Fig. 7)

until the entropy is again reduced. This leads to an almost

constant or even decreasing entropy even in the presence of

a tremendous noise level (black line with triangle markers in

Fig. 8). In contrast to that the probabilistic MINT algorithm

without cognitive waveform adaptation starts to diverge after

the disturbance is introduced and is not able to recover. This is

indicated by the rapid increase of the entropy and stagnation

at a large value shown in Fig. 8 by the red line with diamond

markers.

This result is confirmed by looking at the performance CDF

of the agent position error shown in Fig. 9. This comparison

between probabilistic MINT and cognitive probabilistic MINT

illustrates the powerful property of the cognitive algorithm to

separate relevant from irrelevant information using adaptation

of the control parameter fc,n to avoid the noisy frequency band

of the signal. The probabilistic MINT algorithm without wave-

form adaptation tends to diverge under such harsh conditions

as depicted by CDF drawn with solid lines. In contrast to this,
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Fig. 9. Performance CDF of the cognitive probabilistic MINT algorithm with
introducing a disturbance at three different noise levels along a certain part of
the trajectory. Noise 1 corresponds to DM with Ω1 = 1.1615 ∗ 10−9, Noise
2 with power Ω1 = 5.8076 ∗ 10−9 and with power Ω1 = 1.1615 ∗ 10−8

the cognitive MINT algorithm overcomes these impairments,

leading again to a robust behavior as depicted by CDF drawn

with dashed lines.
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