
Synthesis of Shared Control Protocols
with Provable Safety and Performance Guarantees

Nils Jansen1 Murat Cubuktepe1 Ufuk Topcu1

Abstract— We formalize synthesis of shared control protocols
with correctness guarantees for temporal logic specifications.
More specifically, we introduce a modeling formalism in which
both a human and an autonomy protocol can issue commands to
a robot towards performing a certain task. These commands are
blended into a joint input to the robot. The autonomy protocol is
synthesized using an abstraction of possible human commands
accounting for randomness in decisions caused by factors such
as fatigue or incomprehensibility of the problem at hand.
The synthesis is designed to ensure that the resulting robot
behavior satisfies given safety and performance specifications,
e.g., in temporal logic. Our solution is based on nonlinear
programming and we address the inherent scalability issue by
presenting alternative methods. We assess the feasibility and
the scalability of the approach by an experimental evaluation.

I. INTRODUCTION

We study the problem of shared control, where a robot
shall accomplish a task according to a human operator’s goals
and given specifications addressing safety or performance.
Such scenarios are for instance found in remotely operated
semi-autonomous wheelchairs [11]. In a nutshell, the human
has a certain action in mind and issues a command. Si-
multaneously, an autonomy protocol provides—based on the
available information—another command. These commands
are blended—also referred to as arbitrated—and deployed
to the robot.

Earlier work discusses shared control from different per-
spectives [7], [8], [20], [19], [13], [10], however, formal
correctness in the sense of ensuring safety or optimizing
performance has not been considered. In particular, having
the human as an integral factor in this scenario, correctness
needs to be treated in an appropriate way as a human might
not be able to comprehend factors of a system and—in the
extremal case—can drive a system into inevitable failure.

There are several things to discuss. First, a human might
not be sure about which command to take, depending on the
scenario or factors like fatigue or incomprehensibility of the
problem. We account for uncertainties in human decisions
by introducing randomness to choices. Moreover, a means
of actually interpreting a command is needed in form of a
user interface, e. g., a brain-computer interface; the usually
imperfect interpretation adds to the randomness. We call a
formal interpretation of the human’s commands the human
strategy (this concept will be explained later).

As many formal system models are inherently stochas-
tic, our natural formal model for robot actions inside an
environment is a Markov decision process (MDP) where

All authors are with the University of Texas at Austin, Austin, TX 78751,
USA, njansen@utexas.edu

deterministic action choices induce probability distributions
over system states. Randomness in the choice of actions,
like in the human strategy, is directly carried over to these
probabilities when resolving nondeterminism. For MDPs,
quantitative properties like “the probability to reach a bad
state is lower than 0.01” or “the cost of reaching a goal is
below a given threshold” can be formally verified. If a set
of such specifications is satisfied for the human strategy and
the MDP, the task can be carried out safely and with good
performance.

Given that the human strategy induces certain critical
actions with a high probability, one or more specifications
might be refuted. In this case, the autonomy should provide
an alternative strategy that—when blended with the human
strategy—satisfies the specifications without discarding too
much of the human’s choices. As in [8], the blending puts
weight on either the human’s or the autonomy protocol’s
choices depending on factors such as the confidence of the
human or the level of information the autonomy protocol has
at its disposal.

The question is now how such a human strategy can be
obtained. It seems unrealistic that a human can comprehend
an MDP modeling a realistic scenario in the first place;
primarily due the possibly very large size of the state space.
Moreover, a human might not be good at making sense
of probabilities or cost of visiting certain states at all. We
employ learning techniques to collect data about typical
human behavior. This can, for instance, be performed within
a simulation environment. In our case study, we model a
typical shared control scenario based on a wheelchair [11]
where a human user and an autonomy protocol share the
control responsibility. Having a human user solving a task,
we compute strategies from the obtained data using inverse
reinforcement learning [16], [1]. Thereby, we can give guar-
antees on how good the obtained strategy approximates the
actual intends of the user.

The design of the autonomy protocol is the main concern
of this paper. We define the underlying problem as a nonlin-
ear optimization problem and propose a technique to address
the consequent scalability issues by reducing the problem to
a linear optimization problem. After an autonomy protocol
is synthesized, guarantees on safety and performance can
be given assuming that the user behaves according to the
human strategy obtained beforehand. The main contribution
is a formal framework for the problem of shared autonomy
together with thorough discussions on formal verification, ex-
periments, and current pitfalls. A summary of the approaches
and an outline are given in Section II.

ar
X

iv
:1

61
0.

08
50

0v
1

 [
cs

.R
O

]
 2

6
O

ct
 2

01
6

Human

Autonomy
protocol

Blending Robot
execution

command

command

blended command

Blending
function b

Formal
model Mr

Specifications
ϕ1, . . . , ϕn

Human
strategy

Fig. 1. Shared autonomy architecture.

Shared control has attracted considerable attention re-
cently. We only overview some recent approaches into con-
text with our results. First, Dragan and Srinivasa discussed
strategy blending for shared control in [8], [7]. There, the
focus was on the prediction of human goals. Combining these
approaches, e. g., by inferring formal safety or performance
specifications by prediction of human goals, is an interesting
direction for future work. Iturrate et al. presented shared
control using feedback based on electroencephalography
(a method to record electrical activity of the brain) [13],
where a robot is partly controlled via error signals from
a brain-computer interface. In [19], Trautman proposes to
treat shared control broadly as a random process where
different components are modeled by their joint probability
distributions. As in our approach, randomness naturally pre-
vents strange effects of blending: Consider actions “up” and
“down” to be blended with equally distributed weight without
having means to actually evaluating these weights. Finally,
in [10] a synthesis method switches authority between a
human operator and the autonomy such that satisfaction of
linear temporal logic constraints can be ensured.

II. SHARED CONTROL

Consider first Fig. 1 which recalls the general framework for
shared autonomy with blending of commands; additionally
we have a set of specifications, a formal model for robot
behavior, and a blending function. In detail, a robot is to take
care of a certain task. For instance, it shall move to a certain
landmark. This task is subject to certain performance and
safety considerations, e. g., it is not safe to take the shortest
route because there are too many obstacles. These consid-
erations are expressed by a set of specifications ϕ1, . . . ,ϕn.
The possible behaviors of the robot inside an environment
are given by a Markov decision process (MDP) Mr. Having
MDPs gives rise to choices of certain actions to perform
and to randomness in the environment: A chosen path might
induce a high probability to achieve the goal while with a
low probability, the robot might slip and therefore fail to
complete the task.

Now, in particular, a human user issues a set of commands
for the robot to perform. We assume that the commands is-
sued by the human are consistent with an underlying random-

ized strategy σh for the MDP Mr. Put differently, at design
time we compute an abstract strategy σh of which the set
of human commands is one realization. This modeling way
allows to account for a variety of imperfections. Although it
is not directly issued by a human, we call this strategy the
human strategy. Due to possible human incomprehensibility
or lack of detailed information, this leads to the fact that the
strategy might not satisfy the requirements.

Now, an autonomy protocol is to be designed such that it
provides an alternative strategy σa, the autonomous strategy.
The two strategies are then blended—according to the given
blending function b into a new strategy σha which satisfies
the specifications. The blending function reflects preference
over either the decisions of the human or the autonomy
protocol. We also ensure that the blended strategy deviates
only minimally from the human strategy. At runtime we
can then blend decisions of the human user with decisions
based on the autonomous strategy. The resulting “blended”
decisions are according to the blended strategy σha, thereby
ensuring satisfaction of the specifications. This procedure,
while involving expensive computations at design time, is
very efficient at runtime.

Summarized, the problem we are addressing in this pa-
per is then—in addition to the proposed modeling of the
scenario—to synthesize the autonomy protocol in a way such
that the resulting blended strategy meets all of the specifica-
tions while it only deviates from the human strategy as little
as possible. We introduce all formal foundations that we need
in Section III. The shared control synthesis problem with
all needed formalisms is presented in Section IV as being
a nonlinear optimization problem. Addressing scalability,
we reduce the problem to a linear optimization problem in
Section V. We indicate the feasibility and scalability of our
techniques using data-based experiments in Section V and
draw a short conclusion in Section VII.

III. PRELIMINARIES

1) Models: A probability distribution over a finite or
countably infinite set X is a function µ : X→ [0,1]⊆R with
∑x∈X µ(x) = µ(X) = 1. The set of all distributions on X is
denoted by Distr(X).

Definition 1 (MDP): A Markov decision process (MDP)
M = (S,sI ,A,P) is a tuple with a set of states S, a unique
initial state sI ∈ S, a finite set A of actions, and a (partial)
probabilistic transition function P : S×A→ Distr(S).
MDPs operate by means of nondeterministic choices of
actions at each state, whose successors are then determined
probabilistically with respect to the associated probability
distribution. The enabled actions at state s ∈ S are denoted
by A(s) = {α ∈ A | ∃µ ∈ Distr(S).µ = P(s,α)}. To avoid
deadlock states, we assume that |A(s)| ≥ 1 for all s ∈ S. A
cost function ρ : S×A→ R≥0 for an MDP M adds cost
to a transition (s,α) ∈ S×A with α ∈ A(s). A path in an
M is a finite (or infinite) sequence π = s0α0s1α1 . . . with
P(si,α,si+1) > 0 for all i ≥ 0. If |A(s)| = 1 for all s ∈ S,
all actions can be disregarded and the MDP M reduces to
a discrete-time Markov chain (MC).

The unique probability measure PrD (Π) for a set Π

of paths of MC D can be defined by the usual cylinder
set construction, the expected cost of a set Π of paths
is denoted by ECD (Π), see [2] for details. In order to
define a probability measure and expected cost on MDPs,
the nondeterministic choices of actions are resolved by so-
called strategies. For practical reasons, we restrict ourselves
to memoryless strategies, again refer to [2] for details.

Definition 2 (Strategy): A randomized strategy for an
MDP M is a function σ : S→Distr(A) such that σ(s)(α)>
0 implies α ∈ A(s). A strategy with σ(s)(α) = 1 for α ∈ A
and σ(β) = 0 for all β ∈ A\{α} is called deterministic. The
set of all strategies over M is denoted by SchedM .
Resolving all nondeterminism for an MDP M with a strategy
σ ∈ SchedM yields an induced Markov chain M σ . Intu-
itively, the random choices of actions from σ are transferred
to the transition probabilities in M σ .

Definition 3 (Induced MC): Let MDP M = (S,sI ,A,P)
and strategy σ ∈ SchedM . The MC induced by M and σ is
M σ = (S,sI ,A,Pσ) where

Pσ (s,s′) = ∑
α∈A(s)

σ(s)(α) ·P(s,α)(s′) for all s,s′ ∈ S .

2) Specifications: A quantitative reachability property
P≤λ (♦T) with upper probability threshold λ ∈ [0,1]⊆Q and
target set T ⊆ S constrains the probability to reach T from
sI in M to be at most λ . Expected cost properties E≤κ(♦G)
impose an upper bound κ ∈Q on the expected cost to reach
goal states G ⊆ S. Intuitively, bad states T shall only be
reached with probability λ (safety specification) while the
expected cost for reaching goal states G has to be below
κ (performance specification). Probability and expected cost
to reach T from sI are denoted by Pr(♦T) and EC(♦T),
respectively. Hence, PrD (♦T) ≤ λ and ECD (♦G) ≤ κ ex-
press that the properties P≤λ (♦T) and E≤κ(♦G) are satisfied
by MC D . These concepts are analogous for lower bounds
on the probability. We also use until properties of the form
Pr≥λ (¬T U G) expressing that the probability of reaching
G while not reaching T beforehand is at least λ .

An MDP M satisfies both safety specification φ and per-
formance specification ψ , iff for all strategies σ ∈ SchedM it
holds that the induced MC M σ satisfies φ and ψ , i.e., M σ |=
φ and M σ |= ψ . If several performance or safety speci-
fications ϕ1, . . . ,ϕn are given MDP M , the simultaneous
satisfaction for all strategies, denoted by M |= ϕ1, . . . ,ϕn,
can be formally verified for an MDP using multi-objective
model checking [9].

Here, we are interested in the synthesis problem, where
the aim is to find one particular strategy σ for which the
specifications are satisfied. If for ϕ1, . . . ,ϕn and strategy σ

it holds that M σ |= ϕ1, . . . ,ϕn, then σ is said to admit the
specifications, also denoted by σ |= ϕ1, . . . ,ϕn.

Example 1: Consider Fig. 2(a) depcting MDP M with
initial state s0, where states s0 and s1 have choices between
actions a or b and c or d, respectively. For instance, action
a induces a probabilistic choice between s1 and s3 with
probabilities 0.6 and 0.4. The self loops at s2,s3 and s4
indicate looping back with probability one for each action.

s0 s1 s2

s3 s4

a

b

c

d

0.6

0.4

0.4

0.6

0.6

0.4

0.4

0.6

11

1

(a) MDP M

s0 s1 s2

s3 s4

0.6

0.4

0.6

0.4

11

1

(b) Induced MC M σ1

Fig. 2. MDP M with target state s2 and induced MC for strategy σunif

(a) Human perspective

0.4

0.4

0.2

0.2

(b) Autonomy perspective

Fig. 3. A wheelchair in a shared control setting.

Assume now, a safety specification is given by φ =
P≤0.21(♦s2). The specification is violated for M , as the
deterministic strategy σ1 ∈ SchedM with σ1(s1)(α) = 1 and
σ1(s1)(c) = 1 induces a probability of reaching s2 of 0.36,
see the induced MC in Fig. 2(b). For the randomized strategy
σunif ∈ SchedM with σunif(s0)(α) = σunif(s0)(b) = 0.5 and
σunif(s1)(c) = σunif(s1)(d) = 0.5, which chooses between all
actions uniformly, the specification is also violated: The
probability of reaching s2 is 0.25, hence σ2 6|= φ . How-
ever, for the deterministic strategy σsafe ∈ SchedM with
σsafe(s0)(b) = 1 and schedsafe(s1)(d) = 1 the probability is
0.16, thus σsafe |= φ . Note that σsafe minimizes the probability
of reaching s2 while σ1 maximizes this probability.

IV. SYNTHESIZING SHARED CONTROL PROTOCOLS

In this section we describe our formal approach to synthesize
a shared control protocol in presence of randomization. We
start by formalizing the concepts of blending and strategy
perturbation. Afterwards we formulate the general problem
and show that the solution to the synthesis problem is correct.

Example 2: Consider Fig. 3, where a room to navigate in
is abstracted into a grid. We will use this as our ongoing
example. A wheelchair as in [11] is to be steered from
the lower left corner of the grid to the exit on the upper
right corner of the grid. There is also an autonomous robotic
vacuum cleaner moving around the room; the goal is for the
wheelchair to reach the exit without crashing into the vacuum
cleaner. We now assume that the vacuum cleaner moves
according to probabilities that are fixed according to evidence
gathered beforehand; these probabilities are unknown or
incomprehensible to the human user. To improve the safety of
the wheelchair, it is equipped with an autonomy protocol that
is to improve decisions of the human or even overwrite them

in case of safety hazards. For the design of the autonomy
protocol, the evidence data about the cleaner is present.

Now an obvious strategy to move for the wheelchair, not
taking into account the vacuum cleaner, is depicted by the
red solid line in Fig. 3(a). As indicated in Fig. 3(b), the
strategy proposed by the human is unsafe because there is a
high probability to collide with the obstacle. The autonomy
protocol computes a safe strategy, indicated by the solid
line in Fig. 3(b). As this strategy deviates highly from the
human strategy, the dashed line indicates a still safe enough
alternative which is a compromise or—in our terminology—
a blending between the two strategies.
We assume in the following that possible behaviors of the
robot inside the environment are modeled by MDP Mr =
(S,sI ,A,P). The human strategy is given as randomized
strategy σh for Mr. We explain how to obtain this strategy in
Section VI. Specifications are ϕ1, . . . ,ϕn being either safety
properties P≤λ (♦T) or performance properties E≤κ(♦T).

A. Strategy blending

Given two strategies, they are to be blended into a new
strategy favoring decisions of one or the other in each state
of the MDP. In our setting, the human strategy σh ∈ SchedMr

is blended with the autonomous strategy σa ∈ SchedMr

by means of an arbitrary blending function. In [8] it is
argued that blending intuitively reflects the confidence in how
good the autonomy protocol is able to assist with respect
to the human user’s goals. In addition, factors probably
unknown or incomprehensible for the human such as safety
or performance optimization also should be reflected by such
a function.

Put differently, possible actions of the user should be
assigned low confidence by the blending function, if he
cannot be trusted to make the right decisions. For instance,
recall Example 2. At cells of the grid where with a very high
probability the wheelchair might collide with the vacuum
cleaner, it makes sense to assign a high confidence in the
autonomy protocol’s decisions because not all safety-relevant
information is present for the human.

In order to enable formal reasoning together with such a
function we instantiate the blending with a state-dependent
function which at each state of an MDP weighs the con-
fidence in both the human’s and the autonomy’s decisions.
A more fine-grained instantiation might incorporate not only
the current state of the MDP but also the strategies of both
human and autonomy or history of a current run of the
system. Such a formalism is called linear blending and is
used in what follows. In [19], additional notions of blending
are discussed.

Definition 4 (Linear blending): Given an MDP Mr =
(S,sI ,A,P), two strategies σh,σa ∈ SchedMr , and a blending
function b : S→ [0,1], the blended strategy σha ∈ SchedMr

for all states s ∈ S, and actions α ∈ A is

σha(s)(α) = b(s) ·σh(s)(α)+(1−b(s)) ·σa(s)(α) .

Note that the blended strategy σha is a well-defined random-
ized strategy. For each s ∈ S, the value b(s) represents the

confidence in the human’s decisions at this state, i. e., the
“weight” of σh at s.

Coming back to Example 2, the critical cells of the grid
correspond to certain states of the MDP Mr; at these states
a very low confidence in the human’s decisions should be
assigned. For instance at such a state s ∈ S we might have
b(s) = 0.1 leading to the fact that all randomized choices of
the human strategy are scaled down by this factor. Choices
of the autonomous strategy are only scaled down by factor
0.9. The addition of these scaled choices then gives a new
strategy highly favoring the autonomy’s decisions.

B. Perturbation of strategies

As mentioned before, we want to ensure that the blended
strategy deviates minimally from the human strategy. To now
measure such a deviation, we introduce the concept of per-
turbation which was—on a complexity theoretic level—for
instance investigated in [5]. Here, we introduce an additive
perturbation for a (randomized) strategy, incrementing or
decrementing probabilities of action choices such that a well-
defined distribution over actions is maintained.

Definition 5 (Strategy perturbation): Given MDP M and
strategy σ ∈ SchedM , an (additive) perturbation δ is a
function δ : S×A→ [−1,1] with

∑
α∈A

δ (s,α) = 0 for all s ∈ S .

The value δ (s,α) is called the perturbation value at state s
for action α . Overloading the notation, the perturbed strategy
δ (σ) is given by

δ (σ)(s,α) = σ(s)(α)+δ (s,α) for all s ∈ S and α ∈ A .

C. Design of the autonomy protocol

For the formal problem, we are given blending function
b, specifications ϕ1, . . . ,ϕn, MDP Mr, and human strategy
σh ∈Mr. We assume that σh does not satisfy all of the
specifications, i. e., σh 6|= ϕ1, . . . ,ϕn. The autonomy protocol
provides the autonomous strategy σa ∈ SchedMr . According
to b, the strategies σa and σh are blended into strategy σha,
see Definition 4, i. e., σha(s,α) = b(s) ·σa(s,α)+(1−b(s)) ·
σh(s,α). The shared control synthesis problem is to design
the autonomy protocol such that for the blended strategy σha
it holds σha |=ϕ1, . . . ,ϕn, while minimally deviating from σh.
The deviation from σh is captured by finding a perturbation
δ as in Definition 5, where, e. g., the infinity norm of all
perturbation values is minimal.
Our problem involves the explicit computation of a ran-
domized strategy and the induced probabilities, which is
inherently nonlinear because the corresponding variables
need to be multiplied. Therefore, the canonical formulation
is given by a nonlinear optimization program (NLP). We first
assume that the only specification is a quantitative reacha-
bility property ϕ = P≤λ (♦T), then we describe how more
properties can be included. The program has to encompass
defining the autonomous strategy σa, the perturbation δ

of the human strategy, the blended strategy σha, and the
probability of reaching the set of target states T ⊆ S.

We introduce the following specific set Var of variables:

• σ
s,α
a ,σ s,α

ha ∈ [0,1] for each s ∈ S and α ∈ A define the
autonomous strategy σa and the blended strategy σha.

• δ s,α ∈ [−1,1] for each s ∈ S and α ∈ A are the pertur-
bation variables for σh and σha.

• ps ∈ [0,1] for each s ∈ S are assigned the probability of
reaching T ⊆ S from state s under strategy σha.

Using these variables, the NLP reads as follows:

minimize max{|δ sα | | s ∈ S,α ∈ A} (1)
subject to psI ≤ λ (2)
∀s ∈ T. ps = 1 (3)

∀s ∈ S. ∑
α∈A

σ
s,α
a = ∑

α∈A
σ

s,α
ha = 1 (4)

∀s ∈ S.∀α ∈ A. σ
s,α
ha = σh(s)(α)+δ

s,α (5)

∀s ∈ S. ∑
α∈A

δ
s,α = 0 (6)

∀s ∈ S.∀α ∈ A. σ
s,α
ha = b(s) ·σh(s)(α)+(1−b(s)) ·σ s,α

a
(7)

∀s ∈ S. ps = ∑
α∈A

σ
s,α
ha · ∑

s′∈S
P(s,α)(s′) · ps′ (8)

The NLP works as follows. First, the infinity norm of
all perturbation variables is minimized (by minimizing the
maximum of all perturbation variables) (1). The probability
assigned to the initial state sI ∈ S has to be smaller than
or equal to λ to satisfy ϕ = P≤λ (♦T) (2). For all target
states T ⊆ S, the probability of the corresponding probability
variables is assigned one (3). Now, to have well-defined
strategies σa and σha, we ensure that the assigned values of
the corresponding strategy variables at each state sum up to
one (4). The perturbation δ of the human strategy σh result-
ing in the strategy σha as in Definition 5 is computed using
the perturbation variables (5); in order for the perturbation
to be well-defined, the variables have to sum up to zero at
each state (6). The blending of σa and σha with respect to b
as in Definition 4 is defined in (7). Finally, the probability to
reach T ⊆ S from each s ∈ S is computed in (8), defining a
non-linear equation system, where action probabilities, given
by the induced strategy σha, are multiplied by probability
variables for all possible successors.

Note that this nonlinear program is in fact bilinear due to
multiplying the strategy variables σ

s,α
ha with the probability

variables ps′ (8). The number of constraints is governed by
the number of state and action pairs, i. e., the size of the
problem is in O(|Sr| · |A|).

An assignment of real-valued variables is a function
ν : Var → R; it is satisfying for a set of (in)equations, if
each one evaluates to true. A satisfying assignment ν∗ is
minimizing with respect to objective o if for ν∗(o) ∈R there
is no other assignment ν ′ with ν ′(o) < ν∗(o). Using these
notions, we state the correctness of the NLP in (1) – (8).

Theorem 1 (Soundness and completeness): The NLP is
sound in the sense that each minimizing assignment induces
a solution to the shared control synthesis problem. It is
complete in the sense that for each solution to the shared

TABLE I
EXAMPLE RESULTS

bi σa(a) σa(b) σa(c) σa(d) σha(a) σha(b) σha(c) σha(d) Prha

i = 1 0.5 0.08 0.92 0.08 0.92 0.29 0.71 0.29 0.71 0.209
i = 2 0.1 0.27 0.73 0.27 0.73 0.29 0.71 0.29 0.71 0.209
i = 3 0 0.29 0.71 0.29 0.71 0.29 0.71 0.29 0.71 0.209

control synthesis there is a minimizing assignment of the
NLP.

Soundness tells that each satisfying assignment of the vari-
ables corresponds to strategies σa and σha as well as the
perturbation δ as defined above. Moreover, any optimal
solution induces a perturbation minimally deviating from the
human strategy σh. Completeness means that all possible
solutions of the shared control synthesis problem can be
encoded by this NLP. Unsatisfiability means that no such
solution exists; the problem is infeasible.

D. Additional specifications

We now explain how the NLP can be extended for further
specifications. Assume in addition to ϕ = P≤λ (♦T), another
reachability property ϕ ′ = P≤λ ′(♦T ′) with T ′ 6= T is given.
We add another set of probability variables p′s for each state
s∈ S; (2) is copied for p′sI

and λ ′, (3) is defined for all states
s ∈ T ∪T ′ and (8) is copied for all p′s, thereby computing
the probability of reaching T ′ under σha for all states.

To handle an expected cost property E≤κ(♦G) for G ⊆
S, we use variables rs being assigned the expected cost for
reaching G for all s ∈ S. We add the following equations:

rsI ≤ κ (9)
∀s ∈ G. rs = 0 (10)

∀s ∈ S. rs = ∑
α∈A

(
σ

s,α
ha · r(s,α)+ ∑

s′∈S
P(s,α)(s′) · rs′

)
(11)

First, the expected cost of reaching G is smaller than or equal
to κ at sI (9). Goal state are assigned cost zero (10), oth-
erwise infinite cost is collected at absorbing states. Finally,
the expected cost for all other states is computed by (11)
where according to the blended strategy σha the cost of each
action is added to the expected cost of the successors. An
important insight is that if all specifications are expected
reward properties, the program is no longer nonlinear but
a linear program (LP), as there is no multiplication of
variables.

E. Generalized blending

If the problem is not feasible for the given blending func-
tion, optionally the autonomy protocol can try to compute
a new function b : S→ [0,1] for which the altered problem
is feasible. We call this procedure generalized blending. The
idea is that computing this function gives the designer of
the protocol insight on where more confidence needs to be
placed into the autonomy or, vice versa, where the human
cannot be trusted to satisfy the given specifications.

Computing this new function is achieved by nearly the
same NLP as for a fixed blending function while adding
variables bs for each state s ∈ S, defining the new blending
function by b(s) = bs. We substitute Equation 7 by

∀s ∈ S.∀α ∈ A. σ
s,α
ha = bs ·σh(s)(α)+(1−bs) ·σ s,α

a .
(12)

A satisfying assignment for the resulting nonlinear program
induces a suitable blending function b : S→ [0,1] in addition
to the strategies. If this problem is also infeasible, there is no
strategy that satisfies the given specifications for MDP Mr.

Corollary 1: If there is no solution for the NLP given by
Equations 1 – 12, there is no strategy σ ∈ SchedMr such that
σ |= ϕ1, . . . ,ϕn.
As there are no restrictions on the blending function, this
corollary trivially holds: Consider for instance b with b(s) =
0 for each s∈ S. This function disregards the human strategy
which may be perturbed to each other strategy σa = σha.

Example 3: Reconsider the MDP M from Example 1
with specification ϕ = P≤0.21(♦{s2}) and the randomized
strategy σunif which takes each action uniformly distributed.
As we saw, σunif 6|= ϕ . We choose this strategy as the human
strategy σh = σunif and Mr = M as the robot MDP. For a
blending function bh putting high confidence in the human,
e. g., if bh(s)≥ 0.6 for all s ∈ S, the problem is infeasible.

In Table I we display results putting medium (b1), low
(b2), or no confidence (b3) in the human at s0 and s1. We
list the assignments for the resulting strategies σa and σha as
well as the probability Prha = PrM

σah
r

s0
(♦T) to reach s2 under

the blended strategy σha. The results were obtained using the
NLP solver IPOPT [4].

We observe that for decreasing confidence in the human
decisions, the autonomous strategy has higher probabilities
for actions a and c which are the “bad” actions here.
That means that—if there is a higher confidence in the
autonomy—solutions farer away from the optimum are good
enough. The maximal deviation from the human strategy
is 0.21. Generalized blending with maximizing over the
confidence in the human’s decisions at all states s ∈ S
yields bh(s) = 0.582, i. e., we compute the highest possible
confidence in the human’s decisions where the problem is
still feasible under the given human strategy.

V. COMPUTATIONALLY TRACTABLE APPROACH

The nonlinear programming approach presented in the pre-
vious section gives a rigorous method to solve the shared
control synthesis problem and serves as mathematically
concise definition of the problem. However, NLPs are known
to have severe restrictions in terms of scalability and suffer
from numerical instabilities. The crucial point to an effi-
cient solution is circumventing the expensive computation
of optimal randomized strategies and reducing the number
of variables. We propose a heuristic solution which enables
to use linear programming (LP) while ensuring soundness.

We utilize a technique referred to as model repair. Intu-
itively, an erroneous model is changed such that it satisfies
certain specifications. In particular, given a Markov chain D

and a specification ϕ that is violated by D , a repair of D is
an automated method that transforms it to new MC D ′ such
that ϕ is satisfied for D ′. Transforming refers to changing
probabilities or cost while regarding certain side constraints
such as keeping the original graph structure.

In [3], the first approach to automatically repair an MC
model was presented as an NLP. Simulation-based algorithms
were investigated in [6]. A heuristic but very scalable tech-
nique called local repair was proposed in [17]. This approach
greedily changes the probabilities or cost of the original MC
until a property is satisfied. An upper bound δr on changes
of probabilities or cost can be specified; correctness and
completeness can be given in the sense that if a repair with
respect to δr exists, it will be obtained.

Take now the MC Dσh
r which is induced by the robot

MDP Mr and the human strategy σh. We perform model
repair such that the repaired MC D ′ = (S,sI ,P′) satisfies the
specifications ϕ1, . . . ,ϕn. The question is now, how from the
repaired MC D ′, the strategy σ ′ ∈ SchedMr can be extracted.
More precisely, we need σ ′ inducing exactly D ′, i. e., Dσ ′

r =
D ′, when applied to MDP Mr.

First, we need to make sure that the repaired MC is
consistent with the original MDP such that a strategy σ ′ with
Dσ ′

r = D ′ actually exists. Therefore, we define the maximal
and minimal possible transition probabilities Pmax and Pmin
that can occur in any induced MC of MDP Mr:

Pmax(s,s′) = max{Pr(s,α)(s′) | α ∈ A} (13)

for all s ∈ S; Pmin is defined analogously. Now, the repair is
performed such that in the resulting MC D ′ = (S,sI ,P′) for
all s,s′ ∈ S it holds that

Pmin(s,s′)≤ P(s,s′)≤ Pmax(s,s′) . (14)

While obtaining D ′, model checking needs to be performed
intermediately to check if the specifications are satisfied;
once they are, the algorithm terminates. In fact, for each state
s ∈ S, the probability of satisfaction is computed. We assign
variables mcs for all s ∈ S with exactly this probability:

mcs = Pr(s |= ϕ1, . . . ,ϕn) . (15)

Now recall the NLP from the previous section, in particular
Equation 8 which is the only nonlinear equation of the
program. We replace each variable ps by the concrete model
checking result mcs for each s ∈ S:

mcs = ∑
α∈A

σ
s,α
ha · ∑

s′∈S
P(s,α)(s′) ·mcs′ . (16)

As (16) is affine in the variables σah, the program resulting
from replacing (8) by (16) is a linear program (LP). More-
over, (2) and (3) can be removed, reducing the number of
constraints and variables. The LP gives a feasible solution to
the shared control synthesis problem.

Lemma 1 (Correctness): The LP is sound in the sense that
each minimizing assignment induces a solution to the shared
control problem.
The correctness is given by construction, as the specifications
are satisfied for the blended strategy which is derived from

the repaired MC. However, the minimal deviation from the
human strategy as in Equation 1 is dependent on the previous
computation of probabilities for the blended strategy. There-
fore, we actually compute an upper bound on the optimal
solution. Let δ ∗ be the minimal deviation possible for any
given problem and δ be the minimal deviation obtained by
the LP resulting from replacing (8) by (16). Let ‖δ‖∞ and
‖δ ∗‖∞ denote the infinity norms of both perturbations.

Corollary 2: For the perturbations δ and δ ∗ of σh it holds
that ‖δ ∗‖∞ ≤ ‖δ‖∞.
As we mentioned before, the local repair method can employ
a bound δr on the maximal change of probabilities or cost
in the model. If a repair exists for a given δr, the resulting
deviation δ is then bounded by this δr.

VI. CASE STUDY AND EXPERIMENTS

Defining a formal synthesis approach to the shared control
scenario requires a precomputed estimation of a human user’s
intentions. As explained in the previous chapter, we account
for inherent uncertainties by using a randomized strategy
over possible actions to take. We discuss how such strategies
may be obtained and report on benchmark results.

A. Experimental setting

Our setting is the wheelchair scenario from Example 2 inside
an interactive Python environment. The size of the grid is
variable and an arbitrary number of stationary and randomly
moving obstacles (the vacuum cleaner) can be defined. An
agent (the wheelchair) is moved according to predefined
(randomized) strategies or interactively by a human user.

From this scenario, an MDP with states corresponding
to the position of the agent and the obstacles is generated.
Actions induce position changes of the agent. The safety
specification ensures that the agent reaches a target cell with-
out crashing into an obstacle with a certain high probability
λ ∈ [0,1], formally P≥λ (¬crash U target). We use
the probabilistic model checker PRISM [15] for verification,
in form of either a worst–case analysis for each possible strat-
egy or concretely for a specific strategy. The whole toolchain
integrates the simulation environment with the approaches
described in the previous sections. We use the NLP solver
IPOPT [4] and the LP solver Gurobi [12]. To perform
model repair for strategies, see Section V, we implemented
the greedy method from [17] into our framework augmented
by side constraints ensuring well-defined strategies.

B. Data collection

We ask five participants to perform tests in the environment
with the goal to move the agent to a target cell while
never being in same cell as the moving obstacle. From
the data obtained from each participant, an individual ran-
domized human strategy σh for this participant can be ob-
tained via Maximum Entropy Inverse Reinforcement Learn-
ing (MEIRL) [22]. Inverse reinforcement learning has—for
instance—also been used in [14] to collect data about human
behavior in a shared control scenario (though without any
formal guarantees) or in [18] to distinguish human intents

Process data
via MEIRL

Shared control
synthesis

Simulation
environment

Blending
functionhuman

strategy
autonomous
strategy

sample
data

Fig. 4. Experimental setting for the shared control simulation.

with respect to different tasks. In our setting, each sample
is one particular command of the participant, while we have
to assume that command is actually made with the intent to
satisfy the specification of safely reaching a target cell. For
the resulting strategy, the probability of a possible deviation
from the actual intend can be bounded with respect to the
number of samples using Hoeffding’s inequality, see [21] for
details. On the other hand, we can determine the number of
samples needed to get a reasonable approximation of typical
behavior.

The concrete probabilities of possible deviation depend on
O(exp(−nε)), where n is the number of samples and ε is
the desired upper bound on the deviation between the true
probability of satisfying the specification and the average
obtained by the sampled data. Here, in order to ensure an
upper bound ε = 0.1 with probability 0.99, the required
amount of samples is 265.

C. Experiments

The work flow of the experiments is depicted in Figure 4.
First off, we discuss sample data for one particular participant
using a 8× 8 grid with one moving obstacle inducing an
MDP of 2304 states. In the synthesis, we employ the model
repair procedure as explained in Section V because the
approach based on NLP is only feasible for very small
examples. We design the blending function as follows: At
states where the human strategy induces a high probability
of crashing, we put low confidence in the human and vice
versa. Using this function, the autonomous strategy σa is
created and passed (together with the function) back to the
environment. Note that the blended strategy σah is ensured to
satisfy the specification, see Lemma 1. Now, we let the same
participant as before do test runs, but this time we blend the
human commands with the (randomized) commands of the
autonomous strategy σa. Then the actual action of the agent
is determined stochastically. We obtain the following results.
Our safety specification is instantiated with λ = 0.7, ensuring
that the target is safely reached with at least probability 0.7.
The human strategy σh has probability 0.546, violating the
specification. With the aforementioned blending function we
compute σa which induces probability 0.906. Blending these
two strategies into σah yields a probability of 0.747. When
testing the synthesized autonomy protocol for the individual
participant, we observe that his choices are mostly corrected
if intentionally bad decisions are made. Also, simulating the
blended strategy leeds to the expected result that the agent

(a) strategy σh (b) strategy σah (c) strategy σh

Fig. 5. Graphical representation of the obtained human, blended, and
autonomous strategy in the grid.

does not crash in roughly 70% of the cases.
To make the behavior of the strategies more accessible,

consider Figure 5. For each σa, σah, and σh we indicate for
each cell of the grid the worst-case probability to safely reach
the target. This probability depends on the current position
of the obstacle, which is again probabilistic. The darker the
color, the higher the probability; thereby black indicates a
probability of 1 to reach the target. We observe that the
human’s decisions are rather risky even near the target, while
for the blended strategy—once the agent is near the target—
there is a very high probability of reaching it safely. This
representation also shows that with our approach the blended
strategy improves the human strategy while not changing
it too much. Specifically, the maximal deviation from the
human strategy is 0.27, which is the result of the infinity
norm as in Equation 1.

To finally assess the scalability of our approach, consider
Table II. We generated MDPs for several grid sizes, number
of obstacles, and human strategies. We list the number of
reachable MDP states (states) and the number of transitions
(trans.). We report on the time the synthesis process took
(synth.), which is basically the time of solving the LP, and
the total time including model checking times using PRISM
(total) measured in seconds. To give an indication on the
quality of the synthesis, we list the deviation from the human
strategy (δ∞). A memory out is indicated by “–MO–”. All
experiments were conducted on a 2.3GHz machine with 8GB
of RAM. Note that MDPs resulting from grid structures
are very strongly connected, resulting in a large number of
transitions. Thus, the encoding in the PRISM-language [15]
is very large, rendering it a very hard problem. We observe
that while the procedure is very efficient for models having a
few thousand states and hundreds of thousands of transitions,
its scalability is ultimately limited due to memory issues. In
the future, we will utilize efficient symbolic data structures
internal to PRISM. Moreover, we observe that for larger
benchmarks the computation time is governed by the solving
time of Gurobi.

VII. CONCLUSION

We introduced a formal approach to synthesize autonomy
protocols in a shared control setting with guarantees on quan-
titative safety and performance specifications. The practical
usability of our approach was shown by means of data-
based experiments. Future work will concern experiments in

TABLE II
SCALABILITY RESULTS.

grid obst. states trans. synth. total δ∞

8×8 1 2.304 36.864 6.30 14.12 0.15
8×8 2 82.944 5.308.416 –MO– –MO– –MO–

10×10 1 3.600 57.600 12.29 23.80 0.24
12×12 1 14.400 230.400 157.94 250.78 0.33

robotic scenarios and further improvement of the scalability.

REFERENCES

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse
reinforcement learning. In Proceedings of the twenty-first international
conference on Machine learning, page 1. ACM, 2004.

[2] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, 2008.

[3] Ezio Bartocci, Radu Grosu, Panagiotis Katsaros, CR Ramakrishnan,
and Scott A Smolka. Model repair for probabilistic systems. In TACAS,
volume 6605 of LNCS, pages 326–340. Springer, 2011.

[4] Lorenz T. Biegler and Victor M. Zavala. Large-scale nonlinear
programming using IPOPT: An integrating framework for enterprise-
wide dynamic optimization. Computers & Chemical Engineering,
33(3):575–582, 2009.

[5] Taolue Chen, Yuan Feng, David S. Rosenblum, and Guoxin Su.
Perturbation analysis in verification of discrete-time Markov chains.
In CONCUR, volume 8704 of LNCS, pages 218–233. Springer, 2014.

[6] Taolue Chen, Ernst Moritz Hahn, Tingting Han, Marta Kwiatkowska,
Hongyang Qu, and Lijun Zhang. Model repair for Markov decision
processes. In TASE, pages 85–92. IEEE CS, 2013.

[7] Anca D. Dragan and Siddhartha S. Srinivasa. Formalizing assistive
teleoperation. In Robotics: Science and Systems, 2012.

[8] Anca D. Dragan and Siddhartha S. Srinivasa. A policy-blending
formalism for shared control. I. J. Robotic Res., 32(7):790–805, 2013.

[9] Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis
Yannakakis. Multi-objective model checking of Markov decision
processes. Logical Methods in Computer Science, 4(4), 2008.

[10] Jie Fu and Ufuk Topcu. Synthesis of shared autonomy policies with
temporal logic specifications. IEEE Trans. Automation Science and
Engineering, 13(1):7–17, 2016.

[11] F. Galán, M. Nuttin, E. Lew, P. W. Ferrez, G. Vanacker, J. Philips,
and J. del R. Millán. A brain-actuated wheelchair: Asynchronous
and non-invasive brain-computer interfaces for continuous control of
robots. Clinical Neurophysiology, 119(9):2159–2169, 2016/05/28.

[12] Gurobi Optimization, Inc. Gurobi optimizer reference manual. http:
//www.gurobi.com, 2013.

[13] Iñaki Iturrate, Jason Omedes, and Luis Montesano. Shared control
of a robot using eeg-based feedback signals. In Proceedings of the
2Nd Workshop on Machine Learning for Interactive Systems: Bridging
the Gap Between Perception, Action and Communication, MLIS ’13,
pages 45–50, New York, NY, USA, 2013. ACM.

[14] Shervin Javdani, J Andrew Bagnell, and Siddhartha Srinivasa. Shared
autonomy via hindsight optimization. In Proceedings of Robotics:
Science and Systems, 2015.

[15] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of probabilistic real-time systems. In CAV, volume 6806
of LNCS, pages 585–591. Springer, 2011.

[16] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse
reinforcement learning. In Icml, pages 663–670, 2000.

[17] Shashank Pathak, Erika Ábrahám, Nils Jansen, Armando Tacchella,
and Joost-Pieter Katoen. A greedy approach for the efficient repair
of stochastic models. In NFM, volume 9058 of Lecture Notes in
Computer Science, pages 295–309. Springer, 2015.

[18] Constantin A Rothkopf and Dana H Ballard. Modular inverse rein-
forcement learning for visuomotor behavior. Biological cybernetics,
107(4):477–490, 2013.

[19] Pete Trautman. Assistive planning in complex, dynamic environments:
a probabilistic approach. CoRR, abs/1506.06784, 2015.

[20] Pete Trautman. A unified approach to 3 basic challenges in shared
autonomy. CoRR, abs/1508.01545, 2015.

[21] Brian D Ziebart. Modeling purposeful adaptive behavior with the
principle of maximum causal entropy. 2010.

http://www.gurobi.com
http://www.gurobi.com

[22] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K
Dey. Maximum entropy inverse reinforcement learning. 2008.

	I Introduction
	II Shared control
	III Preliminaries
	III-.1 Models
	III-.2 Specifications

	IV Synthesizing shared control protocols
	IV-A Strategy blending
	IV-B Perturbation of strategies
	IV-C Design of the autonomy protocol
	IV-D Additional specifications
	IV-E Generalized blending

	V Computationally Tractable Approach
	VI Case study and experiments
	VI-A Experimental setting
	VI-B Data collection
	VI-C Experiments

	VII Conclusion
	References

