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Non-Myopic Target Tracking Strategies for State-DependehNoise
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Abstract—We study the problem of devising a closed-loop values. This becomes even more challenging if the target is
strategy to control the position of a robot that is tracking a  mobile. We use a Kalman Filter (KF) to estimate the state of
possibly moving target. The robot is capable of obtaining nisy 5 moving target with a possibly state-dependent measuttemen

measurements of the target's position. The key idea in actes del wh th t noise i functi f h
target tracking is to choose control laws that drive the roba to model where the measurement noise Is a function o ¢

measurement locations that will reduce the uncertainty in he  distance between the robot and the target.

target's position. The challenge is that measurement uncéainty When planning non-myopicallyi.€., for multiple steps
often is a function of the (unknown) relative positions of tte  in the future), one can enumerate all possible future mea-
target and the robot. Consequently, a closed-loop control @icy surements in the form of a tree. In particular, a minimax

is desired which can map the current estimate of the target's . . ) .
position to an optimal control law for the robot. tree can be used to find the optimal (in timn-maxsense)

Our main contribution is to devise a closed-loop control ~control policy for actively tracking a target [12]. The size
policy for target tracking that plans for a sequence of contol  of the minmax tree grows exponentially with the time

actions, instead of acting greedily. We consider scenarioshere  horizon. The tree can be pruned using- 3 pruning [13].
the noise in measurement is a function of the state of the tagg. Our main contribution is to show how the properties of a

We seek to minimize the maximum uncertainty (trace of the KE b loited t | b f nod
posterior covariance matrix) over all possible measuremes. can be exploited 1o prune a larger number of nodes

We exploit the structural properties of a Kalman Filter to  Without losing optimality. In doing so, we extend the prumin
build a policy tree that is orders of magnitude smaller than techniques first proposed by Vitus et al. [14] for linear

naive enumeration while still preserving optimality guarantees.  systems. Using anin max tree, we generalize these results
We show how to obtain even more computational savings by 5 5 state-dependent, time-variant dynamical systems. Our
relaxing the optimality guarantees. The resulting algorihms are . . ’ . )
evaluated through simulations, pruning t_echmques allow us to. trade-_off the size of the
tree (equivalently, computation time) with the performanc
. INTRODUCTION guarantees of the algorithm. We demonstrate this effect in

Tracking a moving, possibly adversarial target is a funSimulations. _ _ _
damental problem in robotics and has long been a subjectThe rest of the paper is organized as follows. We s_tart_W|th
of study [1]-[6]. Target tracking finds applications in manythe related work in Sectiofl. The problem formulation is
areas such as surveillance [7], telepresence [8], assistegsented in Sectiohl. Our main algorithm is presented in
living [9], and habitat monitoring [10], [11]. Target traick) Secthn IV._We vaﬁdate the algorithm through IS|muIat|.ons
refers to broadly two classes of problems: (i) estimating®scribed in Sectiovl. Finally, we conclude with a brief
the position of the target using noisy sensor measuremengéscussion of future work in Sectiowill .
and (ii) actively controlling the sensor position to impeov I
the performance of the estimator. The second problem is ) )
distinguished asctive target tracking and is the subject of The target tracking problem has been studied under var-
study of this paper. ious settings. Bar-_ShaIpm et aI: [1] present many of the

The main challenge in active target tracking is that th§ommonly-used estimation techniques in target trackimg. T
value of future measurement locations can be a function §¥e-part survey by Li and Jilkov [2]-[6] covers commonly-
the unknown target state. Take as example, a simple instart&ed control and maneuvering techniques for active target
of estimating the unknown position of a stationary targef@cking. In the rest of the section, we discuss works most
where the measurement noise is a function of the distan€tSely related to our formulation.
between the robot and the target. If the true location of the Vitus et al. [14] presented an algorithm that computes the
target were known, the robot would always choose a contr8Ptimal scheduling of measurements for a linear dynamical
sequence that drives it closer to the target. Since, in jpegct SyStém. Their formulation does not directly model a target
the true target location is unknown, we cannot determin@cking problem. Instead, the goal is to track a linear dyna
such a control sequence exactly. A possible strategy in thig?l System using a set of sensors such that one sensor can
case would be to plan with respect to the probability disP€ activated at any time instance. The posterior covarimce
tribution of the target. However, the probability distritun ~ €Stimating a linear system in a Kalman filter depends on the

itself will evolve as a function of the actual measuremenRior covariance and sensor variance but not on the actual
measurement values (unlike the case in non-linear systems)
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to present a pruning technique to reduce the size of the treeWhen the true distance between the robot and target is

while still preserving optimality. within 3, we assume that measurement noise is proportional
Atanasov et al. [15] extended this result to active targab the true distance. When the distance is greater fign

tracking with a single robot. A major contribution was tothe variance is assumed to be a constant maximum value of

show that robot trajectories that are nearby in space can e

pruned away (under certain conditions), leading to further The estimated position and the covariance matrix of the

computational savings. This was based on a linear systemrget at timet, X,(¢) and3,(t), is given by the Kalman

assumption. In this paper, we build on these works anfilter. The uncertainty in the estimate of the target's posi

make progress towards generalizing the solution for statess measured by the trace of the covariance matrix. The

dependent observation systems. problem considered in this paper can be formally stated as
A major bottleneck for planning for state-dependent obfollows.

servation systems is that the future covariance is no longer

independent of the actual measurement values, as was #w@blem: Given an initial robot positiorX,.(0) and an initial

case in linear state-independent systems. The covarignce target estimatgdX,(0),%,(0)], find a sequence of control

date equations use the linear models and as such will depdadss for the robote = wg,u1,--- ,ur € UT from time

on the state estimate and the measurements. Thus, the seareh( to t = T to minimize trace of the covariance in the

tree will have to include all possible measurement valuaarget's estimate at time= 7'. That is,

and not just all possible measurement locations. Furthermo

finding an optimal path is no longer sufficient. Instead one minmax tr(Xr) (6)

must find an optimal policy that prescribes the optimal set of u(®) =)

actions for all possible measurements. We show how to usech that,

a min max tree to find such an optimal policy while at the

same time leveraging the computational savings that hald fo

the linear case. wherep;(-) is the Kalman Riccati equation [16].

The Riccati equationp(-), maps the current covariance

I1l. PROBLEM FORMULATION . .
i ) matrix >, under a new measurement to the covariance
We assume that the position of the robot is knowr?natrix at the next time step

accurately using onboard sensoesg( GPS, laser, IMU, A A A A A .
cameras). The motion model of the robot is given by:  pi(Xx) =Ci Sk CL — Cu S HEY (HpSpHE + S,)  Hi 2, CF

Xo(t+1) = f(X0 (1), ult) (1) +2 0
whereX, = [z,.(t),y-(t)]T € R? is the position of robot and Where H;, is the matrix of the measurement equation com-

u(t) € U is the control input at time. I is a finite space of puted aroundX,.(k) at time k. %, is the covariance of the
control inputs. We assume there areactions available as Measurement noise given in EquatioBs~(5).

Et+l:pt+1(2t)7 tZOalaaT_l

control inputs at any time: The true position of the target is unknown making it
B impossible to determing,, exactly. Consequently, we use an
Ut) = {w(t),uz(t), - un(t)}- estimate ofY,, using the estimated target’s positiof), (k).

The robot is mounted with a sensor that is capable dfherefore, the optimal solution for the problem defined will
obtaining a measurement of the target. We assume that the a closed-loop policy that should map the estimated target
target’s motion model is given by: position to the optimal control action for the robot.

Xo(t+1) = Cr X, (t) + v(t) (2 IV. CLOSED-LoOPCONTROL PoLICY

where, X, (t) = [z,(t), y,(t)]T is the 2-dimensional position ~ References [14], [15] solve a similar problem but for
of the target and(¢) is Gaussian noise of known covariancea linear Gaussian system. The linearity assumption makes
The task of the robot is to track the target using its noisyhe Riccati equation independent of the position of the
measurements. The measureme#td,), can be a nonlinear target. Consequently, they show an open loop policy can
function of the states of the target and robot: determine the optimal control sequence for the robot. In
_ our case, the optimal control policy for this state-depende
2(#) = HXr () Xo(t) + w(Xr(8), Xo(t)) 3) observation model case will be an adaptive (closed-loop)
The measurement noise(t), is a Gaussian whose variancecontrol policy. However, this generalization comes at the
depends on the distance between the robot and the targetixpense of discretization of the set of possible target mea-
w(X, (), Xo(t)) ~ N (O,éf + 6§d(X,‘(t),Xo(t))) 4) surements. Spgcifically, we assume that the measufement at
any time step is chosen from one bftuples of candidate

where, measurements. That is,
d(X,(t), Xo(t)) =
c X, () — Xo(®)]]2 > B 2(t) € {z1(1), 22(1), -+, 2k () }-
ClIX, (1) — Xo(t)]|2 (5) These candidate measurements can be obtained by, for

B o X)) = Xo()]2 < B example, sampling from the continuous distribution of zero



mean sensor noise around the current estimate of the targetlgorithm 1: The minimax algorithms

For example, we can choosecandidate measurements from? So — {(X,(0),%0)}, Sieofort=1,...T
the data within 3 standard deviation of the mean value, which » _ (21, 22, s 21}

contain99.7% of the possible measurements. sfor t=1:T do

4 if NODE STATE f{uin)
for all (X,(t—1),2(t—-1))e€S,_1 do
for all w; el
Xr(t) — f(XT(t - 1)1”1)
S 5 U(X (1), 30— 1)}
else if NODE STATE (max)
10 for all (X,.(¢),X(t—1))€S; do

© 00 N o O

0z 11 for all z;,€Z
| , 12 S(t)  p(X, (), 7, D(t — 1))
R 13 Sy S ULX(1), 2(1)) }

14 for t=1:T do

Fig. 1. Obtaining a finite set of candidate measurements syretizing 15  if TERMINAL-TEST (Max)
the Gaussian distribution of the measurement noise.

16 for eachS; do
. _ . . tr(2;(t)), S (i
A. Optimal decisions: The minimax algorithm 1; zj:t(ﬁulw r(Zi (), S:(9)

Minimizing the maximum trace can be thought of ass if TERMINAL-TEST (Min)
playing a game against an adversary: The robot chooses the  for eachsS; do
cpntrol actions to minimize the trace Wh_ereas the gdyersq&y V « (minimazx tr(2;(t)), S;(i))
(i.e., nature) chooses measurement noise to maximize the tet—1
trace. By optimizing thenin max trace, the robot determines,s return V
the best conservative policy.
We can find this optimal strategy by building a minimax
tree. This tree enumerates all possible control laws and all ) ) ) )
possible measurements that the robot can obtain. A node 83Mes: Fig2 shows a simple example of policy tree built
the kth level of the tree stores the position of the robot!'>""9 alpha pruning.
X, (k), the estimated position of the targef,(k), and the ¢ Algebraic Redundancy Pruning
covariance matrix,. Each node at an odd level has one . . .

) In addition to alpha pruning, we extend the ideas presented
branch per control action. Each node at an even level has one [14] for linear systems and extend them to get even
branch per candidate measurement. The robot’s state and BYe[ f sy ; ) 9

, : : urther computational savings. If there are multiple nodes
target’s estimate are updated appropriately along theraont . )
X ” t the same level with the sam¥, (¢) values but different
and measurement branches using the state transition @mquafll . o
. : . arget estimates, we can prune one of the nodes if it is
(1) and the Kalman filter update equation, respectively. TheI . . » . L
! . . Fearly dominated” by the others. The notion of domination
minimax value is computed at the leaf nodes and is equal 10 ; :

. . encodes the property that that particular node will never

the trace of the covariance matrix at that node. These valu

. B8 a part of an optimal (minmax) policy. Reference [14]
are propagated upwards to compute the optimal Strate%‘rmalized the notion of domination by defining an algebraic
Figure 2 shows an example.

redundancy constraint. We adapt this result for our natatio
B. Alpha Pruning as follows:

The number of nodes in a naive minmax tree is exponential 1heorem 1 (Algebraic Redundancy [14])et

in the depth of the treei.€., in the planning horizon). As a % = {(X7(1),%;)} be a set ofn nodes at the same
first step in reducing the size of the tree, we implement level of the tree. If there exist non-negative constants

pruning [13]. The main idea in pruning is that if we have @1,@2;- -, Such that,

explored a part of the tree, we have an upper bound on the k . k
optimal minimax value. When exploring a new node, P - Zajz-g and Zo‘i =1
if we find that the minimax value of the subtree rooted at i=1 i=1

n; is greater than the upper bound found, that subtree dogsn, the nodéx(t),5?) is regarded as algebraically redun-
not need to be explored further. This is because an optim@hnt with respect toH \ { (XP(¢),57)} and(X?(¢), £7) and

strategy will never prefer a strategy that passes through | of jts descendants can be pruned without eliminating the
since there exists a better control policy in another patef optimal solution from the tree.

tree. Note that; must be a control node. Measurement nodes They prove that the trace of any successor of
cannot be pruned since the robot has no control over th&» ;) v17(¢)) cannot be lower than one of the successors of
actual measurement values. The pruning algorithm is based

on the general alpha-beta pruning [13] used in adversarial'’ = N represents thad/ — N is positive semi-definite.



HA\ {(XP(t),XP(t))}. Our main insight is that a similar re- The proof follows directly from the fact that if a node

dundancy constrained can be defined for the state-dependentthe optimal policy, say; is pruned away, then the alpha

case with suitable additional constraints as describeowWbel value atn; is at most the alpha value of some other node, say
Theorem 2 (State-dependent Algebraic Redundariogl): n;, that is present in the tree minas The alpha value of;

H = {(Xi(t), Xi(t),%})} be a set ofN nodes at the same cannot be less than the value returned by ¢halgorithm.

level. If there exists a nodd = (XA (t), XA(t),24) at the The full proof is given in the appendix. The bound for

same level such that: algebraic redundancy pruning is more complicated.
1) the robot states are identicak., X (t) = X/(t) for Theorem 4 {, State-dependent Algebraic Redundancy):
all i in H: Let J3, = tr(X3,) be the optimal minimax value returned
2) the least common ancestor dfwith any other node by the full enumeration tree dafk levels. If J3; = tr(35])
in 4 is a control {.e., min) node; is the value returned by thg—algebraic redundancy pruning
3) there exist non-negative; such that for anyk: algorithm, then
= - 0<J2 — J3 < B
HSAHT = o [HSHT + K (62 4 62C)] (8) S
i=1 where,

where,ZﬁV:1 a; = 1, then there exists a node #, say B, pe _

such that: . ) oy
A B J -

Wiae) 2 W) wd S| II FEEeam) [[ EE2a)" | e
That is, the nodeA can be pruned from the minimax tree 3=0 [i=k-1 i=j

without eliminating the optimal policy.

The proof is presented in the appendix. where, F;(%) = €' — CK;(X) H; and K; (%) is the Kalman

gain given by K;(¥) = SHI'(H;xH! + %,)”', and
D. Sub-optimal Pruning algorithm @, (+) is the application of the Riccati equatigi), overk

- . - . measurement steps:
Combining alpha pruning with linear state-independent P

algebraic redundangy pruning we can rgduge a significgnt ®oi () = por—1)(P2(k—2) (- - po(+))) -
number of branches in the search tree while still guaramgeei
optimality. We can further reduce the number of branches at - kstepsp(-)
. - : . By combining the two results, we get
the expense of losing optimality. This can be achieved by
relaxing alpha-pruning and algebraic redundancy comggai 0< JS — J3, < max {ey, B<}.
We use two parameters; > 0 and ey > 0 as relax-
ation parameters for alpha pruning and algebraic redurydanc VI. SIMULATIONS
pruning, respectively. In each case, we bound the loss in ) ) ) )
optimality as a function of the parameters. In this section, we present results from simulations to

gvaluate our pruning techniques. We carry out three types of

if it satisfies either of the following two conditions. When evaluations_. First, we investigate the s_avings ofoureixllg_m_r
checking for alpha pruning, we prune a node if its alpha valu®y comparing the number of nodes in the pruned minimax

is greater than or equal to the best minmax value found so f4f€ @nd the full enumeration tree. Then, we study the effect

minuse;. Similarly, we replace the constraint in Theor@m ©f varying thee, ande; parameters on the number of nodes.
with the following: Finally, we use the control policy given by our algorithm and

execute it by drawing actual measurements from a random
distribution. This represents a realistic scenario whéee t
measurements are not necessarily adversarial. We demon-
strate how our strategy can be used in such a case, and
(9) compare the average case performance with the worst-case

By varying ¢; ande», we can vary the number of nodesPerformance.
in the search tree. Next we bound the resulting loss in the In all simulations, the robot can choose from four actions:

optimality of the algorithm.
p y g u = {[+6a O]T 9 [_67 O]T ) [Oa +€]T 9 [07 _e]T}

Specifically, while building the tree, we prune away a nod

N
Hy(S{ + ) HY =Y oq [HSIHT + K (67 + 05C)]
i=1

V. ERROR ANALYSIS

. . wheree is a constant.
In this section, we bound the value returned by the relaxed €

algorithm with respect to the optimal algorithm. Xo(t+1)= X, (t) + u(®)

Theorem 3 {; Alpha Pruning): Let J3, = tr(33,) be
the optimal minimax value returned by the full enumeratioWVe build the tree using five candidate measurements at each
tree. If J5. = tr(251) is the value returned by the—alpha  step: z(t) = {z1(t), 22(t),--- , 25(t)}. The five values are
pruning algorithm, thet < J5; — J3, <. randomly generated with Gaussian noise.



root (starting point) ><105

(&)

¢ Pruned
— Optimal —o—¢1=0, £2=0

- —o— g1=0, £2=0.1

€1=0.1, €2=0

—o—¢1=0.1, £2=0.1

Control level

N

Measurement
level

w

Control level {4 \ & LN \‘\.»\\.L ...........

N

Measurement L1 S S S |/
level

[

Total number of search tree nodes

o

Fig. 3. A five level minimax tree with pruning (189 nodes) andl f
enumeration (505 nodes).

-
[N}
w
I
&)

Depth of the tree

Fig. 5. Effect of thee; and ez relaxation parameters on the number of

Wit Pruing nodes in the search tree. The baseline case is the optinséibsolvith alpha
e pruning and algebraic redundancy with both parametersosegro.

[
o
-3

=

(=]
=)

®

B. Online Execution of the Search Tree

=
o
I

So far, we have discussed the problem of building the
minimax tree. Once the tree is built, the robot can execwe th
optimal policy. At the root node, the robot executes the first
control action along the optimal minmax path found. Next,

; : T o the robot obtains a measurement. This measurement may not
Depth of the tree correspond to the worst-case measurement. Furthermere, th
actual value of the measurement may not even be in the
k candidate measurements in the tree. The updated target
estimate may not correspond to a node in the tree. Instead, we
compute the distance between the actual measurement and
A. Comparing the Number of Nodes find the closest match in the candidate set. The correspgndin
child node is now the new root node of the tree and the

_F!g. 3 and Fl?t.4 ShOW_S the number OL nodesf Iﬁft n theoptimal policy starting at that node is executed, iterdgive
minimax tree after pruning as compare . to amu enumer,':ig' 6 shows the execution in a simple instance.
ation tree. We prune a node by comparing it to the nodes

already explored. More nodes will be pruned if initial nodes
encountered are “closer” to the optimal policy. For ins&gnc
if the first set of nodes explored happen to be control laws We investigated the problem of devising closed-loop con-
that drive the robot close to the target, then we expect theol policies for state-dependent target tracking. Unbkate-
nodes encountered later will be pruned closer to the root. Todependent tracking, the value of a candidate control law i
provide a fair assessment, we generate the search trees dtate-dependent target tracking is a function of the hisvor
various true positions of the target and report the averageeasurements obtained. Consequently, planning over a hori
and standard deviation of the number of nodes in Big.  zon requires taking into account possible measurement val-
Fig. 4 shows that our algorithm prunes orders of magniues. In this paper, we focused on minimizing the worst-case
tudes of nodes from the full enumeration tree. For a treencertainty. Our solution consisted of buildingnéin max
with depth 13, it take$.08 x 107 to enumerate all nodes but search tree to obtain the control policy. A full enumeration
the same optimal solution can be computed udig x 10° tree has size exponential in the number of measurements,
nodes with our pruning strategy. control laws, and the planning horizon. Instead, we exptbit
Even though our algorithm prunes a large percentage tfe structural properties of Kalman filter to yield a tree
the nodes, the number of nodes still grows exponentially. Byith significantly less number of possible nodes without
sacrificing optimality, we can prune even more nodes. Weacrificing the optimality guarantees. We also showed how
evaluate this by varying; ande, individually first, and then two parameterss; ande,, can be used to yield even more
jointly. As shown in Fig.5, e;—alpha pruning is relatively computational savings at the expense of optimality.
better at reducing the complexity of the minmax tree. This is One disadvantage of the generalization is the need to
intuitive because; -alpha pruning condition compares nearlydiscretize the set of possible future measurements. Our
every pair of nodes at the same deptfralgebraic redun- immediate future work is to bound the suboptimality as
dancy pruning, on the other hand, requires more conditioms function of the number of discrete samples chosen to
(same robot state) to be satisfied. Nevertheless,5%tpows represent the continuous set of future measurements. Once
that by sacrificing optimality, the number of nodes can ba bound is obtained, the user may choose the correct trade-
substantially reduced. off between the computation time and the solution quality

log(Total nodes number)

=
o
N

Fig. 4. Comparison of the number of total nodes generatednfammax
tree. Note thdog scale.

VII. CONCLUSION



desired. A second avenue of future work focuses on exteng(y,) =CSrCY — Co S HE (H S HE + SA) ™ H,S,.CF

ing these results to multi-robot, multi-target scenariosr

prior work [17] has shown a greedy assignment of robot

trajectories to targets yield provably approximate solusi

for one-step planning. We will extend this to planning over

a finite horizon using the results presented in this paper.
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APPENDIX

Theorem 5:(Monotonicity of state dependent Riccati
equation )

+ EU
Proof:

(10)

L(Z) = L(ZF)
—CySpCT — O HT (HSPHT + 54 HYpCT

— 2Pl + 2P HT (HSPHT + 5P) 7 HRBCT
(11)

We define:

K():=-FYxHT'(HZHT + §)7!

F(X):=F— (FSHT)YHZHT +8)7!

Note thatF'(X) = F + K(X)H, and

KX (FSHDT = —K(X)(HSHT + S)K (%)
Then,

L(EH - L(EP) - FEM (2 - 22) FT (5]
=K(EMHFSAHT - K(2BYFXBHT
—~KEMHHE! -SP)FT — P8} —sP) HTET (5]
~K(EMHHE! -SSP HTE(ENHT
=K(EMHFSAHT - K(2BYFXBHT
— KEMHEAFT — HRBFT)
— [F2AHT — FYBHTIKT (24
~K(EMHHE! - SP)HTET (5]
=—KEP)(FSPHT)" + K(SH(FSPHT)
+ (FSPHT)TKT (S
+ K(EMNHZEHT + sYHKT (24
=K(EBYHDPHT + SB)KT (2P)

If two nodes of a linear stochastic system satisfy the Define

condition: HXAHT + 54 = HYXPHT + S and¥! = X5,
then after apply one step Riccati map, we have:
p(Zf) = p(=F)

where,
0<S4<a0<SB<a

+ K(EMNHZBHT + SYHKT (24
— KEMNHEBHT + SBYKT(2P)
— K(EB)(HXBHT + SBYKT (2
=(K(2P) - K(SH)HSPHT + SP) (K (2F) - K(51)"
+E (S (S4 = SPHKT (5]
(12)
[ |
M =
max ((F + K (S H)(F + K(SHH), K(SHKET(31))
(13)

So, we have,



Since both the base case and the inductive step have been
performed, by mathematical induction, the statement holds

L5 ~ L(xP) for all natural numbers
Ay (A T (y2A A B A :
=F(S)( - 7)) FT (5 + K(Et )84 = SP)KT (] Then, we extend the proof from comparing two nodes to
+(K(EB) - KEM)HSPHT + SP)(K (22T - K(%f )érrbltraryN nodes case, if we have
(F + K(SMHH)(ZA - 2B (F + K(sMHH)T N .
K(S4)(5A — SBYKT (54 HSPMH =Y o [HSH + K (57 +65C)] (16)
( (7)) — K(S)HEPHT + 8P) (K (2F) - K(21)" = ,
From [13], we have Without loss of generality, we assurii is the minimum

>K(EA)H(EA EB)HTKT(EA) " K(EA)(SA SB KT 2ngjr@)/anancezrjnvatnx (in the positive semi-definite sense)ragno

+(K(2P) - KEM)HZPHT + SP)(K(P) - K(21))" N
K& (HEFH' +8%) — (HEPH' + SP) KT gyapl » S o, [HSHT + K (62 + 620)]
+(K(EP) - K(E)HZFHT + SP)(KE(EP) - K(21))" i=1
sinceHYHT + 54 = HXPHT + 58 a , (17)
o t t = ; o [thtB HE + K (6% + 556)}

(14) — HxP HT + K (82 + 63C)
Using the result from the induction above, afférminmax
Proof: We first prove a special case wheficonsists tree steps, there always exist a ndde such that,

of only one nodej. That is, we have: " B
(S k) 2 (S k) (18)

Therefore, node A can be pruned without reducing the
where,a = 67 + 63C. optimality of the minmax tree. [
To prove:

PROOF OFTHEOREM 2

H>XAHT - H,2PHT + K -al

tr(S ) > (2P ). PROOF OFTHEOREM 4

Proof: For some level, suppose that we prune a node

1) Show that the statement holds far= 1. on the optimal policy. We have,

When K = 1, HX#HT = HXBHT + al. From the
Kalman Riccati map, tr(H (X2) HT) < tr(H (X3 + o) HT)

S = pi(S (1), 20(1) From [14], we know that’ ¥, Q € R™*™ ande > 0:

=cxicT —oxtHT.
p2i(E + €Q) = p2i(2) + F(S)QF] (S)e.

(HSAHT + S, (2.(1),82(0)) " HSACT + 5, . .
Applying Theorers, we have Applying to the above equation we get,

oxBct —oxBH!. Por (X + €2Q) = pai—1) (P2k—1) (X + €2Q))
(HSPHT + S, (2,.(t),85(1)) " HZPCT +3, =pa(k—1)(P2(k—2) (- - - po(X + €2Q)))
:EEH 2ok () + pak—1) (P2(k—2) (- - p2(FL(2)QF] (%))
(15) :
2) Inductive step: Show that if the claims holds far= =By () +

M, then it also holds fol = M + 1. This can be done as

0 k—1
follows: Assume the claim holds fdk = M. Let ©5'(t) = F ()P0 (5 F ()P0 (SNT | €
YB(t)+a- (HTH)™', based on the condition ok = M 121;[_1( #(Z) sl ))Qg( HE)Ru(Z)) | ez
we have, +o(e2)
Sfar = EHM <Dy () +

that is,

} I FE®eu®)Q H E)P2i(X T] €2

St = Sty ta- (HH)™!

Similar to the step (1): .
Let 2* be the series of covariance matrices along
the optlmal ‘minmax trajectory. Suppose that the sequence

Thereby showing that indeeld = M + 1 holds. of covariance matrices along the optimal trajectory regdrn

A B
Vit M1 Z MM



k
i=1

by es—algebraic redundancy pruning algorithm{iﬁ?}
We get,

S <N pel, Vi=1,2,...,k

By combining the two results, we obtain the desired
bound:

0 < J52 — T3y = tr(57) — tr(S})

k J k—1
< tr{ [ [T EE®u) [ (E(E)%Z-(E))T] 62}
j=0 [i=k—1 i

J
= BE2



minimax tree minmax tree minmax tree

(before alpha pruning) (before alpha pruning)
root node root node Q .
max X7 NJ.......% :
e N /Ny max /
min Ao
max min 2 5 2 5
1\| \‘\
H max
JAST— JAV——— A 7 92 2 7% 8 7 992 4 5

Fig. 2. A minimax tree with alpha pruningy and A are nodes in which we compute the minimum or maximum valugsochildren. The value at the
leaf nodes equals the'(X)). v and A nodes represent control and measurement nodes, respectie filled 7 are pruned by alpha pruning.

Take actual
measurement ¥ N/ .......\
Zi

........... [

Apply
optimal action . \/----- .-
U

2k level
minimax tree

2k level
minimax tree
A

2k level
minimax tree

add one new
control and
measurement level

Fig. 6. Online measurement update with a minmax tree. Theahateasurement;;, may not correspond to a measurement node in the tree. In such a
case, we choose the “closest” measurement in the tree.
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