
ar
X

iv
:1

61
1.

02
34

3v
1

 [c
s.

R
O

]
7

N
ov

 2
01

6

Non-Myopic Target Tracking Strategies for State-Dependent Noise

Zhongshun Zhang and Pratap Tokekar

Abstract— We study the problem of devising a closed-loop
strategy to control the position of a robot that is tracking a
possibly moving target. The robot is capable of obtaining noisy
measurements of the target’s position. The key idea in active
target tracking is to choose control laws that drive the robot to
measurement locations that will reduce the uncertainty in the
target’s position. The challenge is that measurement uncertainty
often is a function of the (unknown) relative positions of the
target and the robot. Consequently, a closed-loop control policy
is desired which can map the current estimate of the target’s
position to an optimal control law for the robot.

Our main contribution is to devise a closed-loop control
policy for target tracking that plans for a sequence of control
actions, instead of acting greedily. We consider scenarioswhere
the noise in measurement is a function of the state of the target.
We seek to minimize the maximum uncertainty (trace of the
posterior covariance matrix) over all possible measurements.
We exploit the structural properties of a Kalman Filter to
build a policy tree that is orders of magnitude smaller than
naive enumeration while still preserving optimality guarantees.
We show how to obtain even more computational savings by
relaxing the optimality guarantees. The resulting algorithms are
evaluated through simulations.

I. INTRODUCTION

Tracking a moving, possibly adversarial target is a fun-
damental problem in robotics and has long been a subject
of study [1]–[6]. Target tracking finds applications in many
areas such as surveillance [7], telepresence [8], assisted
living [9], and habitat monitoring [10], [11]. Target tracking
refers to broadly two classes of problems: (i) estimating
the position of the target using noisy sensor measurements;
and (ii) actively controlling the sensor position to improve
the performance of the estimator. The second problem is
distinguished asactive target tracking and is the subject of
study of this paper.

The main challenge in active target tracking is that the
value of future measurement locations can be a function of
the unknown target state. Take as example, a simple instance
of estimating the unknown position of a stationary target
where the measurement noise is a function of the distance
between the robot and the target. If the true location of the
target were known, the robot would always choose a control
sequence that drives it closer to the target. Since, in practice,
the true target location is unknown, we cannot determine
such a control sequence exactly. A possible strategy in this
case would be to plan with respect to the probability dis-
tribution of the target. However, the probability distribution
itself will evolve as a function of the actual measurement

The authors are with the Department of Electrical & ComputerEngineer-
ing, Virginia Tech, USA.{zszhang,tokekar}@vt.edu.

This material is based upon work supported by the National Science
Foundation under Grant #1566247.

values. This becomes even more challenging if the target is
mobile. We use a Kalman Filter (KF) to estimate the state of
a moving target with a possibly state-dependent measurement
model where the measurement noise is a function of the
distance between the robot and the target.

When planning non-myopically (i.e., for multiple steps
in the future), one can enumerate all possible future mea-
surements in the form of a tree. In particular, a minimax
tree can be used to find the optimal (in themin-maxsense)
control policy for actively tracking a target [12]. The size
of the minmax tree grows exponentially with the time
horizon. The tree can be pruned usingα − β pruning [13].
Our main contribution is to show how the properties of a
KF can be exploited to prune a larger number of nodes
without losing optimality. In doing so, we extend the pruning
techniques first proposed by Vitus et al. [14] for linear
systems. Using aminmax tree, we generalize these results
to a state-dependent, time-variant dynamical systems. Our
pruning techniques allow us to trade-off the size of the
tree (equivalently, computation time) with the performance
guarantees of the algorithm. We demonstrate this effect in
simulations.

The rest of the paper is organized as follows. We start with
the related work in SectionII . The problem formulation is
presented in SectionIII . Our main algorithm is presented in
SectionIV. We validate the algorithm through simulations
described in SectionVI. Finally, we conclude with a brief
discussion of future work in SectionVII .

II. RELATED WORK

The target tracking problem has been studied under var-
ious settings. Bar-Shalom et al. [1] present many of the
commonly-used estimation techniques in target tracking. The
five-part survey by Li and Jilkov [2]–[6] covers commonly-
used control and maneuvering techniques for active target
tracking. In the rest of the section, we discuss works most
closely related to our formulation.

Vitus et al. [14] presented an algorithm that computes the
optimal scheduling of measurements for a linear dynamical
system. Their formulation does not directly model a target
tracking problem. Instead, the goal is to track a linear dynam-
ical system using a set of sensors such that one sensor can
be activated at any time instance. The posterior covariancein
estimating a linear system in a Kalman filter depends on the
prior covariance and sensor variance but not on the actual
measurement values (unlike the case in non-linear systems).
Thus, one can build a search tree enumerating all possible
sensor selections and choosing the one that minimizes the
final covariance. The main contribution of Vitus et al. was

http://arxiv.org/abs/1611.02343v1

to present a pruning technique to reduce the size of the tree
while still preserving optimality.

Atanasov et al. [15] extended this result to active target
tracking with a single robot. A major contribution was to
show that robot trajectories that are nearby in space can be
pruned away (under certain conditions), leading to further
computational savings. This was based on a linear system
assumption. In this paper, we build on these works and
make progress towards generalizing the solution for state-
dependent observation systems.

A major bottleneck for planning for state-dependent ob-
servation systems is that the future covariance is no longer
independent of the actual measurement values, as was the
case in linear state-independent systems. The covariance up-
date equations use the linear models and as such will depend
on the state estimate and the measurements. Thus, the search
tree will have to include all possible measurement values
and not just all possible measurement locations. Furthermore,
finding an optimal path is no longer sufficient. Instead one
must find an optimal policy that prescribes the optimal set of
actions for all possible measurements. We show how to use
a minmax tree to find such an optimal policy while at the
same time leveraging the computational savings that hold for
the linear case.

III. PROBLEM FORMULATION

We assume that the position of the robot is known
accurately using onboard sensors (e.g., GPS, laser, IMU,
cameras). The motion model of the robot is given by:

Xr(t+ 1) = f(Xr(t), u(t)) (1)

whereXr = [xr(t), yr(t)]
T ∈ R

2 is the position of robot and
u(t) ∈ U is the control input at timet. U is a finite space of
control inputs. We assume there aren actions available as
control inputs at any time:

U(t) = {u1(t), u2(t), · · · , un(t)}.

The robot is mounted with a sensor that is capable of
obtaining a measurement of the target. We assume that the
target’s motion model is given by:

Xo(t+ 1) = CtXo(t) + v(t) (2)

where,Xo(t) = [xo(t), yo(t)]
T is the 2-dimensional position

of the target andv(t) is Gaussian noise of known covariance.
The task of the robot is to track the target using its noisy

measurements. The measurements,Z(t), can be a nonlinear
function of the states of the target and robot:

Z(t) = H(Xr(t))Xo(t) + ω(Xr(t), Xo(t)) (3)

The measurement noise,ω(t), is a Gaussian whose variance
depends on the distance between the robot and the target:

ω(Xr(t), Xo(t)) ∼ N
(
0, δ21 + δ22d(Xr(t), Xo(t))

)
(4)

where,
d(Xr(t), Xo(t)) =







C, ||Xr(t)−Xo(t)||2 > B

C||Xr(t)−Xo(t)||2
B

, ||Xr(t)−Xo(t)||2 ≤ B
(5)

When the true distance between the robot and target is
within B, we assume that measurement noise is proportional
to the true distance. When the distance is greater thanB),
the variance is assumed to be a constant maximum value of
C.

The estimated position and the covariance matrix of the
target at timet, X̂o(t) and Σ̂o(t), is given by the Kalman
Filter. The uncertainty in the estimate of the target’s position
is measured by the trace of the covariance matrix. The
problem considered in this paper can be formally stated as
follows.

Problem: Given an initial robot positionXr(0) and an initial
target estimate[X̂o(0), Σ̂o(0)], find a sequence of control
laws for the robot,σ = u0, u1, · · · , uT ∈ U

T from time
t = 0 to t = T to minimize trace of the covariance in the
target’s estimate at timet = T . That is,

min
u(t)

max
z(t)

tr(ΣT) (6)

such that,

Σt+1 = ρt+1(Σt), t = 0, 1, · · · , T − 1

whereρt(·) is the Kalman Riccati equation [16].
The Riccati equation,ρ(·), maps the current covariance

matrix Σ̂k, under a new measurement to the covariance
matrix at the next time step,

ρi(Σ̂k) =CkΣ̂kC
T
k − CkΣ̂kH

T
k (HkΣ̂kH

T
k + Σ̂w)

−1HkΣ̂kC
T
k

+Σv (7)

whereHk is the matrix of the measurement equation com-
puted aroundXr(k) at timek. Σw is the covariance of the
measurement noise given in Equations (3)–(5).

The true position of the target is unknown making it
impossible to determineΣw exactly. Consequently, we use an
estimate ofΣw using the estimated target’s position̂Xo(k).
Therefore, the optimal solution for the problem defined will
be a closed-loop policy that should map the estimated target’s
position to the optimal control action for the robot.

IV. CLOSED-LOOPCONTROL POLICY

References [14], [15] solve a similar problem but for
a linear Gaussian system. The linearity assumption makes
the Riccati equation independent of the position of the
target. Consequently, they show an open loop policy can
determine the optimal control sequence for the robot. In
our case, the optimal control policy for this state-dependent
observation model case will be an adaptive (closed-loop)
control policy. However, this generalization comes at the
expense of discretization of the set of possible target mea-
surements. Specifically, we assume that the measurement at
any time step is chosen from one ofk tuples of candidate
measurements. That is,

z(t) ∈ {z1(t), z2(t), · · · , zk(t)}.

These candidate measurements can be obtained by, for
example, sampling from the continuous distribution of zero

mean sensor noise around the current estimate of the target.
For example, we can choosek candidate measurements from
the data within 3 standard deviation of the mean value, which
contain99.7% of the possible measurements.

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Zm-2

.

.
.

Zm-1 Zm
Z2Z1

Z3

.
.

.

Fig. 1. Obtaining a finite set of candidate measurements by discretizing
the Gaussian distribution of the measurement noise.

A. Optimal decisions: The minimax algorithm

Minimizing the maximum trace can be thought of as
playing a game against an adversary: The robot chooses the
control actions to minimize the trace whereas the adversary
(i.e., nature) chooses measurement noise to maximize the
trace. By optimizing theminmax trace, the robot determines
the best conservative policy.

We can find this optimal strategy by building a minimax
tree. This tree enumerates all possible control laws and all
possible measurements that the robot can obtain. A node on
the kth level of the tree stores the position of the robot,
Xr(k), the estimated position of the target,X̂o(k), and the
covariance matrixΣ̂k. Each node at an odd level has one
branch per control action. Each node at an even level has one
branch per candidate measurement. The robot’s state and the
target’s estimate are updated appropriately along the control
and measurement branches using the state transition equation
(1) and the Kalman filter update equation, respectively. The
minimax value is computed at the leaf nodes and is equal to
the trace of the covariance matrix at that node. These values
are propagated upwards to compute the optimal strategy.
Figure2 shows an example.

B. Alpha Pruning

The number of nodes in a naive minmax tree is exponential
in the depth of the tree (i.e., in the planning horizon). As a
first step in reducing the size of the tree, we implementα

pruning [13]. The main idea inα pruning is that if we have
explored a part of the tree, we have an upper bound on the
optimal minimax value. When exploring a new node,ni,
if we find that the minimax value of the subtree rooted at
ni is greater than the upper bound found, that subtree does
not need to be explored further. This is because an optimal
strategy will never prefer a strategy that passes throughni

since there exists a better control policy in another part ofthe
tree. Note thatni must be a control node. Measurement nodes
cannot be pruned since the robot has no control over the
actual measurement values. The pruning algorithm is based
on the general alpha-beta pruning [13] used in adversarial

Algorithm 1: The minimax algorithms

1 S0 ← {(Xr(o),Σ0)} , St ← φ for t = 1,, T
2 Z = {z1, z2, ..., zk}
3 for t = 1 : T do

4 if NODE STATE (min)
5 for all (Xr(t− 1),Σ(t− 1)) ∈ St−1 do

6 for all ui ∈ U
7 Xr(t)← f(Xr(t− 1), ui)
8 St ← St

⋃
{(Xr(t),Σ(t− 1))}

9 else if NODE STATE (max)
10 for all (Xr(t),Σ(t− 1)) ∈ St do

11 for all zi ∈ Z
12 Σ(t)← ρ(Xr(t), zi,Σ(t− 1))
13 St ← St

⋃
{(Xr(t),Σ(t))}

14 for t = 1 : T do
15 if TERMINAL-TEST (Max)
16 for eachSt do
17 V ← (max tr(Σi(t)), St(i))
18 t← t− 1
19 if TERMINAL-TEST (Min)
20 for eachSt do
21 V ← (minimax tr(Σi(t)), St(i))
22 t← t− 1
23 return V

games. Fig.2 shows a simple example of policy tree built
using alpha pruning.

C. Algebraic Redundancy Pruning

In addition to alpha pruning, we extend the ideas presented
by [14] for linear systems and extend them to get even
further computational savings. If there are multiple nodes
at the same level with the sameXr(t) values but different
target estimates, we can prune one of the nodes if it is
clearly “dominated” by the others. The notion of domination
encodes the property that that particular node will never
be a part of an optimal (minmax) policy. Reference [14]
formalized the notion of domination by defining an algebraic
redundancy constraint. We adapt this result for our notation
as follows:

Theorem 1 (Algebraic Redundancy [14]):Let
H = {(Xj

r (t),Σ
j
t)} be a set ofn nodes at the same

level of the tree. If there exist non-negative constants
α1, α2, . . . , αk such that,

Σp
t �

k∑

i=1

αjΣ
j
t and

k∑

i=1

αi = 1

then the node(Xp
r (t),Σ

p
t) is regarded as algebraically redun-

dant1 with respect toH\{(Xp
r (t),Σ

p
t)} and(Xp

r (t),Σ
p
t) and

all of its descendants can be pruned without eliminating the
optimal solution from the tree.

They prove that the trace of any successor of
(Xp

r (t),Σ
p(t)) cannot be lower than one of the successors of

1
M � N represents thatM −N is positive semi-definite.

H \ {(Xp
r (t),Σ

p(t))}. Our main insight is that a similar re-
dundancy constrained can be defined for the state-dependent
case with suitable additional constraints as described below.

Theorem 2 (State-dependent Algebraic Redundancy):Let
H = {(X i

r(t), X̂
i
o(t), Σ̂

i
t)} be a set ofN nodes at the same

level. If there exists a nodeA = (XA
r (t), X̂A

o (t), Σ̂A
t) at the

same level such that:

1) the robot states are identical,i.e., XA
r (t) = X i

r(t) for
all i in H;

2) the least common ancestor ofA with any other node
in H is a control (i.e., min) node;

3) there exist non-negativeαi such that for anyK:

HtΣ
A
t H

T
t �

N∑

i=1

αi

[
HtΣ

i
tH

T
t +K

(
δ21 + δ22C

)]
(8)

where,
∑N

i=1 αi = 1, then there exists a node inH, sayB,
such that:

tr(ΣA
t+K) ≥ tr(ΣB

t+K).

That is, the nodeA can be pruned from the minimax tree
without eliminating the optimal policy.

The proof is presented in the appendix.

D. Sub-optimal Pruning algorithm

Combining alpha pruning with linear state-independent
algebraic redundancy pruning we can reduce a significant
number of branches in the search tree while still guaranteeing
optimality. We can further reduce the number of branches at
the expense of losing optimality. This can be achieved by
relaxing alpha-pruning and algebraic redundancy constraints.
We use two parametersǫ1 > 0 and ǫ2 > 0 as relax-
ation parameters for alpha pruning and algebraic redundancy
pruning, respectively. In each case, we bound the loss in
optimality as a function of the parameters.

Specifically, while building the tree, we prune away a node
if it satisfies either of the following two conditions. When
checking for alpha pruning, we prune a node if its alpha value
is greater than or equal to the best minmax value found so far
minusǫ1. Similarly, we replace the constraint in Theorem2
with the following:

Ht(Σ
A
t + ǫ2)H

T
t �

N∑

i=1

αi

[
HtΣ

i
tH

T
t +K

(
δ21 + δ22C

)]

(9)
By varying ǫ1 and ǫ2, we can vary the number of nodes

in the search tree. Next we bound the resulting loss in the
optimality of the algorithm.

V. ERROR ANALYSIS

In this section, we bound the value returned by the relaxed
algorithm with respect to the optimal algorithm.

Theorem 3 (ǫ1 Alpha Pruning): Let J∗

2k = tr(Σ̂∗

2k) be
the optimal minimax value returned by the full enumeration
tree. If Jǫ1

2k = tr(Σ̂ǫ1
2k) is the value returned by theǫ1–alpha

pruning algorithm, then0 ≤ Jǫ1
2k − J∗

2k ≤ ǫ1.

The proof follows directly from the fact that if a node
on the optimal policy, sayni is pruned away, then the alpha
value atni is at most the alpha value of some other node, say
nj , that is present in the tree minusǫ1. The alpha value ofnj

cannot be less than the value returned by theǫ1 algorithm.
The full proof is given in the appendix. The bound forǫ2-
algebraic redundancy pruning is more complicated.

Theorem 4 (ǫ2 State-dependent Algebraic Redundancy):
Let J∗

2k = tr(Σ̂∗

2k) be the optimal minimax value returned
by the full enumeration tree of2k levels. If Jǫ2

2k = tr(Σ̂ǫ2
2k)

is the value returned by theǫ2–algebraic redundancy pruning
algorithm, then

0 ≤ Jǫ2
2k − J∗

2k ≤ Bǫ2

where,

Bǫ2 =

tr







k∑

j=0





j
∏

i=k−1

(Fi(Σ)Φ2i(Σ))

k−1∏

i=j

(Fi(Σ)Φ2i(Σ))
T



 ǫ2







where,Fi(Σ) = C − CKi(Σ)Hi andKi(Σ) is the Kalman
gain given by Ki(Σ) = ΣHT

i (HiΣH
T
i + Σw)

−1, and
Φ2k(·) is the application of the Riccati equationρ(·), overk
measurement steps:

Φ2k(·) = ρ2(k−1)(ρ2(k−2)(. . . ρ0(·)))
︸ ︷︷ ︸

k stepsρ(·)

.

By combining the two results, we get

0 ≤ J
ǫ1,ǫ2
2k − J∗

2k ≤ max {ǫ1, B
ǫ2} .

VI. SIMULATIONS

In this section, we present results from simulations to
evaluate our pruning techniques. We carry out three types of
evaluations. First, we investigate the savings of our algorithm
by comparing the number of nodes in the pruned minimax
tree and the full enumeration tree. Then, we study the effect
of varying theǫ1 andǫ2 parameters on the number of nodes.
Finally, we use the control policy given by our algorithm and
execute it by drawing actual measurements from a random
distribution. This represents a realistic scenario where the
measurements are not necessarily adversarial. We demon-
strate how our strategy can be used in such a case, and
compare the average case performance with the worst-case
performance.

In all simulations, the robot can choose from four actions:

U =
{

[+e, 0]
T
, [−e, 0]

T
, [0,+e]

T
, [0,−e]

T
}

wheree is a constant.

Xr(t+ 1) = Xr(t) + u(t)

We build the tree using five candidate measurements at each
step: z(t) = {z1(t), z2(t), · · · , z5(t)}. The five values are
randomly generated with Gaussian noise.

 Pruned

Optimal

root (starting point)

Control level

Measurement

level

Control level

Measurement

level

Fig. 3. A five level minimax tree with pruning (189 nodes) and full
enumeration (505 nodes).

4 6 8 10 12
Depth of the tree

102

104

106

108

lo
g(

T
ot

al
 n

od
es

 n
um

be
r)

With Pruning

Brute Force

Fig. 4. Comparison of the number of total nodes generated forminimax
tree. Note thelog scale.

A. Comparing the Number of Nodes

Fig. 3 and Fig.4 shows the number of nodes left in the
minimax tree after pruning as compared to a full enumer-
ation tree. We prune a node by comparing it to the nodes
already explored. More nodes will be pruned if initial nodes
encountered are “closer” to the optimal policy. For instance,
if the first set of nodes explored happen to be control laws
that drive the robot close to the target, then we expect the
nodes encountered later will be pruned closer to the root. To
provide a fair assessment, we generate the search trees for
various true positions of the target and report the average
and standard deviation of the number of nodes in Fig.4.

Fig. 4 shows that our algorithm prunes orders of magni-
tudes of nodes from the full enumeration tree. For a tree
with depth 13, it takes8.08×107 to enumerate all nodes but
the same optimal solution can be computed using4.36×105

nodes with our pruning strategy.
Even though our algorithm prunes a large percentage of

the nodes, the number of nodes still grows exponentially. By
sacrificing optimality, we can prune even more nodes. We
evaluate this by varyingǫ1 andǫ2 individually first, and then
jointly. As shown in Fig.5, ǫ1–alpha pruning is relatively
better at reducing the complexity of the minmax tree. This is
intuitive becauseǫ1-alpha pruning condition compares nearly
every pair of nodes at the same depth.ǫ2-algebraic redun-
dancy pruning, on the other hand, requires more conditions
(same robot state) to be satisfied. Nevertheless, Fig.5 shows
that by sacrificing optimality, the number of nodes can be
substantially reduced.

1 2 3 4 5
Depth of the tree

0

1

2

3

4

5

T
ot

al
 n

um
be

r
of

 s
ea

rc
h

tr
ee

 n
od

es

×105

Fig. 5. Effect of theǫ1 and ǫ2 relaxation parameters on the number of
nodes in the search tree. The baseline case is the optimal solution with alpha
pruning and algebraic redundancy with both parameters set to zero.

B. Online Execution of the Search Tree

So far, we have discussed the problem of building the
minimax tree. Once the tree is built, the robot can execute the
optimal policy. At the root node, the robot executes the first
control action along the optimal minmax path found. Next,
the robot obtains a measurement. This measurement may not
correspond to the worst-case measurement. Furthermore, the
actual value of the measurement may not even be in the
k candidate measurements in the tree. The updated target
estimate may not correspond to a node in the tree. Instead, we
compute the distance between the actual measurement and
find the closest match in the candidate set. The corresponding
child node is now the new root node of the tree and the
optimal policy starting at that node is executed, iteratively.
Fig. 6 shows the execution in a simple instance.

VII. C ONCLUSION

We investigated the problem of devising closed-loop con-
trol policies for state-dependent target tracking. Unlikestate-
independent tracking, the value of a candidate control law in
state-dependent target tracking is a function of the history of
measurements obtained. Consequently, planning over a hori-
zon requires taking into account possible measurement val-
ues. In this paper, we focused on minimizing the worst-case
uncertainty. Our solution consisted of building aminmax
search tree to obtain the control policy. A full enumeration
tree has size exponential in the number of measurements,
control laws, and the planning horizon. Instead, we exploited
the structural properties of Kalman filter to yield a tree
with significantly less number of possible nodes without
sacrificing the optimality guarantees. We also showed how
two parameters,ǫ1 and ǫ2, can be used to yield even more
computational savings at the expense of optimality.

One disadvantage of the generalization is the need to
discretize the set of possible future measurements. Our
immediate future work is to bound the suboptimality as
a function of the number of discrete samples chosen to
represent the continuous set of future measurements. Once
a bound is obtained, the user may choose the correct trade-
off between the computation time and the solution quality

desired. A second avenue of future work focuses on extend-
ing these results to multi-robot, multi-target scenarios.Our
prior work [17] has shown a greedy assignment of robot
trajectories to targets yield provably approximate solutions
for one-step planning. We will extend this to planning over
a finite horizon using the results presented in this paper.

REFERENCES

[1] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan,Estimation with Applica-
tions to Tracking and Navigation: Theory, Algorithms, and Software.
John Wiley & Sons, 2004.

[2] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. part
i. dynamic models,”IEEE Transactions on aerospace and electronic
systems, vol. 39, no. 4, pp. 1333–1364, 2003.

[3] ——, “Survey of maneuvering target tracking. part ii: motion models
of ballistic and space targets,”IEEE Transactions on Aerospace and
Electronic Systems, vol. 46, no. 1, pp. 96–119, 2010.

[4] ——, “A Survey of Maneuvering Target TrackingPart III: Measure-
ment Models,” inProceedings of SPIE, vol. 4473, 2001, p. 424.

[5] ——, “A Survey of Maneuvering Target TrackingPart IV: Decision-
Based Methods,” inProceedings of SPIE, vol. 4728, 2002, p. 512.

[6] ——, “Survey of maneuvering target tracking. part v. multiple-model
methods,”IEEE Transactions on Aerospace and Electronic Systems,
vol. 41, no. 4, pp. 1255–1321, 2005.

[7] B. Rao, H. F. Durrant-Whyte, and J. Sheen, “A fully decentralized
multi-sensor system for tracking and surveillance,”The International
Journal of Robotics Research, vol. 12, no. 1, pp. 20–44, 1993.

[8] N. Karnad and V. Isler, “Modeling human motion patterns for multi-
robot planning,” inProceedings of IEEE International Conference on
Robotics and Automation (ICRA), 2012, pp. 3161–3166.

[9] M. Montemerlo, J. Pineau, N. Roy, S. Thrun, and V. Verma, “Expe-
riences with a mobile robotic guide for the elderly,” inProceedings
of the AAAI National Conference on Artificial Intelligence,, 2002, pp.
587–592.

[10] V. Isler, N. Noori, P. Plonski, A. Renzaglia, P. Tokekar, and J. Vander
Hook, “Finding and tracking targets in the wild: Algorithmsand field
deployments,” inInternational Symposium on Safety, Security, and
Rescue Robotics, 2015.

[11] P. Tokekar, E. Branson, J. Vander Hook, and V. Isler, “Tracking aquatic
invaders: Autonomous robots for invasive fish,”IEEE Robotics and
Automation Magazine, 2013.

[12] P. Tokekar, J. Vander Hook, and V. Isler, “Active targetlocalization
for bearing based robotic telemetry,” inProceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2011.

[13] S. Russell and P. Norvig,Artificial Intelligence: A modern approach.
Prentice-Hall, 1995.

[14] M. P. Vitus, W. Zhang, A. Abate, J. Hu, and C. J. Tomlin, “On efficient
sensor scheduling for linear dynamical systems,”Automatica, vol. 48,
no. 10, pp. 2482–2493, October 2012.

[15] N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Informa-
tion acquisition with sensing robots: Algorithms and errorbounds,”
in Proceedings of IEEE International Conference on Robotics and
Automation, 2014, pp. 6447–6454.

[16] P. R. Kumar and P. Varaiya,Stochastic systems: Estimation, identifi-
cation, and adaptive control. Prentice Hall, NJ, 1986, vol. 986.

[17] P. Tokekar, V. Isler, and A. Franchi, “Multi-target visual tracking with
aerial robots,” inProceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2014.

APPENDIX

Theorem 5:(Monotonicity of state dependent Riccati
equation)

If two nodes of a linear stochastic system satisfy the
condition:HΣA

t H
T +SA � HΣB

t H
T +SB andΣA

t � ΣB
t ,

then after apply one step Riccati map, we have:

ρ(ΣA
t) � ρ(ΣB

t)

where,
0 ≤ SA ≤ a, 0 ≤ SB ≤ a

ρ(Σk) =CkΣkC
T
k − CkΣ̂kH

T
k (HkΣ̂kH

T
k + SA)−1HkΣ̂kC

T
k

+Σv (10)
Proof:

L(ΣA
k)− L(ΣB

k)

=CkΣ
A
k C

T
k − CkΣ

A
k H

T
(
HΣA

k H
T + SA

)−1
HΣA

k C
T
k

− CkΣ
B
k C

T
k + CkΣ

B
k H

T
(
HΣB

k H
T + SB

)−1
HΣB

k C
T
k

(11)

We define:

K(Σ) := −FΣHT (HΣHT + S)−1

F (Σ) := F − (FΣHT)(HΣHT + S)−1

Note thatF (Σ) = F +K(Σ)H , and

K(Σ)(FΣHT)T = −K(Σ)(HΣHT + S)K(Σ)T

Then,

L(ΣA
t)− L(ΣB

t)− F (ΣA
t)(Σ

A
t − ΣB

t)F
T (ΣA

t)

=K(ΣA
t)FΣA

t H
T −K(ΣB

t)FΣB
t H

T

−K(ΣA
t)H(ΣA

t − ΣB
t)F

T − F (ΣA
t − ΣB

t)H
TKT (ΣA

t)

−K(ΣA
t)H(ΣA

t − ΣB
t)H

TK(ΣA
t)

T

=K(ΣA
t)FΣA

t H
T −K(ΣB

t)FΣB
t H

T

−K(ΣA
t)[HΣA

t F
T −HΣB

t F
T]

− [FΣA
t H

T − FΣB
t H

T]KT (ΣA
t)

−K(ΣA
t)H(ΣA

t − ΣB
t)H

TKT (ΣA
t)

=−K(ΣB
t)(FΣB

t H
T)T +K(ΣA

t)(FΣB
t H

T)

+ (FΣB
t H

T)TKT (ΣA
t)

+K(ΣA
t)(HΣB

t H
T + SA)KT (ΣA

t)

=K(ΣB
t)(HΣB

t H
T + SB)KT (ΣB

t)

+K(ΣA
t)(HΣB

t H
T + SA)KT (ΣA

t)

−K(ΣA
t)(HΣB

t H
T + SB)KT (ΣB

t)

−K(ΣB
t)(HΣB

t H
T + SB)KT (ΣA

t)

=(K(ΣB
t)−K(ΣA

t))(HΣB
t H

T + SB)(K(ΣB
t)−K(ΣA

t))
T

+K(ΣA
t)(S

A − SB)KT (ΣA
t)

(12)

Define

M =

max
(
(F +K(ΣA

t)H)(F +K(ΣA
t)H)T ,K(ΣA

t)K
T (ΣA

t)
)

(13)

So, we have,

L(ΣA
t)− L(ΣB

t)

=F (ΣA
t)(Σ

A
t − ΣB

t)F
T (ΣA

t) +K(ΣA
t)(S

A − SB)KT (ΣA
t)

+ (K(ΣB
t)−K(ΣA

t))(HΣB
t H

T + SB)(K(ΣB
t)

T −K(ΣA
t))

T

=(F +K(ΣA
t)H)(ΣA

t − ΣB
t)(F +K(ΣA

t)H)T

+K(ΣA
t)(S

A − SB)KT (ΣA
t)

+ (K(ΣB
t)−K(ΣA

t))(HΣB
t H

T + SB)(K(ΣB
t)−K(ΣA

t))
T

From [13], we have

�K(ΣA
t)H(ΣA

t − ΣB
t)H

TKT (ΣA
t) +K(ΣA

t)(S
A − SB)KT (ΣA

t)

+ (K(ΣB
t)−K(ΣA

t))(HΣB
t H

T + SB)(K(ΣB
t)−K(ΣA

t))
T

=K(ΣA
t)

(
(HΣA

t H
T + SA)− (HΣB

t H
T + SB)

)
KT (ΣA

t)

+ (K(ΣB
t)−K(ΣA

t))(HΣB
t H

T + SB)(K(ΣB
t)−K(ΣA

t))
T

sinceHΣA
t H

T + SA � HΣB
t H

T + SB

�0
(14)

PROOF OFTHEOREM 2

Proof: We first prove a special case whenH consists
of only one node,B. That is, we have:

HtΣ
A
t H

T
t � HtΣ

B
t H

T
t +K · aI

where,a = δ21 + δ22C.
To prove:

tr(ΣA
t+K) ≥ tr(ΣB

t+K).

1) Show that the statement holds forK = 1.
When K = 1, HΣA

t H
T � HΣB

t H
T + aI. From the

Kalman Riccati map,

ΣA
t+1 = ρi(Σ

A
t , xr(t), x̂o(t))

=CΣA
t C

T − CΣA
t H

T
t ·

(
HtΣ

A
t H

T
t +Σwi

(
xr(t), x̂

A
o (t)

))−1
HtΣ

A
t C

T +Σv

Applying Theorem5, we have

�CΣB
t C

T − CΣB
t H

T
t ·

(
HtΣ

B
t H

T
t +Σwi

(
xr(t), x̂

B
o (t)

))−1
HtΣ

B
t C

T +Σv

=ΣB
t+1

(15)

2) Inductive step: Show that if the claims holds forK =
M , then it also holds forK = M + 1. This can be done as
follows: Assume the claim holds forK = M . Let ΣB′

(t) =
ΣB(t) + a · (HTH)−1, based on the condition ofK = M

we have,
ΣA

t+M � ΣB′

t+M

that is,
ΣA

t+M � ΣB
t+M + a · (HTH)−1

Similar to the step (1):

ΣA
t+M+1 � ΣB

t+M+1

Thereby showing that indeedK = M + 1 holds.

Since both the base case and the inductive step have been
performed, by mathematical induction, the statement holds
for all natural numbersn.

Then, we extend the proof from comparing two nodes to
arbitraryN nodes case, if we have

HtΣ
A
t H

T
t �

N∑

i=1

αi

[
HtΣ

i
tH

T
t +K

(
δ21 + δ22C

)]
(16)

Without loss of generality, we assumeΣB′

is the minimum
covariance matrix (in the positive semi-definite sense) among
Σ1

t ,Σ
2
t , ...,Σ

N
t .

HtΣ
A
t H

T
t �

N∑

i=1

αi

[
HtΣ

i
tH

T
t +K

(
δ21 + δ22C

)]

�
N∑

i=1

αi

[

HtΣ
B′

t HT
t +K

(
δ21 + δ22C

)]

= HtΣ
B′

t HT
t +K

(
δ21 + δ22C

)

(17)

Using the result from the induction above, afterK minmax
tree steps, there always exist a nodeB′, such that,

tr(ΣA
t+K) ≥ tr(ΣB′

t+K) (18)

Therefore, node A can be pruned without reducing the
optimality of the minmax tree.

PROOF OFTHEOREM 4

Proof: For some leveli, suppose that we prune a node
on the optimal policy. We have,

tr(H (Σǫ2
2i)H

T) ≤ tr(H (Σ∗

2i + ǫ2I)H
T)

From [14], we know that∀ Σ, Q ∈ R
n×n andǫ ≥ 0:

ρ2i(Σ + ǫQ) � ρ2i(Σ) + Fi(Σ)QFT
i (Σ)ǫ.

Applying to the above equation we get,

Φ2k(Σ + ǫ2Q) = ρ2(k−1)(Φ2(k−1)(Σ + ǫ2Q))

=ρ2(k−1)(ρ2(k−2)(. . . ρ0(Σ + ǫ2Q)))

�Φ2k(Σ) + ρ2(k−1)(ρ2(k−2)(. . . ρ2(F1(Σ)QFT
1 (Σ))

...

=Φ2k(Σ)+
[

0∏

i=k−1

(Fi(Σ)Φ2i(Σ))Q

k−1∏

i=0

(Fi(Σ)Φ2i(Σ))
T

]

ǫ2

+ o(ǫ2)

�Φ2k(Σ)+
[

0∏

i=k−1

(Fi(Σ)Φ2i(Σ))Q

k−1∏

i=0

(Fi(Σ)Φ2i(Σ))
T

]

ǫ2

Let
{

Σ̂∗

i

}k

i=1
be the series of covariance matrices along

the optimal minmax trajectory. Suppose that the sequence
of covariance matrices along the optimal trajectory returned

by ǫ2–algebraic redundancy pruning algorithm is
{

Σ̂ǫ2
i

}k

i=1
.

We get,

Σ̂ǫ2
i � Σ̂∗

i + ǫ2I, ∀i = 1, 2, . . . , k

By combining the two results, we obtain the desired
bound:

0 ≤ Jǫ2
2k − J∗

2k = tr(Σ̂ǫ2
k)− tr(Σ̂∗

k)

≤ tr







k∑

j=0





j
∏

i=k−1

(Fi(Σ)Φ2i(Σ))
k−1∏

i=j

(Fi(Σ)Φ2i(Σ))
T



 ǫ2







= Bǫ2

7 9 2 4 7 5 8

7 2 5

7

minmax tree

(before alpha pruning)

max

min

max

root node

max

min

minimax tree

max

u1 u2 un

z1 zm

root node

7 9 2 4 5

7 2 5

7

minmax tree

(before alpha pruning)

Fig. 2. A minimax tree with alpha pruning.▽ and△ are nodes in which we compute the minimum or maximum value of its children. The value at the
leaf nodes equals thetr(Σk)). ▽ and△ nodes represent control and measurement nodes, respectively. The filled ▽ are pruned by alpha pruning.

2k level

minimax tree

u1 un

z1 zk

2k level

minimax tree

u1

u2 un

z1 zk

2k level

minimax tree

u1

u2 un

z1 zk

u1

u2 un

z1 zk

add one new

control and

measurement level

u1 un

z1

Take actual

measurement

zk

Apply

optimal action

u1

Fig. 6. Online measurement update with a minmax tree. The actual measurement,zk may not correspond to a measurement node in the tree. In such a
case, we choose the “closest” measurement in the tree.

	I INTRODUCTION
	II Related Work
	III Problem Formulation
	IV Closed-Loop Control Policy
	IV-A Optimal decisions: The minimax algorithm
	IV-B Alpha Pruning
	IV-C Algebraic Redundancy Pruning
	IV-D Sub-optimal Pruning algorithm

	V Error analysis
	VI Simulations
	VI-A Comparing the Number of Nodes
	VI-B Online Execution of the Search Tree

	VII Conclusion
	References
	Appendix

