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Abstract— This paper presents the implementation of a 
perceptual system for a mobile robot. The system is designed and 
installed with modern sensors and multi-point communication 
channels. The goal is to equip the robot with a high level of 
perception to support a wide range of navigating applications 
including Internet-based telecontrol, semi-autonomy, and 
autonomy. Due to uncertainties of acquiring data, a sensor fusion 
model is developed, in which heterogeneous measured data 
including odometry, compass heading and laser range is 
combined to get an optimal estimate in a statistical sense. The 
combination is carried out by an extended Kalman filter. 
Experimental results indicate that based on the system, the robot 
localization is enhanced and sufficient for navigation tasks. 

Index Terms— sensor fusion; Kalman Filter; localization;  

I. INTRODUCTION 
Perceptual system is the key to the intelligence of a mobile 

robot. When a mobile robot travels in an unknown or partially 
known environment, it must understand the environment for 
obstacle avoidance or path planning. The perception of robot is 
done by taking measurements using various sensors and then 
extracting meaningful information from those measurements. 

Based on advanced material technologies, modern sensors 
can be nowadays equipped for the mobile robot such as optical 
incremental encoders, heading sensors, ultrasonic sensors, 
infrared sensors, laser range finders and vision systems. These 
sensors are selected so as to accord with the goal of application, 
the specific constraints of the working environment, and the 
individual properties of the sensors themselves. Nevertheless, 
there is no single sensor which can adequately capture all 
relevant features of a real environment. It is necessary to 
combine the data from different sensors into a process known 
as sensor fusion. The expectation is that the fused data is more 
informative and synthetic than the original. 

Several methods have been reported to cope with this trend. 
Durrant-Whyte has developed a multi-Bayesian estimation 
technique for combining touch and stereo sensing [1], [2]. Tang 
and Lee proposed a generic framework that employed a sensor-
independent, feature-based relational model to represent 
information acquired by various sensors [3]. In [4], a Kalman 
filter update equation was developed to obtain the 
correspondence of a line segment to a model, and this 
correspondence was then used to correct position estimation. In 

[5], an extended Kalman filter was conducted to manipulate 
image and spatial uncertainties. 

In this work, we develop a multi-sensor perceptual system 
for the mobile robot. Sensors include but not limit to optical 
quadrature encoders, compass sensors, ultrasonic sensors, laser 
range finders, global positioning systems (GPS) and vision 
systems. The goal is to equip the robot with diverse levels of 
perception to support a wide range of navigating applications 
including Internet-based telecontrol, semi-autonomy, and 
autonomy. At this stage of research, we use the optical 
quadrature encoders for position measurement, compass sensor 
for deflect angle calculation and laser range finder (LRF) for 
object-boundary detection. These types of data have their 
strengths and are often used in robotic applications, but 
combining them provides even more useful information. This 
combined approach deserves further investigation. In our 
system, an extended Kalman filter (EKF) has been designed. It 
fuses the raw measurement data of optical quadrature encoders, 
the compass sensor, and the LRF to obtain optimal estimation 
of robot positions while reduces uncertainties in measurements. 
The proposed fusing algorithm also provides constraints that 
filter out unreliable data from the sensor readings. Outputs of 
EKF combined with the boundaries of objects detected from 
LRF ensure the success navigation of the mobile robot in 
indoor environments. 

The paper is arranged as follows. Details of the perceptual 
system are described in Section II. The algorithm for sensor 
fusion using EKF is explained in Section III. Section IV 
introduces experimental results. The paper concludes with an 
evaluation of the system, with respect to its strengths and 
weaknesses, and with suggestions of possible future 
developments. 

II. SENSOR SYSTEM DESIGN 
The sensor system consists of an Omni-directional camera, 

a GPS, a compass sensor, a LRF, three quadrature encoders and 
eight ultrasonic sensors. Fig.1 describes the sensors in relation 
with actuators and communication channels in a mobile robot. 
The communication is performed via low-rate and high-rate 
channels. The low-rate channel with standards of RS-485 is 
developed by an on-board 60MHz Microchip dsPIC30F4011-
based micro-controller and MODBUS protocol for multi-point 
interface. The high-rate channels use the USB-to-COM and 
IEEE-1394/firewire available commercial ports. 



 

Figure 1.  Sensors in relation with actuators and communication channels in 
our mobile robot 

In the system, optical quadrature encoders are used. An 
optical encoder is basically a mechanical light chopper that 
produces a certain number of sine or square wave pulses for 
each shaft revolution. As the diameter of wheel and the gear 
coefficient are known, the angular position and speed of wheel 
can be calculated. In the quadrature encoder, a second light 
chopper is placed 90 degrees shifted with respect to the original 
resulting in twin square waves as shown in fig.2. Observed 
phase relationship between waves is employed to determine the 
direction of the rotation. In the system, measurements from 
encoders are used as input data for positioning and feedback for 
a closed-loop motor speed controller. 

 

Figure 2.  Optical encoder structure and output pulses 

 
 

The heading sensor is used to determine the robot 
orientation. This sensory module contains a CMPS03 compass 
sensor operating based on Hall effect with heading resolution 
of 0.1° (fig.3). The module has two axes, x and y. Each axis 
reports the strength of the magnetic field component paralleled 
to it. The microcontroller connected to the module uses 
synchronous serial communication to get axis measurements 
[6]. 

 

Figure 3.  Heading module and output data 

The GPS is mainly applied for positioning in the outdoor 
environment. A HOLUX GPS UB-93 module is used [7]. Due 
to the presence of networking in our system, an Assisted GPS 
(A-GPS) can be also used in order to locate and utilize satellite 
information of the network in the poor signal condition. 

The system provides eight SFR-05 ultrasonic sensors split 
into four arrays, two on each, arranged at four sides of the 
robot. The measuring range is from 0.04m to 4m. 

The vision system is detachable and mounted on the top of 
the robot. It mainly consists of an Omni-directional digital 
camera Hyper-Omni Vision SOIOS 55 with a high-rate IEEE-
1394 data transfer line. With a 360-degree field of view, the 
Omni-directional camera is a good vision sensor for landmark-
based navigation [8]. 

Last but not least, a 3D laser range finder (LRF) with a 
range from 0.04m to 80m is developed for the system. Its 
operation is based on the time-of-flight measurement principle. 
A single laser pulse is emitted out and reflected by an object 
surface within the range of the sensor. The lapsed time between 
emission and reception of the laser pulse is used to calculate 
the distance between the object and the sensor. By an 
integrated rotating mirror, the laser pulses sweep a radial range 
in its front so that a 2D field/area is defined (fig.4). 

 
Figure 4.  Two-dimension laser scanning plane [10]. 

Due to the fixation of the pitching angle in the scanning 
plane, the information of 2D image may be, in certain cases, 
insufficient for obstacle detection (fig.4). In those situations, a 
3D image is necessary. As the 2D scanner is popular and low-
cost, building a 3D LRF from the 2D is usually a prior choice 
[9][10]. In our system, a 3D LRF is developed based on the 2D 
SICK-LMS 221 [9]. It has the view angle of 180° in horizontal 
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and 25° in vertical. During the measurement time, a set of 
deflect angle β and distance ρ values are received. The set (β, 
ρ) is then combined with the pitching angle α to create the 3D 
data. Based on these data, we can define the Cartesian 
coordinates of one point in the space. 

 
Figure 5.  Determine the coordinates of one point in 3D space [10]. 

Fig.6 shows the proposed sensor system implemented in a 
mobile robot developed by our laboratory. 

 
Figure 6.  The implemented sensor system 

III. SENSOR FUSION 
The proposed sensor platform equips the robot with the 

ability to perceive many parameters of the environment. Their 
combination, however, presents even more useful information. 
In this work, the raw data of three different types of sensors 
including the compass sensor, the quadrature encoder and the 
LRF is syndicated inside an EKF. The aim is to determine the 
robot position during operation as accurately as possible. 

 
Figure 7.  The robot’s pose and parameters 

We start with the kinematic model of the mobile robot. The 
two wheeled, differential-drive mobile robot with non-slipping 
and pure rolling is considered. Fig.7 shows the coordinate 
systems and notations for the robot, where (XG, YG) is the 
global coordinate, (XR, YR) is the local coordinate relative to 

the robot chassis. R denotes the radius of driven wheels, and L 
denotes the distance between the wheels. 

During one sampling period ∆t, the rotational speed of the 
left and right wheels ωL and ωR create corresponding increment 
distances ∆sL and ∆sR traveled by the left and right wheels 
respectively: 

           L L R Rs tR s tRω ω∆ = ∆ ∆ = ∆                 (1) 

These can be translated to the linear incremental 
displacement of the robot’s center ∆s and the robot’s 
orientation angle ∆θ : 
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The coordinates of the robot at time k+1 in the global 
coordinate frame can be then updated by: 
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In practice, (3) is not really accurate due to unavoidable 
errors appeared in the system. Errors can be both systematic 
such as the imperfectness of robot model and nonsystematic 
such as the slip of wheels. These errors have accumulative 
characteristic so that they can break the stability of the system 
if appropriate compensation is not considered. In our system, 
the compensation is carried out by the EKF. 

Let [ ]Tx yθ=x be the state vector. This state can be 
observed by some absolute measurements, z. These 
measurements are described by a nonlinear function, h, of the 
robot coordinates and an independent Gaussian noise process, 
v. Denoting the function (3) is f, with an input vector u, the 
robot can be described by: 
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where the random variables wk and vk represent the process and 
measurement noise respectively. They are assumed to be 
independent to each other, white, and with normal probability 
distributions: ~ (0, )  ~ (0, )  ( ) 0T

k k k k i jE =w N Q v N R w v  
The steps to calculate the EKF are then realized as below: 

      1. Prediction step with time update equations:  

   1 1ˆ ˆ( , , )k k kf−
− −=x x u 0                                      (5) 

1 1
T T

k k k k k k k
−

− −= +P A P A W Q W                             (6) 

where ˆ n
k
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knowledge of the process prior to step k, ˆ
k
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covariance matrix of the state-prediction error, Ak is the 
Jacobian matrix of partial derivates of f to x:  
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W is the Jacobian matrix of partial derivates of f to w: 
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and 1k−Q is the input-noise covariance matrix which depends 
on the standard deviations of noise of the right-wheel rotational 
speed and the left-wheel rotational speed. They are modeled as 
being proportional to the rotational speed ωR,k and ωL,k of these 
wheels at step k. This results in the variances equal to 2

Rδω  and 
2
Lδω , where δ is a constant determined by experiments. The 

input-noise covariance matrix Qk is defined as: 
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      2. Correction step with measurement update equations:   
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where ˆ n
k ∈ℜx is the posteriori state estimate at step k given 

measurement kz , Kk is the Kalman gain, H is the Jacobian 
matrix of partial derivates of h to x: 
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Rk is the covariance matrix of noises estimated from the 
measurements of compass sensor and LRF as follows. 

 
Figure 8.  The line parameters (ρj, βj) according to the global coordinates, 

and the line parameters (ri, ψi) according to the robot coordinates 

At the first scan of LRF, a global map of environment is 
constructed composed of a set of line segments described by 
parameters βj and ρj. The line equation in normal form is: 

xG cos βj + yG sin βj = ρj                                  (14) 

When the robot moves, a new scan of LRF is performed and a 
new map of environment, namely local map, is constructed 
which also consists of a set of line segments described by the 
equation: 
                              xR cosψi + yR sinψi = ri                            (15) 

where ψi and ri are the parameters of lines (fig.8).  
The line segments of the global and local map are then 

matched using weighted line fitting algorithm [11]. The 
matching line parameters ir  and iψ from the local map are 
collected in the vector zk, which is used as the input for the 
correction step of the EKF to update the robot’s state: 

              1 1[ , ,...., , , ]T
k N N kr rψ ψ ϕ=z                        (16) 

where iϕ  is the signal measured from the compass sensor.  

From the robot pose estimated by odometry, the 
parameters jρ  and jβ of the line segments in the global map 
(according to the global coordinates) is transformed into the 
parameters îr  and ˆiψ  (according to the coordinates of the 
robot) by: 
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The covariance matrix Ri,k of measurement noise has the 
diagonal structure, where the ith block is: 
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From (16) and (19), the data of the compass sensor is 
utilized to correct the robot orientation. At step k, this data is 
employed as the absolute measurement for the element θk of zk. 
The noise of this measurement is achieved from the 
manufactory specification. The accuracy of 0.10 corresponds to 
the noise variance of 0.01. This collected into the covariance 
matrix Ri,k  (19) gives Rk for the correction step of EKF. 

IV. EXPERIMENTS 
The setup of the sensor system has been described in 

Section II. In this section, experiments are conducted to 
evaluate the efficiency of the fusion algorithm. 



A. Experimental Setup 
A rectangular shaped flat-wall environment constructed 

from several wooden plates surrounded by a cement wall is 
setup. The robot is a two wheeled, differential-drive mobile 
robot. Its wheel diameter is 10 cm and the distance between 
two drive wheels is 60cm. 

The speed stability of the motor during each sampling time 
step is an important factor to maintain the efficiency of the 
EKF. For that reason, motors are controlled by microprocessor-
based electronic circuits which carry out a PID algorithm. The 
stability checked by a measuring program written in 
LABVIEW is ±5%. 

The compass sensor has the accuracy of 0.10. The LRF has 
the accuracy of 30mm in distance and 0.250 in deflect angle. 
The sampling time ∆t of the EKF is 100ms. The proportional 
factor δ of the input-noise covariance matrix Qk is 
experimentally estimated as follows. The deviation between the 
true and the position estimated by the kinematic model when 
driving the robot straight forwards several times (from the 
minimum to the maximum tangential speed of the robot) is 
determined. The deviation between the true robot orientation 
and the orientation estimated by the kinematic model when 
rotating the robot around its own axis several times (from the 
minimum to the maximum angular speed of the robot) is also 
determined. Based on the error in position and orientation, the 
parameter δ is calculated. In our system, δ is estimated to be 
the value 0.01. 

 
Figure 9.  Estimated robot trajectories under different EKF configurations  

 

 
Figure 10.  The deviation in X and Y direction between estimated positions 

and the real one 

 

 
Figure 11.  Trajectories of the robot moving along predefined paths 

a) Rounded rectangular path   b) Rounded triangular path 

B. Sensor Fusion Algorithm Evaluation 
In order to evaluate the efficiency of the fusion algorithm, 

different configurations of the EKF were implemented. Fig.9 
describes the trajectories of a robot movement estimated by 
four methods: the odometry, the EKF with compass sensor, the 
EKF with LRF, and the EKF with the combination of LRF and 
compass sensor. The deviations between each trajectory and 
the real one are represented in fig.10. 

a) 



In another experiment, the robot is programmed to follow 
predefined paths under two different scenarios: with and 
without the EKF. Fig.11a represents the trajectories of the 
robot moving along a rounded rectangular path in which the 
one with dots corresponds to the non-existence of EKF and the 
one with pluses corresponds to the existence of EKF in the 
implementation. The trajectories in case the robot follows a 
rounded triangular path are shown in fig.11b. 

It is concluded that the EKF algorithm improves the robot 
localization and its combination with LRF and compass sensor 
gives the optimal result. 

C. Autonomous Navigation 
In this experiment, we evaluate the applicability of the 

proposed fusion approach in a real autonomous navigation 
application. The goal is to navigate the mobile robot to go a 
round closed to the line segments of the global map extracted 
from the first scan of the LRF. Fig.12 shows the extracted map 
and the success trajectory of the robot during the navigation. A 
sequence of images showing the motion of the robot in the 
experiment is described in fig.13. 

 
Figure 12.  Line segments of a global map and the trajectory of the robot 

  
Figure 13.  A sequence of images showing the motion of robot in an 

experimental environment during the autonomous navigation operation 

V. CONCLUSION 
It is necessary to develop a perceptual system for the 

mobile robot. The system is required to not only be well-
working but also critically support various levels of perception. 
In this work, many types of sensors including position speed 
encoders, integrated sonar ranging sensors, compass and laser 
finder sensors, the global positioning system (GPS) and the 
visual system have been implemented in a real mobile robot 

platform. An EKF has been designed to fuse the raw data of 
compass sensor and LRF. Experiments show that this novel 
combination significantly improves the accuracy of robot 
localization and is sufficient to ensure the success of robot 
navigation. Further investigation will be continued with more 
sensor combination to better support the localization in outdoor 
environments.  
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