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Abstract: In various interaction tasks using Underwater Vehicle Manipulator Systems
(UVMSs) (e.g. sampling of the sea organisms, underwater welding), important factors such
as: 1) uncertainties and complexity of UVMS dynamic model ii) external disturbances (e.g.
sea currents and waves) iii) imperfection and noises of measuring sensors iv) steady state
performance as well as v) inferior overshoot of interaction force error, should be addressed
during the force control design. Motivated by the above factors, this paper presents a model-
free control protocol for force controlling of an Underwater Vehicle Manipulator System which is
in contact with a compliant environment, without incorporating any knowledge of the UVMS’s
dynamic model, exogenous disturbances and sensor’s noise model. Moreover, the transient and
steady state response as well as reduction of overshooting force error are solely determined
by certain designer-specified performance functions and are fully decoupled by the UVMS’s
dynamic model, the control gain selection, as well as the initial conditions. Finally, a simulation

study clarifies the proposed method and verifies its efficiency.

Keywords: Underwater Vehicle Manipulator System, Nonlinear Control, Autonomous
Underwater Vehicle, Marine Robotics, Force Control, Robust Control.

1. INTRODUCTION

In view of the development of autonomous underwater
vehicles, the capability of such vehicles to interact with
the environment by the use of a robot manipulator, had
gained attention in the literature. Most of the underwater
manipulation tasks, such as maintenance of ships, under-
water pipeline or weld inspection, surveying, oil and gas
searching, cable burial and mating of underwater connec-
tor, require the manipulator mounted on the vehicle to
be in contact with the underwater object or environment.
The aforementioned systems are complex and they are
characterized by several strong constraints, namely the
complexity in the mathematical model and the difficulty to
control the vehicle. These constraints should be taken into
consideration when designing a force control scheme. In
order to increase the adaptability of UVMS, force control
must be included into the control system of the UVMS.
Although many force control schemes have been developed
for earth-fixed manipulators and space robots, these con-
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trol schemes cannot be used directly on UVMS because of
the unstructured nature of the underwater environment.

From the control perspective, achieving these type of tasks
requires specific approaches(Siciliano et al., 2009). How-
ever, speaking about underwater robotics, only few pub-
lications deal with the interaction control using UVMS.
One of the first underwater robotic setups for interaction
with the environment was presented in (Casalino et al.,
2001). Hybrid position/force control schemes for UVMS
were developed and tested in (Clegg et al., 2001; Dunnigan
et al., 1996). However, dynamic coupling between the ma-
nipulator and the underwater vehicle was not considered
in the system model. In order to compensate the contact
force, the authors in (Kajita and Kosuge, 1997) proposed a
method that utilizes the restoring force generated by the
thrusters. In the same context, position/force (Lapierre
et al., 2003), impedance control (Cui et al., 1999; Cui
and Sarkar, 2000; Cui and Yuh, 2003) and external force
control schemes (Antonelli et al., 1999, 2002, 2001) can be
found in the literature.

Over the last years, the interaction control of UVMS is
gaining significant attention again. Several control issues
for an UVMS in view of intervention tasks has been
presented in (Marani et al., 2010). In (Cataldi and An-
tonelli, 2015) based on the interaction schemes presented



in (Antonelli et al., 2001) and (Antonelli et al., 2002), the
authors proposed a control protocol for turning valve sce-
narios. Recent study (Farivarnejad and Moosavian, 2014)
proposed a multiple impedance control scheme for a dual
manipulator mounted on AUV. Moreover, the two recent
European projects TRIDENT (see, e.g. (Fernndez et al.,
2013),(Prats et al., 2012),(Simetti et al., 2014)) and PAN-
DORA (see, e.g. (Carrera et al., 2014), (Carrera et al.,
2015)) have given boost to underwater interaction with
relevant results.

In real applications, the UVMS needs to interact with
the environment via its end-effector in order to achieve a
desired task. During the manipulation process the follow-
ing issues occur: the environment is potentially unknown,
the system is in the presence of unknown (but bounded)
external disturbances (sea currents and sea waves) and
the sensor measurements are not always accurate (we
have noise in the measurements). These issues can cause
unpredicted instabilities to the system and need to be
tackled during the control design. From the control de-
sign perspective, the UVMS dynamical model is highly
nonlinear, complicated and has significant uncertainties.
Owing to the aforementioned issues, underwater manipu-
lation becomes a challenging task in order to achieve low
overshoot, transient and steady state performance.

Motivated by the above, in this work we propose a force
- position control scheme which does not require any
knowledge of the UVMS dynamic parameters, environ-
ment model as well as the disturbances. More specifically,
it tackles all the aforementioned issues and guarantees
a predefined behavior of the system in terms of desired
overshoot and prescribed transient/steady state perfor-
mance. Moreover, noise measurements, UVMS model un-
certainties (a challenging issue in underwater robotics) and
external disturbance are considered during control design.
In addition, the complexity of the proposed control law is
significantly low. It is actually a static scheme involving
only a few calculations to output the control signal, which
enables its implementation on most of current UVMS.
The rest of this paper is organized as follows: in Sec-
tion 2 the mathematical model of UVMS and preliminary
background are given. Section 3 provides the problem
statement that we aim to solve in this paper. The control
methodology is presented in Section 4. Section 5 validates
our approach via a simulation study. Finally, conclusions
and future work directions are discussed in Section 6.

2. PRELIMINARIES
2.1 Mathematical model of the UVMS

In this work, the vectors are denoted with lower bold
letters whereas the matrices by capital bold letters. The
end effector coordinates with respect to (w.r.t) the inertial
frame {I} are denoted by z. € RS. Let ¢ = [q., q,}]T €
R™ be the state variables of the UVMS, where q, =
[ny,m3]" € RS is the vector that involves the position
vector 1 = [z,y,2]" and Euler-angles orientation 17, =
[6,0,9]" of the vehicle w.r.t to the inertial frame {I}
and g, € R" % is the vector of angular position of
the manipulator’s joints. Thus, we have (Antonelli, 2013;
Fossen, 1994):

Qa :Ja(qa)’v (1)
where

a _ [Je(m2) O3x3 6x6
T*(9a) = [ 03x3 Jr(ﬂz)] €R

is the Jacobian matrix transforming the velocities from
the body-fixed to the inertial frame and where, 03«3 is the
zero matrix of the respective dimensions, v is the vector of
body velocities of the vehicle and J;(n2) and J,.(12) are the
corresponding parts of the Jacobian related to position and
orientation respectively. Let also x = [} ,w '] denotes
the velocity of UVMS’s End-Effector, where 7);, w are the
linear and angular velocity of the UVMS’s End-Effector,
respectively. Without loss of generality, for the augmented
UVMS system we have Antonelli (2013):

x =J%(q)¢ (2)
where ¢ = [v T, q;i}T € R" is the velocity vector including
the body velocities of the vehicle as well as the joint
velocities of the manipulator and J9(q) is the geometric
Jacobian Matrix (Antonelli, 2013). In this way, the task
space velocity vector of UVMS’s End-Effector can be given
by:

& = J(a)C (3)
where: J(q) is analytical Jacobian matrix given by:

-1
J(q)=J'(q) Jq)

with J’(q) to be a Jacobian matrix that maps the Euler

angle rates to angular velocities w and is given by:

! I X 0 X
rio= [0 )
1 0 — sin(0)
J"(q) = [0 cos(¢) cos(f) sin(qb)} .
0 —sin(¢) cos(d) cos(¢)

2.2 Dynamics

Without loss of generality, the dynamics of the UVMS can
be given as Antonelli (2013):

M(q)¢+C(g,¢)¢+D(q. )¢+ g(q)+J T A+ 6(t) 7
where d(t) are bounded disturbances including system’s
uncertainties as well as the external disturbances affecting
on the system from the environment (sea waves and
currents), A = [f.,v]]T the generalized vector including
force f. and torque v, that the UVMS exerts on the
environment at its end-effector frame. Moreover, 7 € R™
denotes the control input at the joint level, M(q) is the
positive definite inertial matrix, C(q, ¢) represents coriolis
and centrifugal terms, D(q, ) models dissipative effects,
g(q) encapsulates the gravity and buoyancy effects.

2.8 Dynamical Systems

Consider the initial value problem:

£=H(t,€),600) =& € Qg, (5)
with H : R>g x Q¢ — R"™, where Q¢ C R" is a non-empty
open set.

Definition 1. (Sontag, 1998) A solution £(t) of the initial
value problem (5) is maximal if it has no proper right
extension that is also a solution of (5).



Theorem 1. (Sontag, 1998) Consider the initial value
problem (5). Assume that H(t,&) is: a) locally Lipschitz
in & for almost all ¢ € Rx(, b) piecewise continuous in ¢
for each fixed £ € Q¢ and c) locally integrable in ¢ for each
fixed £ € Q. Then, there exists a maximal solution &(¢)
of (5) on the time interval [0, Tax ), With Timax € Rsg such
that £(t) € Q¢, Vt € [0, Tmax)-

Proposition 1. (Sontag, 1998) Assume that the hypothe-
ses of Theorem 1 hold. For a maximal solution £(t) on the
time interval [0, Tiax) With Timax < 0o and for any compact
set Q’5 C ¢, there exists a time instant ¢’ € [0, Tmax) such

that £() ¢ Q.
3. PROBLEM STATEMENT

We define here the problem that we aim to solve in this
paper:

Problem 1. Given a UVMS system as well as a desired
force profile that should be applied by the UVMS on an
entirely unknown model compliant environment, assum-
ing the uncertainties on the UVMS dynamic parameters,
design a feedback control law such that the following are
guaranteed:

(1) a predefined behavior of the system in terms of
desired overshoot and prescribed transient and steady
state performance.

(2) robustness with respect to the external disturbances
and noise on measurement devises.

4. CONTROL METHODOLOGY

In this work we assume that the UVMS is equipped with
a force/torque sensor at its end-effector frame. However,
we assume that its accuracy is not perfect and the system
suffers from noise in the force/torque measurements. In
order to combine the features of stiffness and force control,
a parallel force/position regulator is designed. This can
be achieved by closing a force feedback loop around
a position/velocity feedback loop, since the output of
the force controller becomes the reference input to the
dynamic controller of the UVMS.

4.1 Control Design

Let fd(t) be the desired force profile which should be
exerted on the environment by the UVMS. Hence, let us
define the force error:

es(t) = fe(t) + Afe(t) — fE(1) €R?, (6)
where Af.(t) denotes the bounded noise on the force’s
measurement. Also we define the end-effector orientation
€rTor as:

eolt) = “a.(t) — “a(t) € Y, (7)
where °x%(t) € R? is predefined desired orientation of the
end-effector (e.g. °xd(t) = [0, 0, 0]7). Now we can set
the vector of desired end-effector configuration as x2(t) =
[f24)T, (°xd(¢))T]". In addition the overall error vector
is given as:

ex(t) = [eay (t), - ens ()] = [ef () ()]T (8)
A suitable methodology for the control design in hand
is that of prescribed performance control, recently pro-
posed in (Bechlioulis and Rovithakis, 2011, 2014), which

is adapted here in order to achieve predefined transient
and steady state response bounds for the errors. Pre-
scribed performance characterizes the behavior where the
aforementioned errors evolve strictly within a predefined
region that is bounded by absolutely decaying functions
of time, called performance functions. The mathematical
expressions of prescribed performance are given by the
inequalities: —p,; (t) < eq, (t) < pg;(t), j=1,...,6, where
Pz; * [thOO) - IR>0 with px;(t) = (pgj - pgj)eilzjt +
Pz, and Iy, > O7pg]_ > pg, > 0, are designer specified,
smooth, bounded and decreasing positive functions of time
with positive parameters [, Pz, incorporating the desired
transient and steady state performance respectively. In
particular, the decreasing rate of p,,, which is affected by
the constant [, introduces a lower bound on the speed of
convergence of e; ;. Furthermore, the constants pz; can be
set arbitrarily small, achieving thus practical convergence
of the errors to zeros.

Now, we propose a state feedback control protocol 7(t),
that does not incorporate any information regarding the
UVMS dynamic model (4) and model of complaint envi-
ronment, and achieves tracking of the smooth and bounded
desired force trajectory fi(t) € R? as well as °z?(t) with
an priori specified convergence rate and steady state error.
Thus, given the errors (8):

Step I-a: Select the corresponding functions p., () =
(09, — p3)e "3t + p32 with . > lea; (to)],¥j € {1...,6}
pg], > p30 > 0,1y, > 0,Vj € {1,...6}, in order to incor-

porate the desired transient and steady state performance
specification and define the normalized errors:

e (t) .
§e;(t) = ——=, j=1{1,...,6 9
(=2 = 16) ()
Step I-b: Define the transformed errors e, as:
1 + SI]‘ .
5wj(§wj):1n(1_£ ) j={1,....6} (10

Now, the reference velocity as &7 = [&
designed as:

&L (t) = —koyea; (€,), by >0, j=1{1,...,6}  (11)

The task-space desired motion profile &, can be extended
to the joint level using the kinematic equation (3):

¢"(t) = J(q) (12)
where J(q)T denotes the Moore-Penrose pseudo-inverse of
Jacobian J(q).

Remark 1. Tt is worth mentioning that the & can also be
extended to the joint level via:
¢'(t) = J(@)Fap + (Tnxn—J (@) I ())°

where J(q)# denotes the generalized pseudo-inverse (Si-
ciliano and Slotine, 1991) of Jacobian J(q) and " denotes
secondary tasks which can be regulated independently
to achieve secondary goals (e.g., maintaining manipula-
tor’s joint limits, increasing of manipulability) and does

not contribute to the end effector’s velocity (Simetti and
Casalino, 2016).

s Teg

Step II-a: Define the velocity error vector at the end-
effector frame as:

ec(t) = lec, (1), ec, ()] = ¢() = ¢"(1) (13)



and select the corresponding functions p¢,(t) = (ng -

—lc, . .
pZ)e Gt o4 pg; with pgj le; (to)], V5 € {1...,n},

pgj > pZ > 0,1, > 0,¥5 € {1,...n}, and define the
normalized velocity errors & as:
&(t) = &, &) T = P (tec(t) (14)

where P¢(t) = diag{pc, },j € {1,...,n}.
Step II-b: Define the transformed errors ec(&:) =

e, (c,)s -+ 6¢, (&,)] T and the signal Re(€¢) = diag{r¢,},
je{l,...,n} as:
_ 1+& L+&.\1T
ec(é) = |n (1—7&1)’ -1 (@)] (15)
2
RC(EC) :dia’g{er(é-Cj)} :diag{lfgj}’j:{l’ S.,n}
(16)

and finally design the state feedback control law 7;, j €

{1,...,n} as:
Tj(ng) fCﬁ t) = _ij W’ Jj= {17 .,Tl} (17)

where k¢, to be a positive gain. The control law (17) can
be written in vector form as:

T(ew(t)a eC(t)7 t) = [Tl (510175(17 )7' Tn(f%n&w t)]T

— K. P (t)Re(&c)ec(&e) (18)

with K to be the diagonal matrix containing k¢;. Now we
are ready to state the main theorem of the paper:

Theorem 2. Given the error defined in (8) and the re-
quired transient and steady state performance specifica-
tions, select the exponentially decaying performance func-
tion pu, (1), p¢, (t) such that the desired performance spec-
ifications are met. Then the state feedback control law of
(18) guarantees tracking of the trajectory fd(t) € R® as

well as °x(t):
tlggo Fe(t) =

with the desired transient and steady state performance
specifications.

Fi(t) and tlim °x,(t) = xd(t)

Proof. For the proof we follow parts of the approach
n (Bechlioulis and Rovithakis, 2014). We start by dif-
ferentiating (9) and (14) with respect to the time and
substituting the system dynamics (4) as well as (11) and
(17) and employing (8) and (13), obtaining:

Eay (Cayot) = P, (€ 1)
= Py, (1)(€x; (1) = pa,(t)Esy)
= pI] M) (=kayn, (Eay) + Ty Pobe — 22 (1))
— 05 () (pe()sr,), VG € {1, 6} (19)
Ec(&ct) = he(€c,t)
“HE-EN) - P

= -KP;'M " 'P;'Reec—
— P MO (Pec +¢) + D (P +¢)

. 0
gT ™
+g+J >\+5(t)> +P<€<+*8tC}

where J(;.) denotes all elements of jacobian J at its
j row. Now let us to define the vectors of normal-

(20)

ized state error and the generalized normalized er-
ror as & = [£4y,...,&]T, and € = [;r,é'CT]T, re-
spectively. Moreover, let us define &, = hy(€z,t) =
[Py (€xyst)s oo hug (€2g,1)] 7. The equations of (19) and
(20) now can be written in compact form as:

&€= h(,t) = [ (x. 1), bl (¢, )] T (21)
Let us define the open set Q¢ = Q¢, x Q¢ with Q¢ =
(—=1,1)% and Q¢ = (—1,1)". In what follows, we proceed
in two phases. First we ensure the existence of a unique
maximal solution &(t) of (21) over the set Q¢ for a time
interval [0, tymax| (i-e., £(t) € Q¢,Vt € [0, fmax]). Then, we
prove that the proposed controller (18) guarantees, for all
t € [0,tmax] the boundedness of all closed loop signal of
(21) as well as that £(¢) remains strictly within the set Q,
which leads that ¢,,,x = 0o completes the proof.

Phase A: The set (¢ is nonempty and open, thus by
selecting pgj > leq, (0)|, Vj € {1,...6} and pgj > ley; (0)],
Vj € {1,...n} we guarantee that &,(0) € Q¢, and &:(0) €
¢, . Additionally, h is continuous on ¢ and locally Lipschitz
on & over )¢. Therefore, the hypotheses of Theoreml hold
and the existence of a maximal solution &(t) of (21) on a
time interval [0, tmax] such that &(t) € Q¢, Vt € [0, tmax] is
ensured.

Phase B: In the Phase A we have proven that £(t) €
Q¢, Vt € [0, tmax]), thus it can be concluded that:

€ () = ei € (=1,1), Vj{l,...,6)  (22a)
€)= e (-1,1), Yi{L,...,n}  (22b)
pe;

for all ¢ € [0, tyax], from which we obtain that e, (t) and
e¢, (t) are absolutely bounded by p., and p¢,, respectively.
Therefore, the error vectors e, (&,),Vj € {1,...,6} and
e¢;(&¢;),Vg € {1,...,n} defined in (10) and (15), respec-
tively, are well defined for all ¢ € [0, t;ax]. Hence, consider
the positive definite and radially unbounded functions
Ve, (€e;) = eij, Vj{l,...,6}. Differentiating of V,, w.r.t
time and substituting (19), results in:

Ex; pm]

ij = (1 _

)(k% €y (Eay ) FEL, A+ P (80, — J(j,:)Pcﬁc)
(23)

It is well known that the Jacobian J is depended only
on bounded vehicle’s orientation and angular position of
manipulator’s joint. Moreover, since, :'Effj, pz; and p,, are
bounded by construction and &;;,§,, are also bounded in

(=1,1), owing to (22), ij becomes:

4pt

%2 kil/'j|8m]‘|2)

Vt € [0, tmax]|, where B, is an unknown positive constant

independent of ty.x satisfying B, > |ng + pa,(t) s, —

Jj.yPe&¢|. Therefore, we conclude that Vgg7
when &;, > ,f’_ = and subsequently that

Jx

Va:j S (Bz|5m]‘ - (24)

is negative

lex, (Ea, (1))] < &, = max{es, (£, (0)), f} (25)

Vt € [0, tmax), V§{1, ..., 6}. Furthermore, from (10), taking
the inverse logarithm, we obtain:
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Fig. 1. The closed loop block diagram of the proposed cont
e %= —1 — 7 — 1
1< —= <& () <& = — <1
6761j+1 §g;j —51() §J ec‘:‘mj +1

(26)
YVt € [0,tmax), J € {1,...,6}. Due to (26), the reference
velocity vector &7 as defined in (11), remains bounded for
all t € [0, tyax]. Moreover, invoking &, = &% (t) + P, (t)&,
from (13), (14) and (22), we also conclude the boundedness
of &, for all t € [0, tmax]. Finally, differentiating &7 () w.r.t
time and employing (19), (22) and (26), we conclude the
boundedness of %a’:g(t), Vt € [0, tmax). Applying the afore-
mentioned line of proof, we consider the positive definite
and radially unbounded function V¢(e¢) 1llec|*>. By
differentiating V¢ with respect to time, substituting (20)
and by employing continuity of M, C, D, g, A, §, &,
&P, %CT, Vt € [0, tmax), We obtain:

Ve < |1P Re(€0ecl|( B — Kohurll P Re(o)=cll)

YVt € [0, tmax), where Aps is the minimum singular value
of the positive definite matrix M ~! and B, is a positive
constant independent of ., satisfying

Be 2||M ™ (C - (P&c +¢"(1) + D - (Peke + ¢ (1))

. 0
+g+JITA+8() + P&+ &CT)H

Thus, V is negative when ‘|P{1RC(£C)€CH > Be(KeAw) ™,
which by employing the definitions of P; and R, becomes
lecll > Be(KeAn) ™ max{pl,...,pl }. Therefore, we
conclude that:

Hq@@sq:mﬂg@w»&mgm*nmmgmmaﬁ

Vt € [0,tmax]. Furthermore, from (16), invoking that
le¢;| < llec¢l], we obtain:
e %G —1

e 41

& q
=gsmwg%:e

-1< _
e +1

<1
(27)

YVt € [0,tmax], 7 € {1,...,n} which also leads to the
boundedness of the control law (18). Now, we will show

T

noise
rol scheme.

that the t.x can be extended to co. Obviously, notice by
(26) and (27) that £(t) € Q = QX L, VE € [0, tmas],
where:

QL =16, Bl x oo X[E, Ll
Q/Eg = [égl’gﬁ] X ~~~a><[§<naf_<n],

are nonempty and compact subsets of (¢, and €2, respec-
tively. Hence, assuming that ¢y,,x < co and since ¢ C Q%,
Proposition 1, dictates the existence of a time instant
t €Vt € [0,tmax] such that &(t') ¢ Q/E, which is a clear
contradiction. Therefore, ¢, = co. Thus, all closed loop
signals remain bounded and moreover £(t) € ng,Vt > 0.
Finally, from (9) and (26) we conclude that:

oy _
) S o, S < ey (28)

—&,

e
e i 41
for j € {1,...,6} and for all ¢ > 0 and consequently,
completes the proof.

J

<e

Pz < P,

Remark 2. From the aforementioned proof, it is worth
noticing that the proposed control scheme is model free
with respect to the matrices M, C, D, g as well as the
external disturbances § that affect only the size of &,
and of &, but leave unaltered the achieved convergence
properties as (28) dictates. In fact, the actual transient and
steady state performance is determined by the selection
of the performance function p.;,c € {z,(}. Finally the
closed loop block diagram of the proposed control scheme
is indicated in Fig.1.

5. SIMULATION RESULTS

Simulation studies were conducted employing a hydrody-
namic simulator built in MATLAB. The dynamic equation
of UVMS used in this simulator is derived following Schjl-
berg and Fossen (1994). The UVMS model considered in
the simulations is the SeaBotix LBV150 equipped with a
small 4 DoF manipulator. We consider a scenario involving
3D motion in workspace, where the end-effector of the



UVMS is in interaction on a compliant environment with
stiffens matrix K; = diag{2} which is unknown for the
controller. The workspace at the initial time, including

1

Fig. 2. Workspace including the UVMS and the compliant
environment. The UVMS is run under the influence
of external disturbances.

UVMS and the compliant environment are depicted in
Fig.2. More specifically, we adopt: f.(0) = [0,0,0]" and
°z, = [0.2,0.2,-0.2]T. It means that at the initial time
of the simulation study we assume that the uvms has
attached the compliant environment with a rotation at
its end-effector frame. The control gains for the two set
of the simulation studies were selected as follows: k,, =
-02j € {1,...,6}, k,;, = —5j € {1,...,n}. Moreover,
the dynamic parameters of UVMSs as well as the stiffens
matrix Ky were considered unknown for the controller.
The parameters of the performance functions in sequel
stimulation studies were chosen as follows:pgj =1, 7€

{1,2,3}, pgj =0.9, j € {4,5,6}, pgj =1, je{l,...,n},
Pz, = 025 € {1,...,6}, Py, = 025 € {1,...,6},
po;=047€ {7,....n}, 1., =37 €{1,2,3},1,, =225 ¢
{1,...,n}. Finally, the whole system was running under
the influence of external disturbances (e.g., sea current)
acting along z, y and z axes (on the vehicle body) given
by 0.15sin(%°¢), in order to test the robustness of the
proposed scheme. Moreover, bounded noise on measure-
ment devices were considered during the simulation study.
In the the presented simulation scenario, a desired force
trajectory should be exerted to the environment while
predefined orientation °xz? = [0.0,0.0,0.0]T must be kept.
One should bear in mind that this is a challenging task
owing to dynamic nature of the underwater environment.
The UVMS’s model uncertainties, noise of measurement
devices as well as external disturbances in this case can
easily cause unpredicted instabilities to the system. The
desired force trajectory which should be exerted by UVMS
is defined as f¢ = 0.4sin(3t) + 0.4. The results are
depicted in Figs 3-5. Fig3 show the evolution of the force
trajectory. Obviously, the actual force exerted by the
UVMS (indicated by red color) converges to the desired
one (indicated by green color) without overshooting and
follows the desired force profile. The evolution of the errors
at the first and second level of the proposed controller
are indicated in Fig.4 and Fig.5, respectively. It can be
concluded that even with the influence of external distur-
bances as well as noise in measurements, the errors in all

directions converge close to zero and remain bounded by
the performance functions.

time(s)

Fig. 3. Trajectory scenario: The evolution of the force
trajectory. The desired force trajectory and the actual
force exerted by the UVMS are indicated by green and
red color respectively.
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Fig. 4. Trajectory scenario: The evolution of the errors at
the first level of the proposed control scheme. The
errors and performance bounds are indicated by blue
and red color respectively.

6. CONCLUSIONS AND FUTURE WORK

This work presents a robust force/position control scheme
for a UVMS in interaction with a compliant environment,
which could have direct applications in the underwater
robotics (e.g. sampling of the sea organisms, underwater
welding, pushing a button). Our proposed control scheme
does not required any priori knowledge of the UVMS
dynamical parameters as well as environment model. It
guarantees a predefined behavior of the system in terms
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Fig. 5. Trajectory scenario: The evolution of the errors at
the second level of the proposed control scheme. The
errors and performance bounds are indicated by blue
and red color respectively.

of desired overshot and transient and steady state perfor-
mance. Moreover, the proposed control scheme is robust
with respect to the external disturbances and measure-
ment noises. The proposed controller of this work exhibits
the following important characteristics: i) it is of low
complexity and thus it can be used effectively in most
of today UVMS. ii) The performance of the proposed
scheme (e.g. desired overshot, steady state performance of
the systems) is a priori and explicitly imposed by certain
designer-specified performance functions, and is fully de-
coupled by the control gains selection, thus simplifying the
control design. The simulations results demonstrated the
efficiency of the proposed control scheme. Finally, future
research efforts will be devoted towards addressing the
torque controller as well as conducting experiments with
a real UVMS system.
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