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Abstract

In this paper, we propose a sampling-based planning and optimal control method
of nonlinear systems under non-differentiable constraints. Motivated by devel-
oping scalable planning algorithms, we consider the optimal motion plan to be
a feedback controller that can be approximated by a weighted sum of given
bases. Given this approximate optimal control formulation, our main contribu-
tion is to introduce importance sampling, specifically, model-reference adaptive
search algorithm, to iteratively compute the optimal weight parameters, i.e.,
the weights corresponding to the optimal policy function approximation given
chosen bases. The key idea is to perform the search by iteratively estimating
a parametrized distribution which converges to a Dirac’s Delta that infinitely
peaks on the global optimal weights. Then, using this direct policy search, we
incorporated trajectory-based verification to ensure that, for a class of nonlin-
ear systems, the obtained policy is not only optimal but robust to bounded
disturbances. The correctness and efficiency of the methods are demonstrated
through numerical experiments including linear systems with a nonlinear cost
function and motion planning for a Dubins car.



0.1 Introduction

This paper presents an importance sampling based approximate optimal plan-
ning and control algorithm. Optimal motion planning in deterministic and
continuous systems is computationally NP-complete [I] except for linear time
invariant systems. For nonlinear systems, there is a vast literature on approxi-
mate solutions and algorithms. In optimal planning, the common approximation
scheme is discretization-based. By discretizing the state and input spaces, opti-
mal planning is performed by solving the shortest path problem in the discrete
transition systems obtained from abstracting the continuous dynamics, using
heuristic-based search or dynamic programming. Comparing to discretization-
based methods, sampling-based graph search, includes Probabilistic RoadMap
(PRM) [2], RRT [3], RRT* [4], are more applicable for high-dimensional sys-
tems. While RRT has no guarantee on the optimality of the path [4], RRT*
compute an optimal path asymptotically provided the cost functional is Lips-
chitz continuous. However, such Lipschitz conditions may not be satisfied for
some cost functions under specific performance consideration.

The key idea in the proposed sampling-based planning method builds on a
unification of importance sampling and approximate optimal control [5, [6]. In
approximate optimal control, the objective is to approximate both the value
function, i.e., optimal cost-to-go, and the optimal feedback policy function by
weighted sums of known basis functions. As a consequence, the search space is
changed from infinite trajectory space or policy space to a continuous space of
weight vectors, given that each weight vector corresponds to a unique feedback
controller.

Instead of solving the approximate optimal control through training actor
and critic neural networks (NNs) using trajectory data [7, 8], we propose a
sampling-based method for sampling the weight vectors for a policy function
approximation and searching for the optimal one. This method employs Model
Reference Adaptive Search (MRAS) [9], a probabilistic complete global opti-
mization algorithm, for searching the optimal weight vector that parametrizes
the approximate optimal feedback policy. The fundamental idea is to treat the
weight vector as a random variable over a parameterized distribution and the
optimal weight vector corresponds to a Dirac’s Delta function which is the tar-
get distribution. The MRAS algorithm iteratively estimates the parameter that
possesses the minimum Kullback-Leibler divergence with respect to an inter-
mediate reference model, which assigns a higher probability mass on a set of
weights of controllers with improved performance over the previous iteration.
At the meantime, a set of sampled weight vectors are generated using the pa-
rameterized distribution and the performance of their corresponding policies are
evaluated via simulation-based policy evaluation. Under mild conditions, the
parameterized distribution converges, with probability one, to the target dis-
tribution that concentrates on the optimal weight vector with respect to given
basis functions.

MRAS resembles another adaptive search algorithm called cross-entropy (CE)
method and provides faster and stronger convergence guarantee for being less



sensitive to input parameters [9, [I0]. Previously, CE algorithm has been intro-
duced for motion planning [11] [12] based on sampling in the trajectory space.
The center idea is to construct a probability distribution over the set of feasi-
ble paths and to perform the search for an optimal trajectory using CE. The
parameters to be estimated is either a sequence of motion primitives or a set of
via-points for interpolation-based trajectory planning. Differ to these methods,
ours is the first to integrate importance sampling to estimate parameterization
of the optimal policy function approximation for continuous nonlinear systems.
Since the algorithm performs direct policy search, we are able to enforce robust-
ness and stability conditions to ensure the computed policy is both robust and
approximate optimal, provided these conditions can be evaluated efficiently.

To conclude, the contributions of this paper are the following: First, we in-
troduce a planning algorithm by a novel integration of model reference adaptive
search and approximate optimal control. Second, based on contraction the-
ory, we introduce a modification to the planning method to directly generate
stabilizing and robust feedback controllers in the presence of bounded distur-
bances. Last but not the least, through illustrative examples, we demonstrate
the effectiveness and efficiency of the proposed methods and share our view on
interesting future research along this direction.

0.2 Problem formulation

Notation: The inner product between two vectors w,v € R"™ is denoted wTv
or (w,v). Given a positive semi-definite matrix P, the P-norm of a vector is
denoted [|z[|p = V2T Pz. We denote ||z|| for P being the identity matrix. Iyz)
is the indicator function, i.e., I = 1 if event E holds, otherwise 0. For a real
a € R, [a] is the smallest integer that is greater than «.

0.2.1 System model

We consider continuous-time nonlinear systems of the form

S:o2(t) = flt),ult)),

x(t) € X,u(t) € U. S

where x € X is the state, u € U is the control input, ¢y € X is the initial state,
and f(z,u) is a vector field. We assume that X and U are compact. A feedback
controller u : X — U takes the current state and outputs a control input.

The objective is to find a feedback controller v* that minimizes a finite-
horizon cost function for a nonlinear system

man (w0, u / z(t), u(t))dt + g(z(T),u(T))

subject to: &(t) = f(x(t), u(t)),
z(t) € X, u(t) € U, z(0) = xo.



where T is the stopping time, £ : X x U — RT defines the running cost when
the state trajectory traverses through x and the control input « is applied and
g: X — RT defines the terminal cost. As an example, a running cost function
can be a quadratic cost £(z,u) = ||z||g + ||ul@ for some positive semi-definite
matrices ) and R, and a terminal cost can be g(z,u) = ||z — xf||r where z is
a goal state.

We denote the set of feedback policies to be II. For infinite horizon optimal
control, the optimal policy is independent of time and a feedback controller
suffices to be a minimizing argument of ([2) (see Ref. [I3]). For finite-horizon
optimal control, the optimal policy is time-dependent. However, for simplicity,
in this paper, we only consider time-invariant feedback policies and assume the
time horizon T is of sufficient length to ignore the time constraints.

0.2.2 Preliminary: Model reference adaptive search

MRAS algorithm, introduced in [9], aims to solve the following problem:

2" € argmax H(z), zeR"
zZ€EZ
where Z is the solution space and H : R®™ — R is a deterministic function
that is bounded from below. It is assumed that the optimization problem has a
unique solution, i.e., z* € Z and for all z # z*, H(z) < H(z*).
The following regularity conditions need to be met for the applicability of
MRAS.

Assumption 1. For any given constant & < H(z*), the set {z | H(z) > &} NZ
has a strictly positive Lebesque or discrete measure.

This condition ensures that any neighborhood of the optimal solution z* will
have a positive probability to be sampled.

Assumption 2. For any constant § > 0, sup, 4, H(2) < H(2*), where As :=
{z| ||z = 2| > d}NX, and we define the supremum over the empty set to be
—00.

e Selecte a sequence of reference distributions {gx(-)} with desired conver-
gence properties. Specifically, the sequence {gr(-)} will converge to a
distribution that concentrates only on the optimal solution.

e Selecte a parametrized family of distribution f(-,8) over X with parameter
6 €0o.

e Optimize the parameters {6} iteratively by minimizing the following KL
distance between f(-,60;) and gi(-).

d(gk, f(-,0)) := Zln ﬁ(];(ze)) gr(2)v(dz).



where v(-) is the Lebesgue measure defined over Z. The sample distri-
butions {f(-,0r)} can be viewed as compact approximations of the refer-
ence distributions and will converge to an approximate optimal solution
as {gr(-)} converges provided certain properties of {gx(:)} is retained in

Note that the reference distribution {gx(-)} is unknown beforehand as the op-
timal solution is unknown. Thus, the MRAS algorithm employs the estimation
of distribution algorithms [I4] to estimate a reference distribution that guides
the search. To make the paper self-contained, we will cover details of MRAS in
the development of the planning algorithm.

0.3 Approximate optimal motion planning us-
ing MRAS

In this section, we present an algorithm that uses MRAS in a distinguished way
for approximate optimal feedback motion planning.

0.3.1 Policy function approximation

The policy function approximation u : X — U is a weighted sum of basis
functions,

N
u(r) = Z w;pi(z)

where ¢; : X — R,i = 1,..., N are basis functions, and the coefficients w;
are the weight parameters, i = 1,..., N. An example of basis function can be
polynomial basis ¢ = [1,2, 22,23, ..., 2] for one-dimensional system. A com-
monly used class of basis functions is Radial basis function (RBF). It can be

constructed by determining a set of centers ¢;,...,cy € X, and then construct-
s

557 ), for each center ¢;, where o is a

ing RBF basis functions ¢; = exp(
pre-defined parameter.

In vector form, a policy function approximation is represented by @ = (w, ¢)
where vector ¢ = [¢1,...¢n]T and w = [wy,...,wy]T. We let the domain of
weight vector be W and denote it by I1y = {(w, ¢) | w € W, (w, ¢) € II} the set
of all policies that can be generated by linear combinations of pre-defined basis
functions. In the following context, unless specifically mentioned, the vector of
basis functions is ¢.

Clearly, for any weight vector w, J(zg, (w, ®)) > min,er J(xo,u). Thus, we
aim to solve min,, J(zg, (w, ¢)) so as to minimize the error in the optimal cost
introduced by policy function approximation.

Definition 1 (Approximate optimal feedback policy). Given a basis vector ¢,
a weight vector w* with respect to ¢ is optimal if and only if (w*,¢) € Iy and



for all w € W such that (w, ¢) € Il,,

J(.Io, <’LU*5 ¢>) < '](xOv <’LU, ¢>)
The approzimate optimal feedback policy is u* = (w*, ¢).

By requiring J(zo, (w*, ¢)) < J(xq, (w, ¢)), it can be shown that the optimal
weight vector w* minimizes the difference between the optimal cost achievable
with policies in Il and the cost under the global optimal policy.

For clarity in notation, we denote J(zo, (w, @)) by J(xg;w) as ¢ is a fixed
basis vector throughout the development of the proposed method.

Clearly, if the actual optimal policy u* can be represented by a linear com-
bination of selected basis functions, then we obtain the optimal policy by com-
puting the optimal weight vector, i.e., u* = (w*, ¢).

Remark: Here, we assume a feedback policy can be represented by (w, ¢) for
some weight vector w € W. In cases when the basis functions are continuous,
a feedback policy must be a continuous function of the state. However, this
requirement is hard to satisfy for many physical systems due to, for example,
input saturation. In cases when a feasible controller is discontinuous, we can
still use a continuous function to approximate, and then project the continuous
function to the set II of applicable controllers.

Using function approximation, we aim to solve the optimal feedback planning
problem in ([2]) approximately by finding the optimal weight vector with respect
to a pre-defined basis vector. The main algorithm is presented next.

0.3.2 Integrating MRAS in approximate optimal planning

In this section, we present an adaptive search-based algorithm to compute the
approximate optimal feedback policy. The algorithm is “near” anytime, mean-
ing that it returns a feasible solution after a small number of samples. If more
time is permitted, it will quickly converge to the globally optimal solution that
corresponds to the approximate optimal feedback policy. The algorithm is prob-
abilistic complete under regularity conditions of MRAS.

We start by viewing the weight vector as a random variable w governed by a
multivariate Gaussian distribution with a compact support W. The distribution
is parameterized by parameter § = (u,Y), where u is a N-dimensional mean
vector and X is the IV by N covariance matrix. Recall N is the number of basis
functions.

The optimal weight vector w* can be represented as a target distribution
Pgoal as a Dirac’s Delta, i.e., pgoal(w*) = 0o and pgeai(w) = 0 for w # w*.
Dirac’s Delta is a special case of multivariate Gaussian distribution with zero
in the limit case of vanishing covariance. Thus, it is ensured that the target
distribution can be arbitrarily closely approximated by multivariate Gaussian
distribution by a realization of parameter 6.



Recall that the probability density of a multivariate Gaussian distribution
is defined by

xp(—2 (& — §)TE" @ — 1)),

(w36) = — e
ERRVCTL R

0=(u,2%),YweW,

where N is the dimension of weight vector w € W and |X| is the determinant
of .

Now, we are ready to represent the main algorithm, called Sampling-based
Approximate-Optimal Planning (SAOP), which includes the following steps.

1) Initialization: The initial distribution is selected to be p(-,6y), for 6y =
(40, X0) € © which can generate a set of sample to achieve a good coverage
of the sample space W. For example, pip = 0 € RY and Xy = I € RY which
is an identity matrix. The following parameters are used in this algorithm:
p € (0,1] for specifying the quantile, the improvement parameter ¢ € R*,
a sample increment percentage «, an initial sample size Ny, a smoothing
coefficient X € (0,1]. Let k = 1.

2) Sampling-based policy evaluation: At each iteration k, generate a set of
Ny, samples Wi, C W from the current distribution p(+, 0x). For each w € Wy,
using simulation we evaluate the cost J(xo;w) from the initial state z¢ and
the feedback policy u(z) = (w, ¢(x)) with system model in ([{l). The cost
J(xp; w) is determined because the system is deterministic and has a unique
solution.

3) Policy improvement with Elite samples: Next, the set {J(zo;w) | w €
Wi} is ordered from largest (worst) to smallest (best) among given samples:

Ti0) = - = T ()

We denote k to be the estimated (1 — p)-quantile of cost J(-;w), i.e., k =
ACERAE
The following cases are distinguished.

e If k£ =1, we introduce a threshold v = x.
o If k # 1, the following cases are further distinguished:

— k < v — g, ie., the estimated (1 — p)-quantile of cost has been
reduced by the amount of € from the last iteration, then let v = .
Let Niy1 = Ny and continue to step 4).

— Otherwise k > v — ¢, we find the largest o/, if it exists, such that
the estimated (1 — p’)-quantile of cost k" = Ji r(1—,)n,] satisfies
k' < v —e. Then let v = " and also let p = p’. Continue to step
4). However, if no such p’ exists, then there is no update in the
threshold y but the sample size is increased to Ng+1 = [(14a)Ng].
Let Ox+1 =0, k =k + 1, and continue to step 2).



e Parameter(Policy) update: We update parameters 6,1 for itera-
tion k 4 1. First, we define a set £ = {w | J(zo;w) < y,w € Wy, j =
1,...,k} of elite samples. Note that the parameter update in 6 is to
ensure a higher probability for elite samples. To achieve that, for each
elite sample w € E, we associated a weight such that a higher weight
is associated with a weight vector with a lower cost and a lower proba-
bility in the current distribution. The next parameter 05,1 is selected
to maximize the weighted sum of probabilities of elite samples. To this
end, we update the parameter as follows.

Or+1

S(J(zg,w))*

2o, w))” | ,
20y ()

= E
where Eg(v) is the expected value of a random variable v given distri-
bution p(-,0), S : R — R™ is a strictly decreasing and positive function
[. S(J(zo;w))* /p(w, B;) is the weight for parameter w.

Assumption 3. The optimal parameter 0* is the interior point of © for all k.

Lemma 1 (based on Theorem 1 [9]). Assuming 2, and[3 and the compactness
of W, with probability one,

lim pp =w*, and lim 3 = Onxn.
k— o0 k—o0

where w* s the optimal weight vector and Onxn @5 an N-by-N zero matriz.

Note that since ¥, converges in the limit a zero matrix, the stopping criterion
is justified.

Building on the convergence result of MRAS, the proposed sampling-based
planner ensures a convergence to a Dirac Delta function concentrating on the op-
timum. In practice, the parameter update is performed using the expectation—
maximization (EM) algorithm.

EM-based parameter update/policy improvement Since our choice
of probability distribution is the multivariate Gaussian, the parameter 07, , =
(u, X)) is computed as follows

_ B, [S(J (z0, w)* /p(w, 04) Twe w
Ee, [S(J(z0, w))* /p(w, k)| lwer
 Dwew, [S(J (o, w))* /p(w, O) Twe pw
T Y wew [SU (o, w)F /p(w, 0) luer

1 Possible choices can be S(z) = exp(—z) or S(x) = % if = is strictly positive.

(3)




and

_ Eg [S(J (@0, w))* /p(w, k) wep(w — p) (w — )T
Eg, [S(J (z0, w))* /p(w, Ok) Twer
 Ywew, [SU (o, w))* /p(w, O) Lue p(w — p)(w — 10)T
- > wew, [S(J (o, w)k /p(w, 0 lweE ’

where we approximate Eg, (h(w)) with its estimate Nik > wew, h(w) for w ~

p(-,0) and the fraction = was canceled as the term is shared by the numerator

and the denominator. o

Smoothing: Due to limited sample size, a greedy maximization for pa-
rameter update can be premature if too few samples are used. To ensure the
convergence to the global optimal solution, a smoothing update is needed. To
this end, we select the parameter for the next iteration to be

)y

(4)

Or 1 < Mk + (1= N, 1.

where A € [0,1) is the smoothing parameter.

Let K = k+ 1. We check if the iteration can be terminated based on a given
stopping criterion. If the stopping criterion is met, then we output the latest
0. Otherwise, we continue to update of § by moving to step 2).

Stopping criterion Given the probability distribution will converge to a
degenerated one that concentrates on the optimal weight vector. We stop the it-
eration if the covariance matrix X, becomes near-singular given the convergence
condition in Lemma [Tl

To conclude, the proposed algorithm using MRAS is probabilistic complete
and converges to the global optimal solution. If the assumptions are not met,
the algorithm converges to a local optimum.

0.3.3 Robust control using trajectory verification in sam-
pling

Being able to directly search within continuous control policy space, one major
advantage is that one can enforce stability condition such that the search is
restricted to stable and robust policy space. In this subsection, we consider
contraction theory to compute conditions that need to be satisfied by weight
vectors to ensure stability and robustness under bounded disturbances.

Definition 2. [T3] Given the system equation for the closed-loop system & =
fS:z:, t), a region of the state space is called a contraction region if the Jacobian
55 s uniformly negative definite in that region, that is,

] T
3[3>0,V$,Vt>0,1 gM—i—M%—M—af =< —BM.
2 \ Oz ox

where M (t) is a positive definite matriz for all t > 0.



Theorem 1. [I5] Given the system model & = f(x,t), any trajectory, which
starts in a ball of constant radius with respect to the matrix M, centered about a
gien trajectory and contained at all times in a contraction region with respect to
the matriz M, remains in that ball and converges exponentially to this trajectory.
Furthermore, global exponential convergence to the given trajectory is guaranteed
if the whole state space is a contraction region.

Theorem [l provides a necessary and sufficient condition for exponential con-
vergence of an autonomous system. Under bounded disturbances, the key idea
is to incorporate a contraction analysis in the planning algorithm such that it
searches for a weight vector w that is not only optimal in the nominal system
but also ensures that the closed-loop actual system under the controller u = wT¢
has contraction dynamics within a tube around the nominal trajectory. Using a
similar proof in [I6], we can show that for systems with contracting dynamics,
the actual trajectory under bounded disturbances will be ultimately uniformly
bounded along the nominal trajectory.

Lemma 2. Consider a closed-loop system & = f(x) + w(t) where w(t) is a
disturbance with max;||w(t)|| < pmax, let a state trajectory x(t) be in the con-
traction region Xy at all time t > to, then for any time t > tg, the deviation
between x(t) and the nominal trajectory T(t), whose dynamic model is given by
T = f(z), satisfies

() — 2(0) 3, < %”%u )

In other words, the error is uniformly ultimately bounded with the ultimate bound
2éprnax
e

Proof. Let’s pick the Lyapunov function
V=-2)"M(-z),
whose time derivative is

V=(x-2)"M(f(x) +w— f(z))
+ (f@)+w—f(@)" M(z—z)
=@—-2)"M(f(z) - f(@))+2(z — )" Mw

(M is symmetric)

ofT 0
z(:v—:i)T(a—i | M+M8_£ #)(z —T)
+2(z — 2)T Mw,

where the following property is used: f(z) — f(z) = 55 |z (¢ — ¥) for some
Zez,x]if T xora € [z,T] otherwise.



Since the trajectories stays within the contraction region, the following con-
T
dition holds % |z M+ M% |z< —28M, and we have

V< —(x-2)TM(z—7)+2(x—-7) Muw.

Meanwhile, ||z(t) — Z(t)||ar < £ as the trajectory x(t) stays within the region of
contraction, and also

M(z—7) < \/(e —0)TMM(z —2) = [z~ 2][us

we conclude that as w < pyax,

V< —(2—2)T(BM)(x — 7) + 2w\/x — Z[

< —(z— f)T(ﬂM)(‘T — &) + 2pmax?,

Since V. < —BV + 2pmaxl and under the condition that z(0) = Z(0), we
obtain V(t) < 2Tfpmax(l — e7A%), and therefore

20

= —pt
ﬂ )

Hw_jH?W: pmax(l_e

O

Thus, to search for the optimal and robust policies, we modify the algorithm
by introducing the following step.
Contraction verification step: Suppose the closed-loop system is subject to
bounded disturbances, the objective is to ensure the trajectory is contracting
within the time-varying tube {x | || — Z|| < £}, for all ¢, where Z is the nominal
state trajectory. The following condition translates the contraction condition
into verifiable condition for a closed-loop system: Choose positive constants 3, a
positive definite symmetric and constant matrix M = [my;li=1,... n j=1,..n, and
verify whether, at each time step along the nominal trajectory Z(t) in the closed-
loop system under control u(t) = wT¢(x(t)), the following condition holds.

gw( z) < —Pmy;, Yi=1,...,n,Vj=1,....n (5)

z:||lz— III

where g;; is the (¢, j)th component in the matrix aj T]\4 + Maj We verify this
condition numerically at discrete time steps 1nstead of contlnous time. Further,
if the function g¢;;(z) is semi-continuous, according to the Extreme Value The-
orem, this condition can be verified by evaluating g;;(x) at all critical points

where dgji]( ) — 0 and the boundary of the set {z | ||z — Z||as < £}.

The modification to the planning algorithm is made in Step 3), if a controller
u = (w, @) of elite sample w does not meet the condition, then w is rejected from
the set of elite samples. Alternatively, one can do so implicitly by associating
w with a very large cost. However, since the condition is sufficient but not

necessary as we have the matrix M, constant 5 and ¢ pre-fixed and M is chosen



to be a constant matrix, the obtained robust controller may not necessary be
optimal among all robust controllers in II4. A topic for future work is to extend
joint planning and control policies with respect to adaptive bound 3, ¢, and a
uniformly positive definite and time-varying matrix M (x, t).

0.4 Examples

In this section, we use two examples to illustrate the correctness and efficiency
of the proposed method. The simulation experiments are implemented in MAT-
LAB on a desktop with Intel Xeon E5 CPU and 16 GB of RAM.

0.4.1 Feedback gain search for linear systems

To illustrate the correctness and sampling efficiency in the planning algorithm,
we consider an optimal control of linear time invariant (LTT) systems with non-
quadratic cost. For this class of optimal control problems, since there is no
admissible heuristic, one cannot use any planning algorithm facilitated by the
usage of a heuristic function. Moreover, the optimal controller is nonlinear given
the non-quadratic cost.
Consider a LTI system
= Ax + Bu

-1 1
0 0
state is zo = [5, 5].

The cost functional is J(zg,u) = fOT(H:EHQ + [Jul® 4+ 0.5]|z[|* + 0.8]|=||%)dt +
(T 2.

For a non-quadratic cost functional, the optimal controller is no longer linear
and cannot be computed by LQR unless the running cost can be written in
the sum-of-square form. Thus, we consider an approximate feedback controller
with basis vector ¢ = [z1, xo, 2%, 23, 23, 23]T. Suppose the magnitude of external
disturbance is bounded by ppax = 0.5.

The following parameters are used in stability verification: 5 = 2, at any
time ¢, for all z such that ||z(¢t) —Z(t)|| < ¢, the controller ensures ||z (t)—Z(t)|| <
m’%(l —ef) because 22’)% = 0.5¢ < £. With this choice for stability analysis,
the constraint

of | ofT _ { -2 3w(5)z? +2w(3)z; +w(l) +1
dr Oz Sym.  6w(6)z3 + 4w(4)w2 + 2w(2)

-2 0
0 -2
In this case, if we select w(6),w(4),w(5), w(3) nonpositive, w(l) < —1 and

w(2) < —1, then closed-loop system, which is a nonlinear polynomial system,
will become globally contracting.

where A = { ] and B = {ﬂ with £ € X = R? and v € R!. The initial

IN
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Figure 1: Convergence of the SAOP algorithm on the LTI system with a non-
quadratic cost functional. (a) The mean of multivariate Gaussian as weight
vector over iterations. (b) The state trajectory of the closed-loop system un-
der bounded disturbance ppax = 0.5 under feedback controller computed with
SAOP.

Figures [[al and [[B show the convergence result with SAOP in one simulation
in terms of cost and the mean of the multivariant Gaussian over iterations.
The following parameters are used: Initial sample size N; = 50, improvement
parameter € = 0.1, quantile percentage p = 0.1, smoothing parameter A = 0.5,
sample increment parameter a = 0.1.

The algorithm converges after 38 iterations with 3301 samples to the mean
w* = [-1.0629 —2.7517 0 — 1.7939 — 0.0987 — 2.1474]T and the covariance
matrix with a norm 3.3401e—4. Each iteration took less than 10 seconds. The
approximate optimal cost under feedback controller u = (w*, ¢) is 3863.3. Fig-
ure[Idshows the state trajectory for the closed-loop system with bounded distur-
bances. With 25 independent runs of SAOP, the mean of J(xo;w}),i =1,...,25
is 3903.3 and the standard deviation is 104.1683, 2.6% of the approximate op-
timal cost.

Note, if we only use linear feedback v = Kz, the optimal cost is 1.0943e4,
which is about three times the optimal cost that can be achieved with a nonlinear
controller.

0.4.2 Example: approximate optimal planning of a Dubins
car

Consider a Dubins car dynamics
£ =wucosf, Yy=usind 6O=v

where ¥ = (z,7,0) € R?xS! being the state (coordinates and turning angle with
respect to z-axis) and w and v are control variables including linear and angular
velocities. The system is kinematically constrained by its positive minimum
turning radius r which implies the following bound |v| < % Without loss of
generality, we assume |v| < 5 and |u| < 10 are the input constraints. The control
objective is to reach the goal xy = 20,y; = 20 while avoiding static obstacles.

The cost function J = fOT Oz, u)dt + g(x,u) where T = 100, the running cost
is (x,u) = 0.1 x (||z|| + |Jul|), and the terminal cost is g(z(T"),u(T")) = 1000 x



(a) (b)

Figure 2: Convergence of the the planning algorithm algorithm on the Dubins
car. (a) The planned trajectory under feedback policy {u, ¢) computed using the
mean of multivariate Gaussian over iterations (from the lightest to the darkest).
(b) The convergence of the covariance matrix. (c¢) The total cost evaluated at
the mean of the multivariate Gaussian over iterations.

|(z(T),y(T)) — (zf,ys)||. The initial state is ZH = 0. In simulation, we consider
the robot reaches the target if ||(x, y) —(zs,yr)|| < e fore € [0, 1]. In simulation,
e =0.5.

We select RBF as basis functions and define ¢y = [¢1,...,¢n]|T for N
center points. In the experiment, the center points are includes 1) uniform grids
in z—y coordinates with step sizes dx = 5, oy = 5; and 2) vertices of the obstacle.
We also include linear basis functions @iinear = [(x — ), (y — yy), 0]. The basis
vector is ¢ = [¢], ¢, B, ,.q,]T- We consider a bounded domain —5 < x < 30 and
—5 <y <30 and 6 € [0,27] and thus the total number of basis functions is 80.
The control input @ = [u,v]T where u = w]l¢ and v = wl¢. The total number
of weight parameters is twice the number of bases and in this case 160.

The following parameters are used: Initial sample size N; = 100, improve-
ment parameter € = 0.1, smoothing parameter A = 0.5, sample increment per-
centage o = 0.1, and p = 0.1. In Fig. Bal we show the trajectory computed
using the estimated mean of multivariate Gaussian distribution over iterations,
from the lightest (1-th iteration) to the darkest (the last iteration when stop-
ping criterion is met). The optimal trajectory is the darkest line. In Fig. Bhl we
show the cost computed using the mean of multivariate Gaussian over iterations.
SAOP converges after 22 iterations with 2200 samples and the optimal cost is
697.29. Each iteration took about 20 to 30 seconds. However, it generates a
collision-free path only after 5 iterations. Due to input saturation, the algorithm
is only ensured to converge to a local optimum. However, in 24 independent
runs, all runs converges to a local optimum closer to the global one, as shown
in the histogram in Fig.[Bl Our current work is to implement trajectory-based
contraction analysis using time-varying matrices M (z, t) and adaptive bound 3,
which are needed for nonlinear Dubins car dynamics.



Figure 3: The frequency distribution of the optimal costs with 24 independent
runs.

0.5 Conclusion

In this paper, an importance sampling-based approximate optimal planning and
control method is developed. In the control-theoretic formulation of optimal mo-
tion planning, the planning algorithm performs direct policy computation using
simulation-based adaptive search for an optimal weight vector corresponding to
an approximate optimal feedback policy. Each iteration of the algorithm runs
time linear in the number of samples and in the time horizon for simulated runs.
However, it is hard to quantify the number of iterations required for MRAS to
converge. One future work is to consider incorporate multiple-distribution im-
portance sampling to achieve faster and better convergence results. Based on
contraction analysis of the closed-loop system, we show that by modifying the
sampling-based policy evaluation step in the algorithm, the proposed planning
algorithm can be used for joint planning and robust control for a class of non-
linear systems under bounded disturbances. In future extension of this work,
we are interested in extending this algorithm for stochastic optimal control.
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