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Abstract—This paper considers the problem of simultaneous indoor mapping and localization to systems where current

2-D room shape reconstruction and self-localization without technologies are either unsuitable or too expensive toémpl
the requirement of any pre-established infrastructure. A nobile ment

device equipped with co-located microphone and loudspeake Th t lent tic b d his t
as well as internal motion sensors is used to emit acoustic € most prevalent acouslic based approach IS 1o em-

pulses and collect echoes reflected by the walls. Using onlysti  Ploy @ single fixed loudspeaker and a microphone array, or
order echoes, room shape recovery and self-localizationfisasible equivalently, a fixed loudspeaker and a mobile microphone
when auxiliary information is obtained using motion sensos. In [15]-[20]. It was shown that both the room shape and the
particular, it is established that using echoes collectedtathree geometry of the microphone array (or the trajectory of the

measurement locations and the two distances between consgee bil . h b timated bv first ord h
measurement points, unique localization and mapping can be mobile microphone) can be estimated by first order echoes

achieved provided that the three measurement points are not [21]. Furthermore, bearing only SLAM can be achieved using
collinear. Practical algorithms for room shape reconstrut¢ion and a mobile microphone array [22].

self-localization in the presence of noise and higher ordeechoes The fact that a microphone array needs to be deployed

are pr_oposed along with experimental results to demonstrat the leaves much to be desired: fully autonomous SLAM should

effectiveness of the proposed approach. ; .. . .
require minimum deployment effort. Ideally, a single mebil

Index Terms—2-D room shape recovery, self-localization, device that moves around would autonomously reconstruct
acoustic sensor, room impulse response, self-localizatio the room shape while tracking its own movement within the

recovered room geometry. Indeed, room shape recovery using
|. INTRODUCTION a single acoustic device has been addressed in the literdtur

Indoor localization has become more important in recemias established that any convex polygon can be reconstructe
years as numerous applications, e.g., public safety otitota by theentireset of both first and second order echoes collected
based services, rely on accurate indoor localization [4. Aising a fixed device with a collocated microphone and loud-
GPS signals are severely attenuated in typical indoor envir speaker[[18]. However, experimental results, includiret tf
ment, a number of alternative technologies have been pegposur own, demonstrated that higher order acoustic echoes are
for indoor localization, e.g. those using WiFil [2]--[4], UWBoften difficult to recover, thus the requirement of having th
signal [5]-[7], LED light [8], [9] , or some combination of¢h entire set of second order echoes makes such an approach
above. impractical.

These technologies inevitably require indoor geometry in- On the other hand, given onlyroupedfirst order echoes,
formation. There are applications where the indoor rooSLAM can be achieved for a large class of convex polygon
geometry may need to be acquired concurrently with l@ther than parallelograms [23]. This result was strengttden
calization. This is generally referred to as simultaneaus lin [24] where it was established that parallelograms are the
calization and mapping (SLAM). We comment that the s@nly convex polygons that are not recoverable via grouped
called WiFi-SLAM still requires indoor mapping informatip first order echoes. Here grouped means correct labeling,
SLAM refers to the training process that associates mapping., the correspondence between collected echoes ansliwall
information with the WiFi signature [10]. There are alsd&nown.
applications where mapping itself is the ultimate goaleast  This paper makes further progress in overcoming the short-
of self-localization [[11], [[12]. comings of the approaches in_[23], [24]. The reconstruction

For many applications where room shape reconstructionvidl again be based on first order echoes only but without
required, acoustic based approach is arguably more seigabl the knowledge of echo labeling. To overcome the ambiguity
rooms are often defined by dominant sound reflectors (wallgssociated with parallelograms, our approach leverages th
The distance measurements as measured through acowstér expanding capability of various motion sensors eméedd
echoes contain rich information about the location of the latest smart phones, including accelerometer, magretom
measurement points as well as the room geometry. A ki®r, and gyroscope. Those sensors are capable of measuring
advantage of the acoustic based approach is that no mtestance and direction information of a moving devicel [25]-
established infrastructure is needed; this is in sharpraent [27]. However, existing results indicate that while distan
with other approaches which inevitably require either dgpl measures have reasonable accuracy, direction measurament
ment of anchor nodes [13], [14] or the availability of amhieroften subject to large measurement error [28]. Thus ouectrr
WiFi signals as well as preliminary maps [10]. This uniquapproach only exploits the distance measurements and yhe ke
advantage has the potential to broaden the applicationsgofestion to be addressed is how much additional information
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will be needed for acoustic SLAM to be able to recover aNlotice that for an arbitrary convex polygon, not every mea-

convex polygons. surement point has first order echoes to all the walls. We refe
The major contribution of the paper is to establish thab those measurement points can receive all first order schoe

with three non-collinear measurement points, SLAM can l&s feasiblemeasurement points.

achieved for all convex polygons usinghgroupedfirst or- Denote bys(t) the emitted signal at the speaker. Then the

der echoes provided that the distances between consecutaeeived signal at the microphone for thith measurement

measurement points are known. Note that this additional ipeint is

formation is much weaker than the knowledge of the complete () = s(t) * b9 (t) + w(?), (2)

geometry of the measurement - this is tantamount to knowi% denotes i luti nd(4) is the addit
only two sides of a triangle which is inadequate to constru ere+ denotes linear convolution and(?) is the additive

the triangle. An added advantage of this additional digtang2'S€: I(d)eally_, the delays can be rec_overed from the regeive
information is that it removes the need for grouped echoﬁgnaw ’ (t). i s(t).behave.s like a Dirac d.elta.functlon I-17]'.
making the scheme much more widely applicable as it c WEVET, this requires a W|depand gcoust|c signal "’."0”9 wit
accommodate a great deal of freedom in the movement abyvm_ieband acoustic channel, |nclud_|ng t_hat of th? mmr_cmho
the device. Preliminary results have been reported_in [2§ -CEIVET. A more pract|_cal alterr_1at|ve IS _to emitt) with
The present work, in addition to expanding on technic desired auto-correlation func_tlon that Fmakyand then
details, contains several new results including a moreilddta implement a correlator at the microphone:
analysis on exactly what is the minimum amount of distance m\) (t) = T(j)(t) % s(t). (3)
information that is needed for SLAM. Specifically, it is fetr . ) ,
established that with ungrouped echoes, a single distarfd@!s. the first and dominant peak of\/)(t) corresponds to
measure does not suffice for parallelograms. Note the sujfl§ LOS components, while the remaining peaks correspond to
but important difference with that of [23][[24] in which _reflectlve components. The time difference of arrival (TI_)OA
grouped instead of ungrouped echoes are assumed. in reference to_the LOS component can b_e used for es_tlmatmg
The rest of the paper is organized as follows. Section i€ delays of different reflective paths. A simple peak-ctine
introduces the indoor propagation model of acoustic sgnainethod will be introduced in Section V.A, where the chirp
image source model and existing results 2D with a signal is used fors(t) because of its nice auto-correlation
single device. Theoretical guarantee of successful SLAMrgi Property.
distances between consecutive measurement points iglpcbvi  D€fine a column vector
in Section Il along with a practical algorithm that handles 3 (Ti(ﬂ _ Téj))c N;
the presence of measurement noise and higher order/spuriou rj = {f} ) 4
peaks. Experiment results are provided in Section IV fodw _
by conclusion in Section V. wherec is the speed of sound antﬁj) is the arrival time of
the ith path WithTéj) corresponding to the LOS component.
Il. PROBLEM STATEMENT Thenrt; contains all the distances between the device and the
walls, along with some higher order terms.

=1

A. Room Impulse Response Model

Acoustic signal propagation from a loudspeaker to a mj- Image Source Model
crophone in a room can be described by the room impulsé 9
response (RIR), which includes both line-of-sight (LOSY an With the image source modél [15], reflections within a con-
reflected components. If the microphone and loudspeaker &feined space can be viewed as free space LOS propagations
much closer to each other compared to the distance betw&@&m virtual sources to the receiver. Let the coordinatégf
the device and the walls, we say it is a co-located device. H¥ denoted by;. As show in Fig.1, the first order image
a co-located device at thigh measurement point denoted bysource ofO; with respect to theéth wall is
0;, the RIR is, ignoring dispersion, 8,: = 2(p; — 0;,m;)n; + 05,
h(J)(’f) = Z 0%('”5@ - Ti(J))a 1) wherep; is any point on the&th wall, n; is the outward norm

i vector of theith wall and (x,y) denotes the inner product

detweenx andy. Letr;; be the distance betweep; and the

where ag'j)’s and Ti(j)'S are path gains and delays from the
ith wall, then

transmitter to the receiver, respectively. Since higheteor 1
reflective paths typically have much weaker pow#t)(t) can rii = 511050 = 042 (5)
be approximated by the firs{;+1 components including LOS

and N, reflective paths: Moreover, the second order image sourcedgfwith respect

to thesth and thekth wall is
N] ~ ~ ~
hO) (t) ~ Z a5t — 79, 0j,ik = 2(Pk — 0j,i, k)N, + Oj;.
=0 Similarly, we denote byr; ;. the half distance betweea;

where we assume that thé; reflective paths contain all first ando, ;. Following similar steps, higher order image sources
order reflections and higher order ones that are detectallen be represented by lower order image sources. Then all
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Fig. 2: A mobile device is employed to achieve SLAM. The
mobile device emits signal and collects echoesOat O,

and O3 successively. The distances between the consecutive
measurement points atg, anddss.

Fig. 1: The image source model;; ando; . are first-order
image sources with respect to tith andkth wall ando; ;;,
is the second-order image source with respect toittheand
kth wall in the stated order.

the elements of; can be represented by the real source arf pable of measuring its path length when moving from one

image sources. For the rest of the paper, the tchois used P.2°¢ to another, i.edy> anddys are known. Our goal is to
. () . simultaneously determine the room shape and the coordinate
to refer to either the delay;”’ or the corresponding elements Co
I _ ? of O3 using first-order echoes.
of r; if no ambiguity occurs.

From Fig.2, it is straightforward to show that

C. Two Extreme Cases (r2,i —r1,i) + diz2 cos0; = 0, (6)

The most benign case is Whe_n the Iocation_of the measure- daz cos(8; — @) + (r3; —ra9,i) = 0. 7
ment points are known, or equivalently, the distance betwee
pairwise measurement points are given|[30]. In this Cas8: |jeal Case
only room shape reconstruction is of interest and the proble K o .
becomes trivial, at least in the noiseless case. It amoants tLet r; = {r;;};=; be a column vector with its entries
finding common tangent lines of circles centered at three nd#efined in [(b). We assume for now that, the one-to-one

collinear measurement points. mapping f; : ; — r; is known for all j’s. In other words,
The other extreme is when the reconstruction is free 6f.i'S have been correctly chosen fram for j = 1,2,3 and
any geometry information of the measurement points. In tHis= 1,-.., K. For the rest of the paper, we say that the

case, both room shape and self-localization are of interg§ceived echoes agroupedif echoes are correctly labeled.
This was first investigated i [23] where it was establishethe remaining problem is to determine the uniquenes’sf
that a large class of convex polygons can be reconstructedad ¥ given (6) and E(]Z)_. o
groupedfirst order echoes and, subsequently, the coordinatedefine a;i: = —% and B, = —% For
of measurement points can be also estimated. An importgHplicity we denoter;; and 5;; by «; and j;, respectively.
exception is parallelograms and it was shown [inl [23] th&tiven grouped echoes and Eds. (6) dnd (7), we have
unigue reconstruction of parallelograms is impossiblengisi
first-order echoes alone. The result was later strengthamed
[24] where it was proved that all convex polygons excefithere are four possible sign combinations for a given
parallelogram can be reconstructed subject to the ususlont

f; = farccosa; and 6; — ¢ = + arccos f;, (8)

and reflection ambiguities. 0; = arccose; and 0; — ¢ = arccos f3; 9)
f; = arccosa; and 6; — o = — arccos j3; (20)

Il. SLAM WITH KNOWN PATH LENGTHS
0; = —arccosa; and 6; — ¢ = arccos f3; (11)

A. SLAM with Two Path Lengths

Consider a convex plandk -polygon. As shown in Fi@, 0; = —arccosa; and 6; — ¢ = —arccos B;.  (12)
a mobile device with co-located microphone and Ioudspealteé
emits pulses and receives echoeg@;}}3_,. Without loss of
generality, we assume thak, is the origin,O- lies on thez-
axis, andOs lies above the-axis. Lety = (1 —Z2010203) €
(0,7) and the lengths ofD;0, and 0,03 be denoted by
d12 and das, respectivelﬂ Suppose the mobile device is

mma Ill.1. Suppose); (j = 1,2,3) are feasible and not
collinear. Given grouped first order echoes, with probapili
1, there exist exactly two sign combinations such {@tand
(2 hold simultmusly for ali if ¢ and the direction of
both 0,0, and 0,03 are randomly chosen. The two possible
sign combinations have opposite signs foand all §;'s and

Uf & € (0,27), i.e. we do not have control of where to placs, then COrfespond to reflection of each other in terms of recovered
the reconstruction is subject to reflection ambiguity (€lieorem 111.3). room shapes.



Proof: Assume without loss of generality that the groun
truth of the polygon is[{9) for ali € {1,..., K'}. Note that
(@) implies that[(IR) holds fof, = —6, andy’ = —p < 0 for
all 4, i.e., they correspond to reflections of each other.

Suppose multiple sign combinations hold for a wall. Wit
out loss of generality, let = 1. From [9) we have

d (18)

One can see that for sonﬁ’s, pairs of {a;;, B } (i, €
{1,2,3,4}) are related to each other. Consider for example the

T3+ T14a="23+T24="33+734=0.

pli's resulting in{auz, aay, ase, cuz} and{ Bz, far, A34, Baz}-

Sinceais + az1 = 0, azq + auz = 0, P12+ P21 = 0 and
B4 + Pa3 = 0, we have

= - . 13

ip = arccos ay — arccos (13) arccos(az1) = m + arccos(a2),
Assume that one of the following equations also holds,

arccos(ays) = m + arccos(agy),

= — arccos  — arccos 31, 14
7 ! A (14) arccos(f21) = 7 £ arccos(S12),

= arccos a; + arccos 31, 15
4 ! A (19) arccos(f43) = 7 £ arccos(S34).

© = — arccos oy + arccos f3i. (16)

Then we have the following three cases

1) If @3) and [(I4) hold, we must have, = 0 which
implies thatO, O is perpendicular to the first wall, and
@ = — arccos ;.
If @3) and [I5) hold, we must hav&rccosf; = 0,
which implies thatO,0O3 is perpendicular to the first
wall.
If @3) and [(I6) hold, we must havg = 0, which
contradicts the assumption th@t, O, and Os are not
collinear.

2)

3)

Given that the three measurement points are randomly chosg&

Thus [8) reduces to two equations
¢ = Farccos(aq2) £ arccos(fS12),
© = L arccos(asyq) + arccos(fs4).

With probability 1, these two equations do not hold simultane-
ously asays, 512 are independent afsy4, 334 due to randomly
chosen measurement points. Otlfe(# f;)'s always have at
least two equations with independent choicer@ind5. Hence
no solution can be found for those instances.

Suppose J’-’s are chosen such that we hamg, and 3;;~
, # i’ i # 1"). For rooms with no more than one pair of
allel walls, only echoes chosen accordingfjts satisfy

and, subsequently,, 0,0, and 0»0; are random, the first @y tor a1 ;. This is because for those rooms, at least one of

two cases do not occur with probability one.
If a subset of [(ZI0)E(A2) holds far and i’ simultaneously,
then we must hav@,, 6;/) € {0, = 0,0, = p, o = 0} x {0 =

(I7) and [(IB) does not hold. Thus somg'’s and 83;;'s are
not related since;/, ro; andrsz;» are randomly chosen from
Ty, To andrs, respectively.

0,0i = ¢, p = 0}, which again, do not occur due to randomly " ;e harallel edges, however, higher order echoes may also

chosen measurement points. Similarly, it can be shown that
more than2 walls, () would imply none of[(10)-(12) holds
for all walls. [ |

C. Echo Labeling

Since echoes may arrive in different orders at diffex@sis
andr; contains higher order echoesif; > K, f; is usually
unknown. We say the received echoes argroupedif f;
is unknown for somej. Thus givent;, our task is to first
determine the mapping;, i.e., label the echoes, followed by
estimation off;’s and ¢.

Lemma I11.2. With ungrouped echoes, any mappifigthat
differs from the correct mapping; will result, with probability
1, the following two possible cases
1) there exists no solution tff) and (7) given no parallel
edges, or
2) the reconstructed room shape has larger dimension wi
respect to parallel edges.

fsatisfy [®) and[{7). For instance, as shown in Bigsuppose
that walls1 and3 are parallel. Then it is easy to verify that

75,131 — 757,131 = T45,1 — Ty 1,
74,313 — T4/,313 = 15,3 — T'j/ 3,

wherej # j'. Hence, [(6) and[{7) provide the sames 61,
cos 83, cos(61 — ) andcos(03 — ) if r; 1 andr; 3 are replaced
by ;131 andr; 313, respectively. By Lemma Ill.1, the third
order echoes resulting from a pair of parallel edges lead to
a larger room with the same norm vectors. Exactly the same
argument applies to odd higher order echoes from a pair of
parallel edges. Therefore, Lemma 1.2 is proved. ]
Remarkl: The ambiguities resulting from parallel edges can
be easily eliminated if we always choose SLAM result with
the smallest room size.
Given Lemma lll.1 and Lemma I11.2, we have the following
tesult on the identifiability of any convex polygonal room by
using only first order echoes.

Proof: We illustrate the proof by considering the casd@heorem II.3. With probability 1, SLAM can be achieved

K = 4. The result can be easily extended &6 = 3 and
K > 4.
Suppose again that the ground truth[ik (9) foriallVe first

subject to reflection ambiguity given any convex plaar
polygon, by using the first order echoes received at three
random points in the feasible region, with knovsy and da3

consider parallelograms and exclude odd higher order echamd unknowny € (0, 27).

resulting from a pair of parallel walls. The distances betwe
0; (j = 1,2,3) and the four walls satisfy

1,1+ T2 ="21 + 122 =731+ 732 =a,

Remark2: Both the room shape and the coordinatelgf
are subject to reflection ambiguity fere (0, 27). If, however,

(17) we can limity € (0,7), SLAM will be free of such ambiguity.



Algorithm 1 Reconstruct convex polygon given distances
between consecutive measurement points

1: SetK = 3 andVy,.
2: if K <N then

3 SetVx = inf and the stored polygon with” walls be
empty.

4 forn=1:((¥)*(KN? do

5: Based on thenth echo combination, choosE

elements fromry, ro, 3, respectively.
Wall 2

6: Computecos ;’s andcos(0; —p) fori =1,... K.
) ) ) 7: if cosf;'s andcos(; — ¢) are feasiblehen
Fig. 3: A room with a pair of parallel edges. Here waland . Compute Vafg] for different sign combina-
3 are parallel. tions and keep the one with the smallest [\ér
o: if Varly] < Vi and the room shape does not
fully cover the stored one witli walls then
Remark3: In reality, it is inevitable to collect reflections ;. Keep the echo and sign combination and
from the ceiling and the floor. However, by Theorem IIl.3,  sety, = var(y] for K.
if distances corresponding to these echoes are included, 110 end if
polygon can be recovered provided that the trajectory of thg. end if

device lies in a plane that is perpendicular to the walls. 13- end for
14: K=K-+1.
D. A Practical Algorithm 15: else
In a real acoustic systemn((t)’s in @) are inevitably 1 Keep the SLAM results the largest such thatVx <

corrupted by measurement noise leading to corrupted mea- Vin.
surement ofr;. Let the corrupted version af; be denoted 17: end
by ;. Two issues arise. First, givefy’s, ¢ obtained by [(B)

for differenti’s are not necessarily identical. The second issue )
is the possibility that the computed cosine valuesin (6) md&y SLAM with One Path Length

have absolute value exceedihgFor the former, we propose Now that we have established that two distances between
a heuristic scheme of choosing the echo and sign combinatibree consecutive measurement points are sufficient to- over
that yield the smallest variance of the estimategd across come the drawback of using first order echoes alone, a natural
different i’s. Notice that in the noiseless case with perfectuestion is what would be the least amount of information
echo measurements, the variance of the estimatedcross that is required to achieve SLAM for any convex polygons.
differents’s is 0 if the correct echo and sign combination isSpecifically we examine the case where only one distance
selected while all others will have non-zero (potentiallyge between a pair of measurement points is known. We show
variance). For the latter, define a feasiblg 0, as that for a parallelogram, there exist multiple rooms switief

(@) and [(19) in this case, thus the answer is negative, i.e. a

if

: o, —T1,4
Lf L !f l<- 1z _f 1+e single distance measurement is insufficient for SLAM with
costy = § ===, i -1 < -2 <1 ) ungrouped first order echoes.
-1, if —1—e< -2 i< Without loss of generality, assunak, is known butdss is

di2 -

h 0i tuni ter det ined by th . not. As shown in Fig4, let O; be the origin,O, be on the
wheree > U 1S a tuning parameter determined by the noisg ;o andOs(z3,y3) (y5 # 0) is unknown. We also assume
level. Feasible:os(6; — ¢) can be similarly defined. The echo Lo UAZR T . .

L ) ; T that the direction of); O, with respect to the desired room is
combination is said to be infeasible if eithé#L 21| > 1+¢
PO ) di2 . unknown. By geometry, we havel (6) and
or |24 > 1 + . Only those feasibl®;’s and ¢ will be
used in computing the variance of the estimaged (r3,i —7T1,i) + 23 c080; + y3sinf; = 0. (19)

As the number of_ walls for the room is not known in prlorErﬂ' [19) can also be rewritten in a matrix form

the proposed algorithm needs to first reconstruct some roo

shapes withK = 3,..., N walls. Then the desired room shape Alzs,y3]" =b, (20)
is the feasible one with the largest number of walls. In order
: Where
to reconstruct a room shape wit walls, the number of echo cosf, siné,
combinations that need to be exhausted is A— ) )
<]I\;1> <];;2> <];;3> (K2 cosf sinfg
and

For simplicity assume thaV = N; = Ny = N3. Let V, be
the threshold of the variance. The corresponding algorithm
summarized as Algorithm 1.

b=[—(rs1—71,1),..-,—(r3.x —11,K)]"



the experimental design is thus to demonstrate the feigibil
of the proposed scheme in an idealized situation with a icerta
degree of human intervention to alleviate the above chgdlen

We use a laptop as a microphone and a HTC M8 phone as
our loudspeaker. As the loudspeaker of the cell phone is not
omnidirectional and is power limited, we place the speaker o
the cell phone towards each wall to ensure the corresponding
first order echo is strong enough. Note that the microphone
will record both first order echoes and some higher order
ones. A chirp signal linearly sweeping froB9Hz to 8kHz
is emitted by the cell phone. The sample rate at the recedver i

L . o tff = 96kHz. It has been shown in [31], [32] that if the input
Fig. 4: A mobile device is employed to measure the 9€OMEWirp signal is correlated with its windowed version thepou
of a room. The mobile device collects echoesJat O, and P sig ’

: . may resemble a delta function, which is desirable for better
i(S)3kich)$\§:nesswely. Only the distances betwégnandO; (d12) delay resolution. Our simulation indicates that correlgtihe

The ground truth of a parallelogram is assumed to be
cosf; sinb; —(rs1 —71,1)
A — COS 92 S?Il 92 and b = —(7’3_]2 — T172) 7
cosfl3 sinfs —(rs,3 —11,3)
cosfy sinfy —(rg,a —11,4)
where
T1,1+7T13="21+723="31+733, (a) Transmitted signal convolves with(b) Transmitted signal convolves with
itself its windowed version
ri,2+7T1,4="22+7T24="32+734. . . . .
Fig. 5: Comparison of convolution result. The maximum
Let values of the two convolution result are set to be identical.
cos i3 sinfis —(rs1 —1m1,3)

Al — |CO8 24 sinfay b — —(r32 —71,4) received signals with its triangularly windowed versioripmr-
cosf31 sinfs; —(r33 —171,1) forms the correlator using the original one. The comparison
cosfyy  sinfyo —(r34 —171,2) shown in Fig.5.

Then Fig.6 is a samp!e path c_)f the porrelator output cpllected in
the room where this experiment is conducted. In Bigpeaks
cosths +cosfs; =0 and cosfay + cosbaz = 0. marked with red ellipse are desired while those with green
Moreover, sincesin § = +1/1 — cos2, ellipse correspond to noise, the ceiling, the roor,_ higheleo
echoes or other spurious sources. In our experiment, we use
sinfhs +sinfs; =0 and sinfas +sinby =0 Im()(t)| rather thanm ¥ (¢) since the true peaks may be either

i i ; iti i i ©)) i
can hold if we manipulate the sign of square root properly.pos't've or negative. Local maxima gh'?’(¢)| corresponding

Then rankA’) = rank([A’,b’]) = 2. Thus a room shape to Fig. 6 are shown in Fig7. o .
and the coordinate af); different from the ground truth and A heuristic way to detect peaks, summarized in Algorithm 3,
its reflection also satisfy botfl(6) and {19) is to check the slope of each local maxima. Three requiresnent

are needed for the proposed algorithm: 1) the minimum
distance between the device and the walls is no less than
. dmin, 2) the minimum TDOA of two detected consecutive
A. Experiment Setup echoes is no less thaht, 3) the maximum candidate distance
We describe in the following some preliminary experimentalorresponding to detected peaks is no more tthap,.. The
results. Enormous challenges exist to conduct a truly awgason for the requirements is as follows: 1) since the eorre
tonomous SLAM. Chief among them are: the search spaedion property of the chirp signal is not ideal and the power
(number of combinations) is extremely large - using foof the LOS component is much larger than that of reflective
example, some modest numbers, el. = 4 and N; = components, the distance between the device and the walls
N, = N3 = 8, the number of echo combinations exceedshould be large enough such that the peaks corresponding
107, combining with the sign combinations the search spate reflective components are not overshadowed by the LOS
is in the billions; the measurement of motion sensors @mponent, 2) as the power of reflective paths decays rapidly
still subject to large errors and some robustification of theis reasonable to restrict the detectable echoes withitaice
reconstruction algorithm will need to be investigated ié thdistances which depends on the power of loudspeaker. Given
true motion sensor measurements are used. The purpose,pf, = 0.6m, d,.. = 6.5m and At = @, where

IV. EXPERIMENTAL RESULTS



Algorithm 2 Peak detection algorithm

all2 wall| 1 1: find LOS peak(t§), m$").
2: find local maxima ofm()(¢)| appearing from” + t,,

LOS componen

1000~

t0 ¢ + tmaa.
: find all peaks that arpeakyand store them i/
setP =0
. if then|P| < | M|
if there exist peaks id/ whose locations are "close”
to any peak inP then
remove those peaks frod/.
: else
9: add the peak with the largest magnitudeMdf to
P.
10: end if
11: end if
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(a) Correlator output aD; towards the first wall

ol % component wall 2
detection algorithm is used to estimate the candidaterdieta
| from received signals. Note that the number of detected
‘ M ll LA peaks are much larger than the number of first order echoes.
i W | hil‘ll\ i Heuristics are used to remove peaks (e.g. those of small
magnitudes) - otherwise, checking all combinations of esho
become computationally prohibitive. The proposed albamit
for SLAM is verified by experiment a®;, O2, O3 and Oa,
O3, O4. Given O, O3, O4, We assume thab, is the origin
s aw s s andOs lies on thez-axis. Even if some elements of have
' measurement errors up t@cm, SLAM is accomplished with
(b) Correlator output aD; towards the second wall small error of both the room shape and the coordinate3;of
andO4 with only unlabeled first-order echoes. In the presence
‘ ; ; ; ; ‘ of higher order echoes, the proposed algorithm may perform
LOS fomponent ] poorly and ambiguity may occur when the varianceoa$ the
wall 3 ] only criterion used to determing’s. With noisy measurement,
| it is possible that the incorrect echo combination may vyield
| feasibled; andy with variance smaller than that of the correct
~ l‘hVﬂWN‘M”f# oot et echo combination. Furthermore, an interesting phenomenon
that sometimes the proposed algorithm is unable to protiele t
correct room shape, but the estimatepaf always close to the

o il

Vl

=_

-1000

5000

4000

3000

2000

1000

W«M’\Wﬂ

-1000

-2000

] true value. This means that better echo labeling approach is
00l ] needed for robust SLAM. As most rooms are regular, we add
s00nf ‘ ‘ ‘ ‘ ‘ B a heuristic constraint: all the angles of two adjacent waitks
S between50° and 130°. The comparison between the SLAM
_ result and the ground truth is illustrated in F&.The candi-
(c) Correlator output a0 towards the third wall date distances are obtained by the peak detection algorithm

Fig. 6: Sample of correlator output: Peaks with solid reNote that the coordinate system in Fig(b) is a rotation of
ellipses correspond to walls while peaks with dash gre#matin Fig.8(a) by 135° counterclockwise. The SLAM results
ellipses correspond to either noise or higher order echoes shown in the two figures are rotational images of each other.
Experimental result indicate that heuristic constraintshsas
the above can largely eliminate incorrect combinations.
¢ = 346m/s, the detection results are marked by arrows in
Fig. 7. We can see that the desired peaks are always detected.
In order to detect as less false peaks as possible, one [@ssib

modification is to apply a tapering threshold which decrsase This work makes progress in acoustic SLAM using a single

V. CONCLUSION

ast increases. mobile device with unlabeled first order echoes. Theorktica
guarantee o2-D SLAM is established when two path lengths
B. SLAM Results corresponding to three consecutive measurement points are
Echoes are collected &, (j = 1,...,4) andd; ;11 (j = available. Conversely, it was also shown that with only alsin

1,2,3) are measured by tape measure. The proposed peékance measuremeri;d SLAM with unlabeled first order
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Fig. 8: Comparison between the ground truth (black) and

3000 ‘ ‘ ‘ ‘ ‘ ‘ ‘ experiment result (red underlined)
ae—detected peak 1: wall 3
2500 1 TABLE I: Feasibility of SLAM with unlabeled first order
echoes and different geometry knowledge
2000 detected peak 2: noise 7
geometry knowledgel any convex polygon
/ di12, da3, di3 Yes
1500 ““f 7 di2, do3 Yes
~ !’dclcclcd |v$uk 3: noise d12 No
1000} 5 jf’ detected pg“uk 4: noise ] none No
500 o o ’ o ¢ f o , . .
th H hv ﬂ issues that need to be further addressed include the rassstn
. ‘ M } W mﬁﬁﬁ W [P 'kﬁfﬁfﬂﬂﬁ%ﬂﬁ‘ﬁ’ Niidin with respect to measurement noise and the computational
392 3925 3 3.935 394 3945 395 3955 3.96

10’ complexity when a large number of peaks are detected at each

_ measurement location.
(c) Peaks detected from correlator outputCsf towards the third wall
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