
ar
X

iv
:1

61
2.

05
79

3v
1 

 [c
s.

R
O

]  
17

 D
ec

 2
01

6
1

Autonomous Localization and Mapping Using a
Single Mobile Device
Tiexing Wang, Fangrong Peng and Biao Chen

Abstract—This paper considers the problem of simultaneous
2-D room shape reconstruction and self-localization without
the requirement of any pre-established infrastructure. A mobile
device equipped with co-located microphone and loudspeaker
as well as internal motion sensors is used to emit acoustic
pulses and collect echoes reflected by the walls. Using only first
order echoes, room shape recovery and self-localization isfeasible
when auxiliary information is obtained using motion sensors. In
particular, it is established that using echoes collected at three
measurement locations and the two distances between consecutive
measurement points, unique localization and mapping can be
achieved provided that the three measurement points are not
collinear. Practical algorithms for room shape reconstruction and
self-localization in the presence of noise and higher orderechoes
are proposed along with experimental results to demonstrate the
effectiveness of the proposed approach.

Index Terms—2-D room shape recovery, self-localization,
acoustic sensor, room impulse response, self-localization.

I. INTRODUCTION

Indoor localization has become more important in recent
years as numerous applications, e.g., public safety or location
based services, rely on accurate indoor localization [1]. As
GPS signals are severely attenuated in typical indoor environ-
ment, a number of alternative technologies have been proposed
for indoor localization, e.g. those using WiFi [2]–[4], UWB
signal [5]–[7], LED light [8], [9] , or some combination of the
above.

These technologies inevitably require indoor geometry in-
formation. There are applications where the indoor room
geometry may need to be acquired concurrently with lo-
calization. This is generally referred to as simultaneous lo-
calization and mapping (SLAM). We comment that the so-
called WiFi-SLAM still requires indoor mapping information;
SLAM refers to the training process that associates mapping
information with the WiFi signature [10]. There are also
applications where mapping itself is the ultimate goal instead
of self-localization [11], [12].

For many applications where room shape reconstruction is
required, acoustic based approach is arguably more suitable as
rooms are often defined by dominant sound reflectors (walls).
The distance measurements as measured through acoustic
echoes contain rich information about the location of the
measurement points as well as the room geometry. A key
advantage of the acoustic based approach is that no pre-
established infrastructure is needed; this is in sharp contrast
with other approaches which inevitably require either deploy-
ment of anchor nodes [13], [14] or the availability of ambient
WiFi signals as well as preliminary maps [10]. This unique
advantage has the potential to broaden the applications of

indoor mapping and localization to systems where current
technologies are either unsuitable or too expensive to imple-
ment.

The most prevalent acoustic based approach is to em-
ploy a single fixed loudspeaker and a microphone array, or
equivalently, a fixed loudspeaker and a mobile microphone
[15]–[20]. It was shown that both the room shape and the
geometry of the microphone array (or the trajectory of the
mobile microphone) can be estimated by first order echoes
[21]. Furthermore, bearing only SLAM can be achieved using
a mobile microphone array [22].

The fact that a microphone array needs to be deployed
leaves much to be desired: fully autonomous SLAM should
require minimum deployment effort. Ideally, a single mobile
device that moves around would autonomously reconstruct
the room shape while tracking its own movement within the
recovered room geometry. Indeed, room shape recovery using
a single acoustic device has been addressed in the literature. It
was established that any convex polygon can be reconstructed
by theentireset of both first and second order echoes collected
using a fixed device with a collocated microphone and loud-
speaker [18]. However, experimental results, including that of
our own, demonstrated that higher order acoustic echoes are
often difficult to recover, thus the requirement of having the
entire set of second order echoes makes such an approach
impractical.

On the other hand, given onlygroupedfirst order echoes,
SLAM can be achieved for a large class of convex polygon
other than parallelograms [23]. This result was strengthened
in [24] where it was established that parallelograms are the
only convex polygons that are not recoverable via grouped
first order echoes. Here “-grouped” means correct labeling,
i.e., the correspondence between collected echoes and walls is
known.

This paper makes further progress in overcoming the short-
comings of the approaches in [23], [24]. The reconstruction
will again be based on first order echoes only but without
the knowledge of echo labeling. To overcome the ambiguity
associated with parallelograms, our approach leverages the
ever expanding capability of various motion sensors embedded
in latest smart phones, including accelerometer, magnetome-
ter, and gyroscope. Those sensors are capable of measuring
distance and direction information of a moving device [25]–
[27]. However, existing results indicate that while distance
measures have reasonable accuracy, direction measurementis
often subject to large measurement error [28]. Thus our current
approach only exploits the distance measurements and the key
question to be addressed is how much additional information
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will be needed for acoustic SLAM to be able to recover all
convex polygons.

The major contribution of the paper is to establish that
with three non-collinear measurement points, SLAM can be
achieved for all convex polygons usingungroupedfirst or-
der echoes provided that the distances between consecutive
measurement points are known. Note that this additional in-
formation is much weaker than the knowledge of the complete
geometry of the measurement - this is tantamount to knowing
only two sides of a triangle which is inadequate to construct
the triangle. An added advantage of this additional distance
information is that it removes the need for grouped echoes,
making the scheme much more widely applicable as it can
accommodate a great deal of freedom in the movement of
the device. Preliminary results have been reported in [29].
The present work, in addition to expanding on technical
details, contains several new results including a more detailed
analysis on exactly what is the minimum amount of distance
information that is needed for SLAM. Specifically, it is further
established that with ungrouped echoes, a single distance
measure does not suffice for parallelograms. Note the subtle
but important difference with that of [23], [24] in which
grouped instead of ungrouped echoes are assumed.

The rest of the paper is organized as follows. Section II
introduces the indoor propagation model of acoustic signals,
image source model and existing results on2-D with a
single device. Theoretical guarantee of successful SLAM given
distances between consecutive measurement points is provided
in Section III along with a practical algorithm that handles
the presence of measurement noise and higher order/spurious
peaks. Experiment results are provided in Section IV followed
by conclusion in Section V.

II. PROBLEM STATEMENT

A. Room Impulse Response Model

Acoustic signal propagation from a loudspeaker to a mi-
crophone in a room can be described by the room impulse
response (RIR), which includes both line-of-sight (LOS) and
reflected components. If the microphone and loudspeaker are
much closer to each other compared to the distance between
the device and the walls, we say it is a co-located device. For
a co-located device at thejth measurement point denoted by
Oj , the RIR is, ignoring dispersion,

h(j)(t) =
∑

i

α
(j)
i δ(t− τ

(j)
i ), (1)

whereα
(j)
i ’s and τ

(j)
i ’s are path gains and delays from the

transmitter to the receiver, respectively. Since higher order
reflective paths typically have much weaker power,h(j)(t) can
be approximated by the firstNj+1 components including LOS
andNj reflective paths:

h(j)(t) ≈
Nj
∑

i=0

α
(j)
i δ(t− τ

(j)
i ),

where we assume that theNj reflective paths contain all first
order reflections and higher order ones that are detectable.

Notice that for an arbitrary convex polygon, not every mea-
surement point has first order echoes to all the walls. We refer
to those measurement points can receive all first order echoes
as feasiblemeasurement points.

Denote bys(t) the emitted signal at the speaker. Then the
received signal at the microphone for thejth measurement
point is

r(j)(t) = s(t) ∗ h(j)(t) + ω(t), (2)

where∗ denotes linear convolution andω(t) is the additive
noise. Ideally, the delays can be recovered from the received
signalr(j)(t) if s(t) behaves like a Dirac delta function [17].
However, this requires a wideband acoustic signal along with
a wideband acoustic channel, including that of the microphone
receiver. A more practical alternative is to emits(t) with
a desired auto-correlation function that ispeaky and then
implement a correlator at the microphone:

m(j)(t) = r(j)(t) ∗ s(t). (3)

Thus, the first and dominant peak ofm(j)(t) corresponds to
the LOS components, while the remaining peaks correspond to
reflective components. The time difference of arrival (TDOA)
in reference to the LOS component can be used for estimating
the delays of different reflective paths. A simple peak-detection
method will be introduced in Section V.A, where the chirp
signal is used fors(t) because of its nice auto-correlation
property.

Define a column vector

r̃j =

{

(τ
(j)
i − τ

(j)
0 )c

2

}Nj

i=1

, (4)

wherec is the speed of sound andτ (j)i is the arrival time of
the ith path withτ (j)0 corresponding to the LOS component.
Then r̃j contains all the distances between the device and the
walls, along with some higher order terms.

B. Image Source Model

With the image source model [15], reflections within a con-
strained space can be viewed as free space LOS propagations
from virtual sources to the receiver. Let the coordinate ofOj

be denoted byoj . As show in Fig.1, the first order image
source ofOj with respect to theith wall is

õj,i = 2〈pi − oj ,ni〉ni + oj ,

wherepi is any point on theith wall, ni is the outward norm
vector of theith wall and 〈x,y〉 denotes the inner product
betweenx andy. Let rj,i be the distance betweenOj and the
ith wall, then

rj,i =
1

2
||õj,i − oj ||2. (5)

Moreover, the second order image source ofOj with respect
to the ith and thekth wall is

õj,ik = 2〈pk − õj,i,nk〉nk + õj,i.

Similarly, we denote byrj,ik the half distance betweenoj

andõj,ik. Following similar steps, higher order image sources
can be represented by lower order image sources. Then all
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Fig. 1: The image source model:õj,i and õj,k are first-order
image sources with respect to theith andkth wall andõj,ik

is the second-order image source with respect to theith and
kth wall in the stated order.

the elements of̃rj can be represented by the real source and
image sources. For the rest of the paper, the termechois used
to refer to either the delayτ (j)i or the corresponding elements
of r̃j if no ambiguity occurs.

C. Two Extreme Cases

The most benign case is when the location of the measure-
ment points are known, or equivalently, the distance between
pairwise measurement points are given [30]. In this case,
only room shape reconstruction is of interest and the problem
becomes trivial, at least in the noiseless case. It amounts to
finding common tangent lines of circles centered at three non-
collinear measurement points.

The other extreme is when the reconstruction is free of
any geometry information of the measurement points. In this
case, both room shape and self-localization are of interest.
This was first investigated in [23] where it was established
that a large class of convex polygons can be reconstructed by
groupedfirst order echoes and, subsequently, the coordinates
of measurement points can be also estimated. An important
exception is parallelograms and it was shown in [23] that
unique reconstruction of parallelograms is impossible using
first-order echoes alone. The result was later strengthenedin
[24] where it was proved that all convex polygons except
parallelogram can be reconstructed subject to the usual rotation
and reflection ambiguities.

III. SLAM WITH KNOWN PATH LENGTHS

A. SLAM with Two Path Lengths

Consider a convex planarK-polygon. As shown in Fig.2,
a mobile device with co-located microphone and loudspeaker
emits pulses and receives echoes at{Oj}3j=1. Without loss of
generality, we assume thatO1 is the origin,O2 lies on thex-
axis, andO3 lies above thex-axis. Letϕ = (π−∠O1O2O3) ∈
(0, π) and the lengths ofO1O2 and O2O3 be denoted by
d12 and d23, respectively.1 Suppose the mobile device is

1If ϕ ∈ (0, 2π), i.e. we do not have control of where to placeO3, then
the reconstruction is subject to reflection ambiguity (c.f.Theorem III.3).
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Fig. 2: A mobile device is employed to achieve SLAM. The
mobile device emits signal and collects echoes atO1, O2

andO3 successively. The distances between the consecutive
measurement points ared12 andd23.

capable of measuring its path length when moving from one
place to another, i.e.d12 and d23 are known. Our goal is to
simultaneously determine the room shape and the coordinate
of O3 using first-order echoes.

From Fig.2, it is straightforward to show that

(r2,i − r1,i) + d12 cos θi = 0, (6)

d23 cos(θi − ϕ) + (r3,i − r2,i) = 0. (7)

B. Ideal Case

Let rj = {rj,i}Ki=1 be a column vector with its entries
defined in (5). We assume for now that, the one-to-one
mappingfj : r̃j 7→ rj is known for all j’s. In other words,
rj,i’s have been correctly chosen from̃rj for j = 1, 2, 3 and
i = 1, . . . ,K. For the rest of the paper, we say that the
received echoes aregrouped if echoes are correctly labeled.
The remaining problem is to determine the uniqueness ofθi’s
andϕ given (6) and (7).

Define αii′ = − r2,i−r
1,i′

d12

and βii′ = − r
3,i′−r2,i

d23

. For
simplicity we denoteαii andβii by αi andβi, respectively.
Given grouped echoes and Eqs. (6) and (7), we have

θi = ± arccosαi and θi − ϕ = ± arccosβi, (8)

There are four possible sign combinations for a giveni,

θi = arccosαi and θi − ϕ = arccosβi (9)

θi = arccosαi and θi − ϕ = − arccosβi (10)

θi = − arccosαi and θi − ϕ = arccosβi (11)

θi = − arccosαi and θi − ϕ = − arccosβi. (12)

Lemma III.1. SupposeOj (j = 1, 2, 3) are feasible and not
collinear. Given grouped first order echoes, with probability
1, there exist exactly two sign combinations such that(6) and
(7) hold simultaneously for alli if ϕ and the direction of
both

−−−→
O1O2 and

−−−→
O2O3 are randomly chosen. The two possible

sign combinations have opposite signs forϕ and all θi’s and
correspond to reflection of each other in terms of recovered
room shapes.
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Proof: Assume without loss of generality that the ground
truth of the polygon is (9) for alli ∈ {1, . . . ,K}. Note that
(9) implies that (12) holds forθ′i = −θi andϕ′ = −ϕ < 0 for
all i, i.e., they correspond to reflections of each other.

Suppose multiple sign combinations hold for a wall. With-
out loss of generality, leti = 1. From (9) we have

ϕ = arccosα1 − arccosβ1. (13)

Assume that one of the following equations also holds,

ϕ = − arccosα1 − arccosβ1, (14)

ϕ = arccosα1 + arccosβ1, (15)

ϕ = − arccosα1 + arccosβ1. (16)

Then we have the following three cases
1) If (13) and (14) hold, we must haveθ1 = 0 which

implies thatO1O2 is perpendicular to the first wall, and
ϕ = − arccosβ1.

2) If (13) and (15) hold, we must havearccosβ1 = 0,
which implies thatO2O3 is perpendicular to the first
wall.

3) If (13) and (16) hold, we must haveϕ = 0, which
contradicts the assumption thatO1, O2 andO3 are not
collinear.

Given that the three measurement points are randomly chosen,
and, subsequently,ϕ,

−−−→
O1O2 and

−−−→
O2O3 are random, the first

two cases do not occur with probability one.
If a subset of (10)-(12) holds fori and i′ simultaneously,

then we must have(θi, θi′) ∈ {θi = 0, θi = ϕ, ϕ = 0}×{θi′ =
0, θi′ = ϕ, ϕ = 0}, which again, do not occur due to randomly
chosen measurement points. Similarly, it can be shown that for
more than2 walls, (9) would imply none of (10)-(12) holds
for all walls.

C. Echo Labeling

Since echoes may arrive in different orders at differentOj ’s
and r̃j contains higher order echoes ifNj > K, fj is usually
unknown. We say the received echoes areungroupedif fj
is unknown for somej. Thus givenr̃j , our task is to first
determine the mappingfj , i.e., label the echoes, followed by
estimation ofθi’s andϕ.

Lemma III.2. With ungrouped echoes, any mappingf ′

j that
differs from the correct mappingfj will result, with probability
1, the following two possible cases

1) there exists no solution to(6) and (7) given no parallel
edges, or

2) the reconstructed room shape has larger dimension with
respect to parallel edges.

Proof: We illustrate the proof by considering the case
K = 4. The result can be easily extended toK = 3 and
K > 4.

Suppose again that the ground truth is (9) for alli. We first
consider parallelograms and exclude odd higher order echoes
resulting from a pair of parallel walls. The distances between
Oj (j = 1, 2, 3) and the four walls satisfy

r1,1 + r1,2 = r2,1 + r2,2 = r3,1 + r3,2 = a, (17)

r1,3 + r1,4 = r2,3 + r2,4 = r3,3 + r3,4 = b. (18)

One can see that for somef ′

j ’s, pairs of {αii′ , βii′} (i, i′ ∈
{1, 2, 3, 4}) are related to each other. Consider for example the
f ′

j ’s resulting in{α12, α21, α34, α43} and{β12, β21, β34, β43}.
Sinceα12 + α21 = 0, α34 + α43 = 0, β12 + β21 = 0 and
β34 + β43 = 0, we have

arccos(α21) = π ± arccos(α12),

arccos(α43) = π ± arccos(α34),

arccos(β21) = π ± arccos(β12),

arccos(β43) = π ± arccos(β34).

Thus (8) reduces to two equations

ϕ = ± arccos(α12)± arccos(β12),

ϕ = ± arccos(α34)± arccos(β34).

With probability1, these two equations do not hold simultane-
ously asα12, β12 are independent ofα34, β34 due to randomly
chosen measurement points. Otherf ′

j(6= fj)’s always have at
least two equations with independent choice ofα andβ. Hence
no solution can be found for those instances.

Supposef ′

j ’s are chosen such that we haveαii′ and βii′′

(i 6= i′, i 6= i′′). For rooms with no more than one pair of
parallel walls, only echoes chosen according tofj ’s satisfy
(9) for all i. This is because for those rooms, at least one of
(17) and (18) does not hold. Thus someαii′ ’s andβii′′ ’s are
not related sincer1i′ , r2i andr3i′′ are randomly chosen from
r̃1, r̃2 and r̃3, respectively.

Given parallel edges, however, higher order echoes may also
satisfy (6) and (7). For instance, as shown in Fig.3, suppose
that walls1 and3 are parallel. Then it is easy to verify that

rj,131 − rj′,131 = rj,1 − rj′,1,

rj,313 − rj′,313 = rj,3 − rj′,3,

where j 6= j′. Hence, (6) and (7) provide the samecos θ1,
cos θ3, cos(θ1−ϕ) andcos(θ3−ϕ) if rj,1 andrj,3 are replaced
by rj,131 and rj,313, respectively. By Lemma III.1, the third
order echoes resulting from a pair of parallel edges lead to
a larger room with the same norm vectors. Exactly the same
argument applies to odd higher order echoes from a pair of
parallel edges. Therefore, Lemma III.2 is proved.

Remark1: The ambiguities resulting from parallel edges can
be easily eliminated if we always choose SLAM result with
the smallest room size.

Given Lemma III.1 and Lemma III.2, we have the following
result on the identifiability of any convex polygonal room by
using only first order echoes.

Theorem III.3. With probability 1, SLAM can be achieved
subject to reflection ambiguity given any convex planarK-
polygon, by using the first order echoes received at three
random points in the feasible region, with knownd12 andd23
and unknownϕ ∈ (0, 2π).

Remark2: Both the room shape and the coordinate ofO3

are subject to reflection ambiguity forϕ ∈ (0, 2π). If, however,
we can limitϕ ∈ (0, π), SLAM will be free of such ambiguity.
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Fig. 3: A room with a pair of parallel edges. Here wall1 and
3 are parallel.

Remark3: In reality, it is inevitable to collect reflections
from the ceiling and the floor. However, by Theorem III.3,
if distances corresponding to these echoes are included, no
polygon can be recovered provided that the trajectory of the
device lies in a plane that is perpendicular to the walls.

D. A Practical Algorithm

In a real acoustic system,m(j)(t)’s in (3) are inevitably
corrupted by measurement noise leading to corrupted mea-
surement of̃rj . Let the corrupted version of̃rj be denoted
by r̂j . Two issues arise. First, givenfj ’s, ϕ obtained by (8)
for differenti’s are not necessarily identical. The second issue
is the possibility that the computed cosine values in (6) may
have absolute value exceeding1. For the former, we propose
a heuristic scheme of choosing the echo and sign combination
that yield the smallest variance of the estimatedϕ’s across
different i’s. Notice that in the noiseless case with perfect
echo measurements, the variance of the estimatedϕ’s across
different i’s is 0 if the correct echo and sign combination is
selected while all others will have non-zero (potentially large
variance). For the latter, define a feasiblecos θi as

cos θi =











1, if 1 ≤ − r̂2,i−r̂1,i
d12

< 1 + ǫ

− r̂2,i−r̂1,i
d12

, if − 1 < − r̂2,i−r̂1,i
d12

< 1

−1, if − 1− ǫ < − r̂2,i−r̂1,i
d12

≤ −1

,

where ǫ > 0 is a tuning parameter determined by the noise
level. Feasiblecos(θi−ϕ) can be similarly defined. The echo
combination is said to be infeasible if either| r̂2,i−r̂1,i

d12

| > 1+ǫ

or | r̂3,i−r̂2,i
d23

| > 1 + ǫ. Only those feasibleθi’s andϕ will be
used in computing the variance of the estimatedϕ.

As the number of walls for the room is not known in prior,
the proposed algorithm needs to first reconstruct some room
shapes withK = 3, . . . , N walls. Then the desired room shape
is the feasible one with the largest number of walls. In order
to reconstruct a room shape withK walls, the number of echo
combinations that need to be exhausted is

(

N1

K

)(

N2

K

)(

N3

K

)

(K!)2.

For simplicity assume thatN = N1 = N2 = N3. Let Vth be
the threshold of the variance. The corresponding algorithmis
summarized as Algorithm 1.

Algorithm 1 Reconstruct convex polygon given distances
between consecutive measurement points

1: SetK = 3 andVth.
2: if K ≤ N then
3: SetVK = inf and the stored polygon withK walls be

empty.
4: for n = 1 :

((

N

K

))3
(K!)2 do

5: Based on thenth echo combination, chooseK
elements from̂r1, r̂2, r̂3, respectively.

6: Computecos θi’s andcos(θi−ϕ) for i = 1, . . . ,K.
7: if cos θi’s andcos(θi − ϕ) are feasiblethen
8: Compute Var[ϕ] for different sign combina-

tions and keep the one with the smallest Var[ϕ].
9: if Var[ϕ] < VK and the room shape does not

fully cover the stored one withK walls then
10: Keep the echo and sign combination and

setVK = Var[ϕ] for K.
11: end if
12: end if
13: end for
14: K = K + 1.
15: else
16: Keep the SLAM results the largestK such thatVK <

Vth.
17: end if

E. SLAM with One Path Length

Now that we have established that two distances between
three consecutive measurement points are sufficient to over-
come the drawback of using first order echoes alone, a natural
question is what would be the least amount of information
that is required to achieve SLAM for any convex polygons.
Specifically we examine the case where only one distance
between a pair of measurement points is known. We show
that for a parallelogram, there exist multiple rooms satisfying
(6) and (19) in this case, thus the answer is negative, i.e. a
single distance measurement is insufficient for SLAM with
ungrouped first order echoes.

Without loss of generality, assumed12 is known butd23 is
not. As shown in Fig.4, let O1 be the origin,O2 be on the
x-axis andO3(x3, y3) (y3 6= 0) is unknown. We also assume
that the direction of

−−−→
O1O2 with respect to the desired room is

unknown. By geometry, we have (6) and

(r3,i − r1,i) + x3 cos θi + y3 sin θi = 0. (19)

Eq. (19) can also be rewritten in a matrix form

A[x3, y3]
T = b, (20)

where

A =







cos θ1 sin θ1
...

...
cos θK sin θK






,

and
b = [−(r3,1 − r1,1), . . . ,−(r3,K − r1,K)]T .
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Fig. 4: A mobile device is employed to measure the geometry
of a room. The mobile device collects echoes atO1, O2 and
O3 successively. Only the distances betweenO1 andO2 (d12)
is known.

The ground truth of a parallelogram is assumed to be

A =









cos θ1 sin θ1
cos θ2 sin θ2
cos θ3 sin θ3
cos θ4 sin θ4









and b =









−(r3,1 − r1,1)
−(r3,2 − r1,2)
−(r3,3 − r1,3)
−(r3,4 − r1,4)









,

where
r1,1 + r1,3 = r2,1 + r2,3 = r3,1 + r3,3,

r1,2 + r1,4 = r2,2 + r2,4 = r3,2 + r3,4.

Let

A′ =









cos θ13 sin θ13
cos θ24 sin θ24
cos θ31 sin θ31
cos θ42 sin θ42









b′ =









−(r3,1 − r1,3)
−(r3,2 − r1,4)
−(r3,3 − r1,1)
−(r3,4 − r1,2)









.

Then

cos θ13 + cos θ31 = 0 and cos θ24 + cos θ42 = 0.

Moreover, sincesin θ = ±
√
1− cos2 θ,

sin θ13 + sin θ31 = 0 and sin θ24 + sin θ42 = 0

can hold if we manipulate the sign of square root properly.
Then rank(A′) = rank([A′,b′]) = 2. Thus a room shape

and the coordinate ofO3 different from the ground truth and
its reflection also satisfy both (6) and (19).

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

We describe in the following some preliminary experimental
results. Enormous challenges exist to conduct a truly au-
tonomous SLAM. Chief among them are: the search space
(number of combinations) is extremely large - using for
example, some modest numbers, e.g.K = 4 and N1 =
N2 = N3 = 8, the number of echo combinations exceeds
107, combining with the sign combinations the search space
is in the billions; the measurement of motion sensors is
still subject to large errors and some robustification of the
reconstruction algorithm will need to be investigated if the
true motion sensor measurements are used. The purpose of

the experimental design is thus to demonstrate the feasibility
of the proposed scheme in an idealized situation with a certain
degree of human intervention to alleviate the above challenges.

We use a laptop as a microphone and a HTC M8 phone as
our loudspeaker. As the loudspeaker of the cell phone is not
omnidirectional and is power limited, we place the speaker of
the cell phone towards each wall to ensure the corresponding
first order echo is strong enough. Note that the microphone
will record both first order echoes and some higher order
ones. A chirp signal linearly sweeping from30Hz to 8kHz
is emitted by the cell phone. The sample rate at the receiver is
fs = 96kHz. It has been shown in [31], [32] that if the input
chirp signal is correlated with its windowed version, the output
may resemble a delta function, which is desirable for better
delay resolution. Our simulation indicates that correlating the
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(b) Transmitted signal convolves with
its windowed version

Fig. 5: Comparison of convolution result. The maximum
values of the two convolution result are set to be identical.

received signals with its triangularly windowed version outper-
forms the correlator using the original one. The comparisonis
shown in Fig.5.

Fig. 6 is a sample path of the correlator output collected in
the room where this experiment is conducted. In Fig.6, peaks
marked with red ellipse are desired while those with green
ellipse correspond to noise, the ceiling, the floor, higher order
echoes or other spurious sources. In our experiment, we use
|m(j)(t)| rather thanm(j)(t) since the true peaks may be either
positive or negative. Local maxima of|m(j)(t)| corresponding
to Fig. 6 are shown in Fig.7.

A heuristic way to detect peaks, summarized in Algorithm 3,
is to check the slope of each local maxima. Three requirements
are needed for the proposed algorithm: 1) the minimum
distance between the device and the walls is no less than
dmin, 2) the minimum TDOA of two detected consecutive
echoes is no less than∆t, 3) the maximum candidate distance
corresponding to detected peaks is no more thandmax. The
reason for the requirements is as follows: 1) since the corre-
lation property of the chirp signal is not ideal and the power
of the LOS component is much larger than that of reflective
components, the distance between the device and the walls
should be large enough such that the peaks corresponding
to reflective components are not overshadowed by the LOS
component, 2) as the power of reflective paths decays rapidly,
it is reasonable to restrict the detectable echoes within certain
distances which depends on the power of loudspeaker. Given
dmin = 0.6m, dmax = 6.5m and ∆t = 0.5m

c
, where
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(b) Correlator output atO2 towards the second wall
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(c) Correlator output atO3 towards the third wall

Fig. 6: Sample of correlator output: Peaks with solid red
ellipses correspond to walls while peaks with dash green
ellipses correspond to either noise or higher order echoes

c = 346m/s, the detection results are marked by arrows in
Fig. 7. We can see that the desired peaks are always detected.
In order to detect as less false peaks as possible, one possible
modification is to apply a tapering threshold which decreases
as t increases.

B. SLAM Results

Echoes are collected atOj (j = 1, . . . , 4) anddj,j+1 (j =
1, 2, 3) are measured by tape measure. The proposed peak

Algorithm 2 Peak detection algorithm

1: find LOS peak(t(j)0 ,m
(j)
0 ).

2: find local maxima of|m(j)(t)| appearing fromt(j)0 + tmin

to t
(j)
0 + tmax.

3: find all peaks that arepeakyand store them inM
4: setP = Ø
5: if then|P | < |M |
6: if there exist peaks inM whose locations are ”close”

to any peak inP then
7: remove those peaks fromM .
8: else
9: add the peak with the largest magnitude ofM to

P .
10: end if
11: end if

detection algorithm is used to estimate the candidate distances
from received signals. Note that the number of detected
peaks are much larger than the number of first order echoes.
Heuristics are used to remove peaks (e.g. those of small
magnitudes) - otherwise, checking all combinations of echoes
become computationally prohibitive. The proposed algorithm
for SLAM is verified by experiment atO1, O2, O3 andO2,
O3, O4. GivenO2, O3, O4, we assume thatO2 is the origin
andO3 lies on thex-axis. Even if some elements ofrj have
measurement errors up to10cm, SLAM is accomplished with
small error of both the room shape and the coordinates ofO3

andO4 with only unlabeled first-order echoes. In the presence
of higher order echoes, the proposed algorithm may perform
poorly and ambiguity may occur when the variance ofϕ is the
only criterion used to determinefj ’s. With noisy measurement,
it is possible that the incorrect echo combination may yield
feasibleθi andϕ with variance smaller than that of the correct
echo combination. Furthermore, an interesting phenomenonis
that sometimes the proposed algorithm is unable to provide the
correct room shape, but the estimate ofϕ is always close to the
true value. This means that better echo labeling approach is
needed for robust SLAM. As most rooms are regular, we add
a heuristic constraint: all the angles of two adjacent wallsare
between50◦ and 130◦. The comparison between the SLAM
result and the ground truth is illustrated in Fig.8. The candi-
date distances are obtained by the peak detection algorithm.
Note that the coordinate system in Fig.8(b) is a rotation of
that in Fig.8(a) by135◦ counterclockwise. The SLAM results
shown in the two figures are rotational images of each other.
Experimental result indicate that heuristic constraints such as
the above can largely eliminate incorrect combinations.

V. CONCLUSION

This work makes progress in acoustic SLAM using a single
mobile device with unlabeled first order echoes. Theoretical
guarantee of2-D SLAM is established when two path lengths
corresponding to three consecutive measurement points are
available. Conversely, it was also shown that with only a single
distance measurement,2-d SLAM with unlabeled first order
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Fig. 7: Illustration of the performance of the proposed peak
detection algorithm.

echoes is not possible for all convex polygons. The result is
summarized in Table I.

While theoretical guarantee can be established for the
noiseless case, the proposed algorithm needs to be enhanced
to ensure a fully autonomous2-D SLAM. Two particular
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Fig. 8: Comparison between the ground truth (black) and
experiment result (red underlined)

TABLE I: Feasibility of SLAM with unlabeled first order
echoes and different geometry knowledge

geometry knowledge any convex polygon
d12, d23 , d13 Yes

d12, d23 Yes
d12 No
none No

issues that need to be further addressed include the robustness
with respect to measurement noise and the computational
complexity when a large number of peaks are detected at each
measurement location.
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characterization and solution to the microphone position self-calibration
problem,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Vancouver, BC, Canada, May 2013, pp. 3875–3879.

[13] J. L. Blanco, J. A. Fernandez-Madrigal, and J. Gonzalez, “Efficient
probabilistic range-only slam,” inProc. IEEE/RSJ Int. Conf. Intell.
Robots, Syst., Nice, France, Sep. 2008, pp. 1017–1022.

[14] J. Djugash, S. Singh, G. Kantor, and W. Zhang, “Range-only slam for
robots operating cooperatively with sensor networks,” inProc. IEEE Int.
Conf. on Robotics, Automation (ICRA), Orlando, FL, USA, May 2006,
pp. 2078–2084.
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