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Abstract—This paper discusses an innovative adaptive 

heterogeneous fusion algorithm based on estimation of the mean 

square error of all variables used in real time processing. The 

algorithm is designed for a fusion between derivative and 

absolute sensors and is explained by the fusion of the 3-axial 

gyroscope, 3-axial accelerometer and 3-axial magnetometer into 

attitude and heading estimation. Our algorithm has similar error 

performance in the steady state but much faster dynamic 

response compared to the fixed-gain fusion algorithm. In 

comparison with the extended Kalman filter the proposed 

algorithm converges faster and takes less computational time. On 

the other hand, Kalman filter has smaller mean square output 

error in a steady state but becomes unstable if the estimated state 

changes too rapidly. Additionally, the noisy fusion deviation can 

be used in the process of calibration. The paper proposes and 

explains a real-time calibration method based on machine 

learning working in the online mode during run-time. This allows 

compensation of sensor thermal drift right in the sensor’s 

working environment without need of re-calibration in the 

laboratory. 

 
Index Terms—calibration, inertial navigation, mean square 

error methods, sensor fusion.  

 

I. INTRODUCTION 

NERTIAL SENSORS manufactured by the MEMS (Micro 

Electro-Mechanical Systems) technology are the core of 

modern low-cost AHRSs (Attitude and Heading Reference 

Systems). The purpose of these systems is to determine 

rotation of the measured object with respect to the horizontal 

plane and northern direction which is a crucial task in mobile 

robotics, aviation, automated car navigation and many others. 

These sensor systems use nonlinear discrete numerical 

integration of the measured angular velocity which is a typical 
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example of velocity measurement when the sensor is 

measuring time derivative of desired variable. Main 

disadvantage of this method is great sensitivity of the output 

quality to the precision of the sensor measurements (especially 

sensor bias will cause increasing drift of the integrated result). 

First step of elimination of the integrated error is calibration of 

the sensor. A standard way of calibration measures raw output 

of the sensor as a response to stimulus with known amplitude. 

Relation between raw and real sensor outputs is formed into 

the transfer function (calibration curve) and its parameters are 

obtained from the measurements during calibration in offline 

mode. It is possible to calibrate by: 

 --One point (zero order transfer function - bias only). 

 --Two points (first order transfer function - bias and 

gain), 

 --Multiple points (calibration curve is a polyline or higher 

order curve). 

In order to eliminate influence of the sensor random noise 

each calibration point has to be computed as an average of 

multiple measurements in the same conditions [1]. This 

requires special laboratory equipment which provides accurate 

and steady simulation of different sensor stimuli.  Zhang et al. 

proposed a method of estimation of the calibration constants 

for the 3-axial inertial sensor (gyroscope, accelerometer) [2].  

Gyroscope bias is determined directly in a steady state and 

accelerometer bias is computed after multiple steps when the 

acceleration sensor is oriented vertically along each of its axes 

one by one or the sensor has to be exposed to precisely known 

stimuli [3][4]. All these methods are working in the offline 

mode. Wang and Hao proposed a method utilizing an artificial 

neural network combined with the Kalman filter for estimation 

of nonlinear calibration parameters [5]. For online calibration 

it is necessary to detect steady state of the object, e.g. by lower 

vibrations [6]. 

When MEMS sensors are used, their calibration parameters 

tend to drift with temperature [5] [7]. Transfer function is 

therefore two-dimensional – one input corresponds to raw 

sensor data and the second input is sensor temperature. Most 

of commercially available integrated MEMS sensors 

incorporate a temperature sensor which allows usage of 

advanced temperature compensation techniques. 

In order to compensate integrated error during run-time it is 

necessary to use a secondary absolute sensor and provide a 

data fusion. The secondary sensor may be much noisier and 

have slower response but its error has to be kept inside fixed 

bounds. A modification of the Kalman filter can be used as a 
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core of the sensor fusion algorithm [3][8][9][23], however it 

might be difficult to estimate parameters of the filter 

(covariance matrix, state model) for a standalone sensor 

system because the Kalman filter parameters depend on the 

measured system. Another sensor fusion utilizes Bayesian 

networks and the stochastic approach [10][11][12]. We have 

proposed a heterogeneous sensor fusion method for one 

differential sensor and one absolute sensor which requires 

only minimum count of parameters independently from the 

measured system. The performance of our algorithm will be 

compared with the performance of the extended Kalman filter 

(EKF) used in direct form described in [23].  

Our real-time calibration method utilizes error estimate 

obtained as a side output from the sensor fusion algorithm. 

This approach eliminates the need of steady state detection 

and offline calibration. Since it can be running all the time 

when the sensor is in use our method should compensate long-

term drifts continuously.  

II. HETEROGENEOUS FUSION ALGORITHM CONSIDERING 

QUALITY  

The method will be explained on the example of the fusion 

of the 3-axial gyroscope (velocity sensor), 3-axial 

accelerometer (absolute attitude sensor) and 3-axial 

magnetometer (absolute heading sensor). Sensor axes are 

orientated according to the NED convention (x-North or 

forward, y-East or right, z-Down), Euler angles are computed 

in the ZYX convention (α – Roll, β- Pitch, γ- Yaw). Attitude 

of object is then expressed by roll and pitch angles; heading is 

expressed by yaw angle. 

In order to express the quality of estimation we will use the 

mean square error (MSE). In general the error model of the 

attitude estimation is nonlinear [13]. MSE of the directly 

measured data is considered constant and depends on the used 

sensor; MSE of a computed variable y = f(x1, x2, …,xN) is 

approximated by: 
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A. Estimating Euler angles from gyroscope readings 

In the inertial navigation the object’s Euler angles are 

primary computed from the angular velocity ω measured by 

the gyroscope. There are several methods of angular velocity 

integration into Euler angles; we usually use the matrix-based 

algorithm. Rotation is expressed as the 3D transformation 

matrix R updated by the infinitesimal update matrix computed 

from each sample of the angular velocity [14]: 
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and ωx, ωy, ωz are the Cartesian components of the angular 

velocity vector and Δt is a sampling period of the gyroscope. 

 

 

The error of the gyroscope can be considered the same for 

each axis and constant: 

 )(MSE)(MSE gyro constEt ii    (3) 

MSEs of the updated uncompensated rotational matrix Ru 

are: 
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where index k = 13. As can be seen, errors of all matrix 

elements are increasing with new samples. Uncompensated 

Euler angles are then [15]: 

 3,3u3,2ugyro ,atan2 RR , (5.1) 

 3,1ugyro arcsin R , (5.2) 

 1,1u2,1ugyro ,atan2 RR . (5.3) 

Corresponding MSEs of the Euler angles are: 
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These formulas are undefined at the gimbal lock (cos  = 0 

and Ru1,3= 1). If such condition occurs it is impossible to 

determine both roll and yaw (one has to be chosen) and MSE 

estimation is very imprecise. 

B. Estimating roll and pitch from accelerometer readings 

Secondary, the attitude of the object can be obtained from 

acceleration readings by formulas [14]: 

),(atan2acc zy aa  , (7) 

),(atan2
22

acc zyx aaa  , (8) 

where ax, ay, az are the components of the acceleration 

measured by the accelerometer bound with a moving object. 

MSE of attitude estimation depends on the dynamics of the 

system (the vector a measured by the accelerometer is a sum 

of the gravitational acceleration g and the object’s own 

acceleration including vibrations which might be useful in 

different applications [16]). If the object is steady, variance of 

the vector a is smaller and attitude estimation is more precise: 
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In order to decrease error of estimation the acceleration can 

be averaged from multiple samples (oversampled 
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measurement). Then MSEs of average acceleration 

components are: 
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The second expression allows processing of accelerometer 

samples by batches with size N with lower memory 

requirements. Accelerometer’s own errors MSE(ai) are 

negligible at higher N with respect to the errors caused by 

vibrations. However, the simulations have shown that using 

batches is causing relatively large step changes in the resultant 

estimated variable. Therefore it is better to use online 

approximation of average and MSE; then the fusion can be 

performed in each step [17]: 
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where ][nsi is a mean square of the i-th acceleration component 

in the n-th step. Formulas (12) are first order low-pass IIR 

filters with cut-off frequency: 
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MSE of the estimated average ][nai  is then: 
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In order to compute yaw from the magnetic induction vector 

B, it has to be rotated from objects’ local coordinates to the 

global horizontal plane by following: 
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Yaw is then computed by the formula: 

),(atan2mag xy BB  . (16) 

The vertical component of the magnetic induction zB  is not 

used; therefore the third row of the matrix in (15) can be 

omitted in the algorithm. Since the transformation (15) is 

using estimated roll and pitch, quality of the yaw estimation 

depends on the quality of the attitude estimation. 
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Then MSE of the yaw estimated by the magnetometer is: 
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Error of the magnetometer is also the same for each axis 

and can be considered constant: 

mag)(MSE EBi  . (19) 

C. Heterogeneous fusion algorithm 

The scheme shown in Fig. 1describes the algorithm that can 

be used for fusion of the Euler angles computed from 

gyroscope, accelerometer and magnetometer readings. 

The fusion algorithm is based on incremental compensation 

of difference between incrementally integrated Euler angles   

gyro, gyro, gyro and absolute but noisy Euler angles acc, acc, 

mag. The adaptive gain block (see Fig. 1) optimizes the impact 

of each data source in order to increase resultant precision. A 

value with lower MSE has a higher effect to the result [18]. If 

the gain block has unit gain, the values obtained by gyroscope 

integration are not taken into account and result is equal to 

Euler angles obtained from the accelerometer and gyroscope.  

 

 
Resultant compensated Euler angles are equal to: 
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where K, K, K are variable fusion gain coefficients adjusted 

according to the estimation errors and their values vary from 0 

to 1. The vector [d, d, d] represents fusion deviations: 
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In case when fusion deviation di is not available due to 

different sampling frequencies, it is simply considered zero. 

Usually the magnetometer has much lower sampling 

frequency than gyroscope or accelerometer. When the new 

sample from magnetometer is not available, the fusion 

Fig. 1.  The fusion algorithm scheme. 
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deviation dγ is null.  

Fusion deviations are important inputs for the automatic 

calibration algorithm described in the next chapter. Their 

errors are: 
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The fusion gain coefficients have to be adjusted in order to 

minimize the output error which is equal to: 
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Note that this formula is also valid for pitch and yaw angles 

with corresponding coefficients. Output error is minimal 

when: 
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Solving these conditions we obtain the optimal gain: 
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D. Proof of Precision Improvement  

We can substitute the optimal gain in the formula (23): 
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By dividing by MSE(gyro)  we can get: 
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Since MSE is always higher than zero MSE() is always 

smaller than MSE(gyro). Since the formula (26) is 

symmetrical, the same is valid for MSE(acc). Therefore the 

theoretical fusion output error is always smaller than errors of 

any single estimation. Note that the output error directly 

depends on estimation of the MSEs during execution of the 

algorithm. 

E. Error of the Resultant Rotational Matrix 

Fig. 1 contains the conversion block from compensated 

Euler angles to the rotational matrix [15]: 
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where s = sin , c = cos , etc. Note that the matrix R = Ru 

when no magnetometer and accelerometer samples are 

available due to the different sampling frequency. 

When a new sample is processed and errors of the 

compensated Euler angles are computed according to (26), it 

is possible to compute MSE of each element in the rotational 

matrix which is used in next sample processing (used in (4)): 
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By comparing expressions in brackets with elements of the 

matrix R in (28) it is possible to simplify the formulas (29): 
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Initial MSE of Euler angles should be initialized to a large 

value representing low quality, e.g.: 

 20

2

00 2)()()(   MSEMSEMSE . (31) 

In order to avoid extreme values of MSE (e.g. around 

gimbal lock singularity, see (6)), it is convenient to limit MSE 

of the rotational matrix to the interval (-1, 1). Maximal values 

for Euler angles’ MSEs can be set according to (31). 

III. THE REAL-TIME CALIBRATION ALGORITHM 

In this chapter we will discuss how fusion deviation (a side 

product of the fusion of two or more sensors) can be used for 

sensor calibration. It is convenient when error estimate of 

deviation is also available.  The algorithm will be explained on 

the example of the gyroscope, accelerometer and 

magnetometer fusion proposed in the previous chapter. 
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A. Calibration model  

A universal relation between the raw value w measured by 

the MEMS sensor and the actual value ω of the measured 

variable is following: 

),( TwC , (32) 

where T is sensor’s temperature and C(w,T) is a calibration 

transfer function [19]. Note that errors caused by the sensor’s 

hysteresis are neglected [20]. 

Our algorithm assumes first order calibration transfer 

function at any given temperature, therefore there are two one-

dimensional functions: gain G(T) and bias B(T) for which it is 

valid: 

)()( TBwTG   (33) 

Since the C(w,T) function is continuous, partial functions  

G(T) and B(T) are also continuous and they can be expressed 

by polynomials: 
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where gk and bk are constants which change only by the long-

term drift (e.g. by aging). In order to suppress sensitivity of 

the higher order coefficients, full scale of the sensor raw data 

and temperature should be normalized to the interval (0,1) or 

(-1,1). The proposed learning algorithm requires floating-point 

number implementation [21]. In order to maintain precision in 

full range and avoid ignoring small incremental steps 

(especially by 32-bit floating point IEEE754 format), the gain 

function should be shifted by one. Biases of the MEMS 

sensors drift faster than gain, therefore it is convenient to 

make the bias function independent from the gain function. 

The modified relation is: 

   )(1)( TBwTG  . (36) 

If the calibration formula (36) is used, the polynomial 

coefficients gk and bk can be initialized to zero. 

In inertial navigation it is required to measure vectors of 

linear acceleration and angular velocity in all three axes (the 

3-axial MEMS vibrational gyroscope and accelerometer are 

usually used for this purpose [4]).  Each axis has its own gain 

and the offset calibration functions (independently from each 

other) according to (33). However, if the vector variable is 

measured, it is necessary to take sensor orientation into 

account. The most general case occurs when each axis is 

measured by a single physical sensor. The relation between 

the vector of measured raw data w and the calibrated vector ω 

is following (in the orthonormal coordinate system): 

 )()( TT BwGAω  , (37) 

where G(T) is a diagonal matrix of the shifted gain 

functions and B(T) is a vector of the bias functions: 
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Each of Gi(T) and Bi(T) functions are polynomials 

according to (34) and (35) respectively. For example, 

coefficients of the polynomial Gx(T) are marked gx,0 gx,1 …, 

coefficients of the polynomial Bx(T) are marked bx,0 bx,1 …etc.  

The matrix A is a constant alignment matrix which 

considers misalignment between sensor’s axes and the object’s 

axes [22]. Since the gain matrix G(T) normalizes each axis 

separately, the alignment matrix has to be column-normalized: 
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B. Backpropagation of the fusion error 

Parameters ai,k gi,k bi,k have to be obtained by learning. Since 

the true value of the measured variable is unavailable during 

runtime and the data processing algorithm is nonlinear and 

recursive, we cannot minimize the error between raw readings 

of the sensor and the actual value as the static (offline) 

calibration does. However, it is possible to minimize the 

fusion deviation (see (21)) in long term. Fusion deviation is 

therefore used as an output error for learning. Implementation 

of the deterministic least-squares method for non-linear 

recursive system would require remembering all previous 

samples and would be very complicated. Such approach would 

be difficult to implement into low-cost hardware. Considering 

mentioned drawbacks, we have chosen to use a stochastic 

learning algorithm.  

In order to decrease memory requirements and decrease the 

computational time for one iteration of the learning algorithm, 

we have decided to avoid recurrent learning. To be able to do 

that it is necessary to back-propagate the fusion deviation 

vector [d, d, d]T through the data processing algorithm to 

the angular velocity error vector e = [ex, ey, ez]T. The data 

processing algorithm disregarding sensor fusion can also be 

modelled by the following continuous non-linear differential 

equation [15]: 

Fig. 2.  The real-time calibration scheme in the context of the sensor data 

processing and fusion. 
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The 3x3 matrix in (40) represents sensitivity of the output 

(Euler angles) to the calibrated gyroscope readings. The 

inverted matrix can be used to transform errors of the Euler 

angles (fusion deviations) to the errors of the calibrated 

angular velocity: 
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where Δtcal is a period of the calibration procedure (can be 

larger than the sampling period of the gyroscope). The relation 

(41) is valid only if the Euler angles α, β, γ are estimated 

precisely, which is achieved by compensation of the errors by 

sensor fusion. In order to avoid invalid adjustments of the 

calibration parameters caused by initial low quality of the 

estimated Euler angles, the calibration procedure is applied 

only if the fusion deviation is below some predefined 

threshold. This approach also eliminates the need for recurrent 

learning and the learning algorithm optimizes the error vector 

of the gyroscope (instead of direct optimization of the fusion 

deviation).  

C. Adaptive Scaling of the Fusion Deviation 

Since the smaller calibration error will cause the smaller 

parameter change we can scale the fusion deviations according 

to their MSEs (22). The scaling function applied before 

backpropagation and learning can be e.g.: 














 0,

)(MSE
1max

2

maxe

d
dd , (42) 

where emax is the maximal RMS of the fusion deviation 

acceptable for usage in calibration. This avoids degradation of 

calibration by initial low-quality data. 

D. The Learning Algorithm 

It is possible to choose from many incremental learning 

algorithms. We have chosen the Adam algorithm [24], which 

is an extension of the well-known gradient descent algorithm. 

Its advantage over the standard gradient descent algorithm is 

its build-in 1st order infinite response filter for gradient and 

adaptive learning rate. As a result, the calibration parameters 

ci,k develop smoother than by the standard gradient descent 

method.  

Goal of the learning is to minimize the loss function E: 

  22

real
2

1

2

1
eωω E . (43) 

The Adam algorithm requires gradients of the loss function by 

each parameter which is given by: 
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By differentiation of (37) we get: 
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where Gi(T) is the value of the polynomial Gi at the current 

normalized temperature T etc. Speed of learning depends on 

the setting of learning rate. Because the bias of MEMS sensors 

drifts rapidly, learning rate of the coefficients bi,k should be 

highest. Since the alignment matrix is constant, learning rate 

of ai,k coefficients should be the smallest. This distribution 

avoids false changes in the alignment matrix according to the 

short-term drift of the sensor bias.  

IV. EXPERIMENTAL RESULTS 

For evaluation of the proposed fusion and calibration 

algorithms we have used both the simulation model of the 

sensor and the real MEMS sensor. Simulation allows us to 

compare real bias and gain parameters with those obtained by 

learning. We have compared performance of the extended 

Kalman filter implemented according to [23], fusion with 

fixed gain (also known as the complementary filter) and our 

proposed fusion algorithm with adaptive gain based on 

estimation of MSE. 

A. Sensor Fusion Simulation 

The first simulation analyzed a steady-state at nonzero 

attitude  = 30°,  = -45°,  = 60°. The simulated sensors’ raw 

readings included noise according to Table 1; all sensors have 

used the output sample rate 512Hz. MSE of the sensor 

readings were considered to be equal to the square of RMS 

and time-invariant.  

 
 

TABLE I 
SIMULATED NOISE PARAMETERS 

Sensor RMS Bias 

Gyroscope 

Accelerometer 

Magnetometer 

0.5 °/s 

1.0 m/s2 

10 % of full range 

20 °/s  

none 

none 
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The value of the fixed fusion gain has been chosen 

according to the steady value of the adaptive gain (approx. 

0.05 according to the Fig. 4). As can be seen in Fig. 3 the 

fusion algorithm with adaptive gain has shorter convergence 

time than the other methods. Faster convergence is caused by 

the peak of fusion gain (see Fig. 4) which is a result of initial 

low quality of the output (see (31)) and system increased 

fusion gain in order to compensate rapidly the initial errors by 

accelerometer. Results of fusion using fixed gain converge to 

the results of the fusion with adaptive gain after approx. 150 

milliseconds.  Output of the Kalman filter has much smoother 

response and lower error in a steady state.  

 

 
RMS errors of the estimated Euler angles in a steady attitude 

(100 seconds of experiment) are compared in Table 2. 

Execution time of the algorithm depends on implementation 

and hardware, therefore the values shown in Table 2 can be 

used only for relative comparison between discussed methods. 

All algorithms were implemented in the MATLAB 

environment; it is possible to decrease the execution time by 

using a compiled programming language like C and the code 

optimization.  

 
In order to verify dynamic parameters of the sensor fusion 

algorithm we have simulated harmonic rotation around axis x 

(see Fig. 5). Due to the definition of Euler angles in Z-Y-X 

convention, the rotation around x-axis will affect only roll 

angle. Noise parameters of the sensors are the same as those 

used in the previous simulation. In order to visualize the 

difference between compared algorithms, Fig. 5 displays only 

the beginning of the experiment. Fig. 6 illustrates one 

important advantage of our proposed fusion algorithm over 

extended Kalman filter – stability in highly dynamic 

conditions. As can be seen the Kalman filter becomes instable 

after 6 periods of harmonic banking at frequency 1 Hz, but our 

proposed algorithm maintains its stability and precision. If we 

decrease the frequency of the banking (rotation) below 0.5 Hz, 

the instability of the extended Kalman filter disappears. 

 
 

TABLE II 

COMPARISON OF FUSION ALGORITHMS IN A STEADY ATTITUDE 

Fusion 

algorithm 

Roll 

RMS 

[deg] 

Pitch 

RMS 

[deg] 

Yaw 

RMS  

[deg] 

Execution time 

[ms/sample] 

Fixed gain 
Adaptive gain 

Kalman filter 

1.17 
1.09 

0.58 

1.06 
0.93 

0.53 

2.31 
1.56 

1.06 

0.21 
0.23 

0.29 

 

Fig. 6. Instability of the extended Kalman filter during periodic banking 

after longer period. 

Fig. 5.  The roll angle estimation during simulated periodic banking from 

-60° to +60°. 

Fig. 4.  The adaptive gain of the roll estimation fusion in a steady state 

after reset. 
 

Fig. 3.  The estimated roll angle in a steady state from noisy data with the 

fusion after reset. 
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B. Sensor Fusion Experiment 

Experiments with the real MEMS sensor utilized a 

combined sensor board containing the 3-axial gyroscope and 

accelerometer IMU-3000 and the 3-axial magnetometer 

LSM303DLH). The noise parameters of the used sensor 

module are shown in Table 3. 

 
All noise parameters are estimated in a steady state. The bias 

of the accelerometer and magnetometer is considered to be 

zero (due to the previous static calibration). 

The sensor board was banked by a servomotor from zero 

roll to approx. - 54 degrees (see Fig. 7). Filter parameter N 

used in (12) and (14) was set to N = 5 which corresponds to 

the cut-off frequency fcut ≈ 18 Hz at the sampling rate 512 Hz. 

The absolute errors of the constant gain and the adaptive gain 

fusion are compared in Fig. 8. MSE of the Kalman filter is 

slightly higher (0,5%) than MSE of our proposed algorithm. 

 

 

Due to the vibrations caused by the servomotor during 

movement the adaptive fusion gain is lower while the 

servomotor is running (see Fig. 9). Note that the gain is 

stabilized in a steady state in the value K = 0.1 which was also 

used in the constant gain fusion in above comparison. 

 

C. Experimental Validation of the Calibration Algorithm 

The proposed real-time calibration algorithm was used to 

estimate the bias and gain matrices of our gyroscope sensor 

module. Initial calibration parameters gi,k and bi,k were null. 

Since all sensors are placed on one board the sensor 

misalignment was neglected; therefore the A matrix according 

to (39) was not needed to be adjusted. The thermal drifts of 

calibration parameters were not considered during the 

experiment because temperature of the sensor module was 

stable. If the general temperature-dependent version of the 

calibration algorithm is used the higher-order thermal 

coefficients gi,k>0 and bi,k>0 has to be adjusted slowly because 

their real values do not change rapidly during lifetime of the 

sensor. Mentioned higher-order calibration parameters allow 

faster adaptation to different temperature which can be useful 

in some applications (e.g. indoor-outdoor transition of a 

mobile robot).  

 
Fig. 8.  Error of the estimated roll during the experiment. 

TABLE III 
REAL NOISE PARAMETERS 

Sensor Full scale RMS [x,y,z] 

Gyroscope 500 °/s [0.43, 0.41, 0.48] °/s  

Accelerometer 8 g ≈ 78.5 m/s2 [0.65, 0.53, 0.51] m/s2 

Magnetometer 4 Gauss [0.12, 0.19, 0.09] Gauss 
 

Fig. 10.  Raw measured angular velocity around the x-axis during the 
experiment.  

Fig. 9.  The adaptive fusion gain during the experiment. 

Fig. 7.  Roll movement during the experiment compared with the values 

estimated from the accelerometer only and from the adaptive fusion. 
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As an experimental input we have used a previously 

mentioned combined MEMS sensor module. The module was 

moved randomly with no pre-defined pattern (see Fig. 10 for 

an illustration) therefore the precise attitude and yaw are 

unknown. The raw (non-calibrated) accelerometer and 

magnetometer readings as a secondary input have been used in 

order to demonstrate robustness of the learning algorithm. The 

learning parameters were following: 

 

 
The given learning rate is close to the upper limit for usage 

in real systems; since the whole fusion algorithm is iterative 

(closed loop) higher learning rates could cause instability. The 

lower learning rate will result in smoother but also slower bias 

development. Resultant bias development during automated 

learning is shown in Fig. 11. 

 

 
Comparison with the actual bias values measured after the 

experiment by static calibration is in Table 5. As can be seen, 

the real-time calibration method converges to the real values. 

The used gyroscope module has internally compensated 

gain therefore the gain deviance is very small (note scale of 

the y-axis in Fig. 12). 

 

V. DISCUSSION 

As can be seen in Fig. 3 gyroscope bias is effectively 

suppressed by the sensor fusion. The fusion with the constant 

fusion gain causes smoother output but higher estimation 

error. The adaptive gain allows very fast reactions and start-

up. According to Fig. 4 the adaptive algorithm reflects initial 

low quality of roll estimation; therefore the gain (weight of the 

attitude estimated by the accelerometer) is initially high and 

then rapidly decreases with the roll estimation error. If we 

compare the proposed algorithm with the widely-used 

extended Kalman filter, our algorithm converges faster and it 

is stable even during very dynamic changes. On the other 

hand, the extended Kalman filter has smoother response and 

lower RMS.  Another advantage of our algorithm comes from 

its lower execution time. 

Experiments with the real MEMS sensors approved results 

obtained by simulations. The MSE estimation algorithm is 

able to detect rapid changes in movement including vibrations 

(see Fig. 9) which adaptively decreases the influence of the 

accelerometer (absolute but noisy sensor) to the result. 

Estimation of MSE during algorithm execution also provides 

additional valuable information about the quality of the result.  

If additional information about the object’s state is available, it 

is possible to change input MSE of the accelerometer to reflect 

known systematic errors. 

Second experiment series evaluated the automated 

calibration algorithm. According to Fig. 11 the bias learning 

works also during movement and slowly converges to the 

precise bias values. Disadvantage of the intelligent calibration 

in comparison with laboratory calibration is its lower precision 

which can be improved by decreasing of the learning rate. The 

lower learning rate will however require longer learning time. 

The learning rate of the bias Bi has to be much higher (100-

times) than the learning rate of the gain Gi, otherwise the 

calibration stability might be corrupted and the overall 

calibration parameters would diverge. 

VI. CONCLUSION 

In this paper we have proposed the improved sensor fusion 

algorithm. As an explanatory example we have used the fusion 

between the 3-axial gyroscope (measuring angular velocity), 

3-axial accelerometer (measuring acceleration of the local 

system including gravity) and 3-axial magnetometer 

(measuring Earth’s magnetic field induction) into estimation 

of attitude and yaw (AHRS system). The algorithm is based on 

Fig. 12.  Real-time learning of the gyroscope’s gain. 

TABLEV 
COMPARISON BETWEEN LEARNED BIAS AND VALUES ESTIMATED BY      

STATIC CALIBRATION 

Gyroscope 
axis 

Learned 

bias 

[rad/s] 

Bias obtained by 

static calibration 

[rad/s] 

Error of the learned 

bias  

[% of the full scale] 

x -2.0·10-2 -2.52·10-2 0.05 % 

y -0.9·10-2 -1.19·10-2 0.03 % 

z 1.5·10-2 1.26·10-2 0.03 % 
 

TABLE IV 

LEARNING PARAMETERS 

Learning Parameter Symbol Value 

Bias learning rate         λbias 10-6 

Gain learning rate λgain 10-8 

1st momentum filter [24] β1 0.999 

2nd momentum filter [24] β2 0.9999 
Maximal fusion MSE     emax 5 °/s 

 

Fig. 11.  Gyroscope bias real-time learning. 
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the estimation of the mean square error during run-time. Then 

the theoretical optimal fusion gain is computed. According to 

Fig. 4 and Fig. 5 the adaptive gain has comparable results with 

the carefully chosen fixed gain fusion, but has much better 

dynamic characteristics (at least 5-times shorter rise time). 

Additionally, the parameters of adaptive systems are easier to 

measure directly (e.g. noise parameters of the used sensors are 

usually available from their manufacturer) comparing with the 

difficulty of proper fixed fusion gain selection. However, 

output MSE should be considered only as a qualitative factor 

since the formula used for estimation of the mean square error 

is only the first order approximate. Main disadvantage of the 

adaptive fusion algorithm is the higher CPU load (approx. 2-

times more CPU time needed for MSE estimation compared 

with the fixed-gain based fusion algorithm). 

Second part of the paper proposes the innovative run-time 

calibration method based on processing of fusion deviation 

data. The system was designed to utilize any incremental 

stochastic optimization (learning) method; in this article we 

have deployed learning method called Adam, which is an 

extension of the gradient descent method [24]. Because the 

learning algorithm is using small learning rate, it is resistant to 

the occasional high-power noise contained in fusion data. This 

feature is supported by evaluation of the mean square error of 

the fusion. In the discussed case of inertial attitude 

measurement our calibration algorithm is most suitable if the 

measured movement is not continuous because in a steady 

state the quality of estimated Euler angles rises with time. The 

algorithm automatically recognizes such a state and measured 

data have greater impact on the calibration parameters. Since 

the fusion is heterogeneous (absolute sensor data are merged 

with derivative sensor data) the bias of the absolute sensor 

does not affect the calibration procedure. 

Although the fusion method proposed by this manuscript is 

derived for this special case, authors believe it can be used in 

many other applications as an alternative to the extended 

Kalman filter. The proposed fusion method is especially 

suitable, if the sensor readings are processed by non-linear 

functions in a recursive way. The proposed fusion and 

calibration methods can be adjusted to other sensor fusion 

scenarios (e.g. combination of the GNSS system – absolute 

velocity and a position sensor and accelerometer – a 

differential velocity sensor; an impulse volume sensor and a 

flow sensor and many others). 
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