
CAAD: Computer Architecture for Autonomous Driving

Shaoshan Liu, Jie Tang, Zhe Zhang, and Jean-Luc Gaudiot, Fellow, IEEE

ABSTRACT
We describe the computing tasks involved in autonomous
driving, examine existing autonomous driving computing
platform implementations. To enable autonomous driving,
the computing stack needs to simultaneously provide high
performance, low power consumption, and low thermal
dissipation, at low cost. We discuss possible approaches to
design computing platforms that will meet these needs.

Keywords
Computer Architecture; Autonomous Vehicles; Sensing;
Perception; Decision

1. INTRODUCTION
An autonomous vehicle must be capable of sensing its
environment and safely navigating without human input.
Indeed, the US Department of Transportation's National
Highway Traffic Safety Administration (NHTSA) has
formally defined five different levels of autonomous driving
[1]:

• Level 0: the driver completely controls the vehicle at all
times; the vehicle is not autonomous at all.

• Level 1: semi-autonomous; most functions are controlled
by the driver, but some functions such as braking can be
done automatically by the vehicle.

• Level 2: the driver is disengaged from physically
operating the vehicle by having no contact with the
steering wheel and foot pedals. This means that at least
two functions, cruise control and lane-centering, are
automated.

• Level 3: there is still a driver who may completely shift
safety-critical functions to the vehicle and is not required
to monitor the situation as closely as for the lower levels.

• Level 4: the vehicle performs all safety-critical functions
for the entire trip, and the driver is not expected to control
the vehicle at any time since this vehicle would control

all functions from start to stop, including all parking
functions.

Levels 3 and 4 autonomous vehicles must sense their
surroundings by using multiple sensors, including LiDAR,
GPS, IMU, cameras, etc. Based on the sensor inputs, they
need to be able to localize themselves, and in real-time, make
decisions about how to navigate within the perceived
environment. Due to the enormous amount of sensor data
and the high complexity of the computation pipeline,
autonomous driving places extremely high demands in terms
of computing power and electrical power consumption.
Existing designs often require equipping an autonomous car
with multiple servers, each with multiple high-end CPUs and
GPUs. These designs come with several problems: first, the
costs are extremely high, thus making autonomy
unaffordable to the general public. Second, power supply
and heat dissipation become a problem as this setup
consumes thousands of Watts, consequently placing high
demands on the vehicle’s power system.

We explore computer architecture techniques for
autonomous driving. First, we introduce the tasks involved
in current LiDAR-based autonomous driving. Second, we
explore how vision-based autonomous driving, a rising
paradigm for autonomous driving, is different from the
LiDAR-based counterpart. Then, we look at existing system
implementations for autonomous driving. Next, considering
different computing resources, including CPU, GPU, FPGA,
and DSP, we attempt to identify the most suitable computing
resource for each task. Based on the results of running
autonomous driving tasks on a heterogeneous ARM Mobile
SoC, we propose a system architecture for autonomous
driving, which is modular, secure, dynamic, energy-efficient,
and is capable of delivering high levels of computing
performance.

2. TASKS IN AUTONOMOUS DRIVING
Autonomous Driving is a highly complex system that
consists of many different tasks. As shown in Figure 1, in
order to achieve autonomous operation in urban situations
with unpredictable traffic, several real-time systems must
interoperate, including sensor processing, perception,
localization, planning and control [2]. Note that existing
successful implementations of autonomous driving are
mostly LiDAR-based: they rely heavily on LiDAR for
mapping, localization, and obstacle avoidance, while other
sensors are used for peripheral functions [3, 4].

© 2017 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works."

Figure 1: Tasks in Autonomous Driving: consisting of three
main stages, sensing, perception, and decision.

2.1 Sensing
Normally, an autonomous vehicle consists of several major
sensors. Indeed, since each type of sensor presents
advantages and drawbacks, in autonomous vehicles, the data
from multiple sensors must be combined for increased
reliability and safety. They can include the following:

2.1.1 GPS and Inertial Measurement Unit (IMU)
The GPS/IMU system helps the autonomous vehicle localize
itself by reporting both inertial updates and a global position
estimate at a high rate. GPS is a fairly accurate localization
sensor, but its update rate is slow, at about only 10 Hz, and
thus not capable of providing real-time updates. Conversely,
an IMU’s accuracy degrades with time, and thus cannot be
relied upon to provide reliable position updates over long
periods of time. However, an IMU can provide updates
more frequently, at or higher than 200 Hz to satisfy the real-
time requirement. Assuming a vehicle traveling at 60 miles
per hour, the traveled distance is less than 0.2 meters
between two position updates, (this means that the worst
case localization error is less than 0.2 meters).

By combining both GPS and IMU, we can provide accurate
and real-time updates for vehicle localization. Nonetheless,
we cannot rely on this sole combination for localization for
three reasons: 1.) its accuracy is only about one meter; 2.)
the GPS signal has multipath problems, meaning that the
signal may bounce off buildings, introducing more noise; 3.)
GPS requires an unobstructed view of the sky and would
thus not work in environments such as tunnels.

2.1.2 LiDAR
LiDAR is used for mapping, localization, and obstacle
avoidance. It works by bouncing a laser beam off of surfaces
and measures the reflection time to determine distance. Due
to its high accuracy, it is used as the main sensor in most
autonomous vehicle implementations. LiDAR can be used to
produce high-definition maps, to localize a moving vehicle

against high-definition maps, to detect obstacles ahead, etc.
Normally, a LiDAR unit, such as Velodyne 64-beam laser,
rotates at 10 Hz and takes about 1.3 million readings per
second. There are two main problems with LiDAR: 1.) when
there are many suspended particles in the air, such as rain
drops and dust, the measurements may be extremely noisy.
2.) a 64-beam LiDAR unit is quite costly.

2.1.3 Camera
Cameras are mostly used for object recognition and object
tracking tasks such as lane detection, traffic light detection,
and pedestrian detection, etc. To enhance autonomous
vehicle safety, existing implementations usually mount eight
or more 1080p cameras around the car, such that we can use
cameras to detect, recognize, and track objects in front of,
behind, and on both sides of the vehicle. These cameras
usually run at 60 Hz, and, when combined, would generate
around 1.8 GB of raw data per second.

2.1.4 Radar and Sonar
The radar and sonar system is mostly used as the last line of
defense in obstacle avoidance. The data generated by radar
and sonar shows the distance to the nearest object in front of
the vehicle’s path. Once we detect that an object is close
ahead, there may be a danger of a collision, then the
autonomous vehicle should apply the brakes or turn to avoid
the obstacle. Therefore, the data generated by radar and
sonar does not require much processing and usually is fed
directly to the control processor, and thus not through the
main computation pipeline, to implement such “urgent”
functions as swerving, applying the brakes, or pre-tensioning
the seatbelts.

2.2 Perception
After getting sensor data, we feed the data into the perception
stage to understand the vehicle’s environment. The three
main tasks in autonomous driving perception are localization,
object detection, and object tracking.

2.2.1 Localization
Localization is a sensor-fusion process, such that GPS/IMU,
and LiDAR data can be used to generate a high-resolution
infrared reflectance ground map. To localize a moving
vehicle relative to these maps, we could apply a particle filter
method to correlate the LiDAR measurements with the map
[10]. The particle filter method has been demonstrated to
achieve real-time localization with 10-centimeter accuracy
and to be effective in urban environments. However, the
high cost of LiDAR could limit its wide application.

2.2.2 Object Detection
In recent years, however, we have seen the rapid
development of vision-based Deep Learning technology,
which achieves significant object detection and tracking
accuracy [7]. Convolution Neural Network (CNN) is a type
of Deep Neural Network that is widely used in object

recognition tasks. A general CNN evaluation pipeline
usually consists of the following layers: 1.) The Convolution
Layer which contains different filters to extract different
features from the input image. Each filter contains a set of
“learnable” parameters that will be derived after the training
stage. 2.) The Activation Layer which decides whether to
activate the target neuron or not. 3.) The Pooling Layer
which reduces the spatial size of the representation to reduce
the number of parameters and consequently the computation
in the network. 4.) The Fully Connected Layer where
neurons have full connections to all activations in the
previous layer. The convolution layer is often the most
computation-intensive layer in a CNN.

2.2.3 Object Tracking
Object tracking refers to the automatic estimation of the
trajectory of an object as it moves. After the object to track
is identified using object recognition techniques, the goal of
object tracking is to automatically track the trajectory of the
object subsequently. This technology can be used to track
nearby moving vehicles as well as people crossing the road
to ensure that the current vehicle does not collide with these
moving objects. In recent years, deep learning techniques
have demonstrated advantages in object tracking compared
to conventional computer vision techniques [11].
Specifically, by using auxiliary natural images, a stacked
Auto-Encoder can be trained offline to learn generic image
features that are more robust against variations in viewpoints
and vehicle positions. Then, the offline trained model can be
applied for online tracking.

2.3 Decision
Based on the understanding of the vehicle’s environment,
the decision stage can generate a safe and efficient action
plan in real-time. The tasks in the decision stage mostly
involve probabilistic processes and Markov chains.

2.3.1 Prediction
One of the main challenges for human drivers when
navigating through traffic is to cope with the possible actions
of other drivers which directly influence their own driving
strategy. This is especially true when there are multiple
lanes on the road or when the vehicle is at a traffic change
point [12]. To make sure that the vehicle travels safely in
these environments, the decision unit generates predictions
of nearby vehicles, and decides on an action plan based on
these predictions. To predict actions of other vehicles, one
can generate a stochastic model of the reachable position sets
of the other traffic participants, and associate these reachable
sets with probability distributions.

2.3.2 Path Planning
Planning the path of an autonomous, agile vehicle in a
dynamic environment is a very complex problem, especially
when the vehicle is required to use its full maneuvering
capabilities. A brute force approach would be to search all

possible paths and utilize a cost function to identify the best
path. However, the brute force approach would require
enormous computation resources and may be unable to
deliver navigation plans in real-time. In order to circumvent
the computational complexity of deterministic, complete
algorithms, probabilistic planners have been utilized to
provide effective real-time path planning [13].

2.3.3 Obstacle Avoidance
As safety is the paramount concern in autonomous driving,
at least two levels of obstacle avoidance mechanisms need
to be deployed to ensure that the vehicle will not collide with
obstacles. The first level is proactive, and is based on traffic
predictions [14]. At runtime, the traffic prediction
mechanism generates measures like time to collision or
predicted minimum distance, and based on this information,
the obstacle avoidance mechanism is triggered to perform
local path re-planning. If the proactive mechanism fails, the
second-level, the reactive mechanism, using radar data, will
take over. Once the radar detects an obstacle, it will override
the current control to avoid the obstacles.

3. VISION-BASED AUTONOMOUS
DRIVING
LiDAR is capable of producing over a million data points
per second with a range up to 200 meters. However, it is very
costly (a high-end LiDAR sensor costs over tens of
thousands of dollars). We thus explore an affordable yet
promising alternative, vision-based autonomous driving.

3.1 LiDAR vs. Vision Localization
The localization method in LiDAR-based systems heavily
utilizes a particle filter [3], while vision-based localization
utilizes visual odometry techniques [6]. These two different
approaches are required to handle the vastly different types
of sensor data. The point clouds generated by LiDAR
provide a “shape description” of the environment, but it is
hard to differentiate individual points. By using a particle
filter, the system compares a specific observed shape against
the known map to reduce uncertainty. In contrast, for vision-
based localization, the observations are processed through a
full pipeline of image processing to extract salient points and
the salient points’ descriptions, which is known as feature
detection and descriptor generation. This allows us to
uniquely identify each point and apply these salient points to
directly compute the current position.

3.2 Vision-Based Localization Pipeline
In detail, vision-based localization undergoes the following
simplified pipeline: 1.) by triangulating stereo image pairs,
we first obtain a disparity map which can be used to derive
depth information for each point. 2.) by matching salient
features between successive stereo image frames, we can
establish correlations between feature points in different
frames. We can then estimate the motion between the past
two frames. 3.) Also, by comparing the salient features

against those in the known map, we can also derive the
current position of the vehicle.

3.3 Impact on Computing
Compared to a LiDAR-based approach, a vision-based
approach introduces several highly parallel data processing
stages, including feature extraction, disparity map
generation, optical flow, feature match, Gaussian Blur, etc.
These sensor data processing stages heavily utilize vector
computations and each task usually has a short processing
pipeline, which means that these workloads are best suited
for DSPs. In contrast, a LiDAR-based approach heavily
utilizes the Iterative Closest Point (ICP) algorithm [15],
which is an iterative process that is hard to parallelize, and
thus more efficiently executed on a sequential CPU.

4. EXISTING IMPLEMENTATIONS
To understand the main points in autonomous driving
computing platforms, we look at an existing computation
hardware implementation of a level 4 autonomous car from
a leading autonomous driving company. Then, to
understand how the chip makers attempt to solve these
problems, we look at the existing autonomous driving
computation solutions provided by different chip makers.

4.1 Computing Platform Implementation
Our interaction with a leading autonomous driving company
(name withheld by request) has led us to understand that
their current computing platform consists of two compute
boxes, each equipped with an Intel Xeon E5 processor and
four to eight Nvidia K80 GPU accelerators, connected with
a PCI-E bus. At its peak performance, the CPU (which
consists of 12 cores), is capable of delivering 400 GOPS/s,
consumes 400 W of power. Each GPU is capable of
8TOPS/s, while consuming 300 W of power. Combining
everything together, the whole system is able to deliver 64.5
TOPS/s at about 3000 W. The compute box is connected to
twelve high-definition cameras around the vehicle, for object
detection and object tracking tasks. A LiDAR unit is
mounted on top of the vehicle for vehicle localization as well
as some obstacle avoidance functions. A second compute
box performs exactly the same tasks and is used for
reliability: in case the first box fails, the second box can
immediately take over. In the worst case, when both boxes
run at their peak, this would mean over 5000 W of power
consumption which would consequently generate enormous
amount of heat. Also, each box costs 20 ~ 30 thousand
dollars, making the whole solution unaffordable to average
consumers.

4.2 Existing Processing Solutions
We examine some existing computing solutions targeted for
autonomous driving.

4.2.1 GPU-Based Solutions
The Nvidia PX platform is the current leading GPU-based
solution for autonomous driving. Each PX 2 consists of two
Tegra SoCs and two Pascal graphics processors. Each GPU
has its own dedicated memory, as well as specialized
instructions for Deep Neural Network acceleration. To
deliver high throughput, each Tegra connects directly to the
Pascal GPU using a PCI-E Gen 2 x4 bus (total bandwidth:
4.0 GB/s). In addition, the dual CPU-GPU cluster is
connected over Gigabit Ethernet, delivering 70 Gigabits per
second. With optimized I/O architecture and DNN
acceleration, each PX2 is able to perform 24 trillion deep-
learning calculations every second. This means that, when
running AlexNet deep learning workloads, it is capable of
processing 2,800 images/s.

4.2.2 DSP-Based Solutions
Texas Instruments’ TDA provides a DSP-based solution for
autonomous driving. A TDA2x SoC consists of two floating-
point C66x DSP cores and four fully programmable Vision
Accelerators, which are designed for vision processing
functions. The Vision Accelerators provide eight-fold
acceleration on vision tasks compared to an ARM Cortex-15
CPU, while consuming less power. Similarly, CEVA XM4
is another DSP-based autonomous driving computing
solution. It is designed for computer vision tasks on video
streams. The main benefit for using CEVA-XM4 is energy-
efficiency, which requires less than 30mW for a 1080p video
at 30 frames per second.

4.2.3 FPGA-Based Solutions
Altera’s Cyclone V SoC is one FPGA-based autonomous
driving solution which has been used in Audi products.
Altera’s FPGAs are optimized for sensor fusion, combining
data from multiple sensors in the vehicle for highly reliable
object detection. Similarly, Zynq UltraScale MPSoC is also
designed for autonomous driving tasks. When running
Convolution Neural Network tasks, it achieves 14
images/sec/Watt, which outperforms the Tesla K40 GPU (4
images/sec/Watt). Also, for object tracking tasks, it reaches
60 fps in a live 1080p video stream.

4.2.4 ASIC-Based Solutions
MobilEye EyeQ5 is a leading ASIC-based solution for
autonomous driving. EyeQ5 features heterogeneous,
fully programmable accelerators, where each of the four
accelerator types in the chip are optimized for their own
family of algorithms, including computer-vision, signal-
processing, and machine-learning tasks. This diversity of
accelerator architectures enables applications to save both
computational time and energy by using the most suitable
core for every task. To enable system expansion with
multiple EyeQ5 devices, EyeQ5 implements two PCI-E
ports for inter-processor communication.

5. COMPUTER ARCHITECTURE DESIGN
EXPLORATION
We attempt to develop some initial understandings of the
following questions: 1.) what computing units are best suited
for what kind of workloads 2.) if we considered an extreme,
would a mobile processor be sufficient to perform the tasks
in autonomous driving, and 3.) how to design an efficient
computing platform for autonomous driving?

5.1 Matching Workloads to Computing Units
We seek to understand which computing units are best fitted
to convolution and feature extraction workloads, which are
the most computation-intensive workloads in autonomous
driving scenarios. We conducted experiments on an off-the-
shelf ARM mobile SoC consisting of a four-core CPU, a
GPU, as well as a DSP, the detailed specifications can be
found in [8]. To study the performance and energy
consumption of this heterogeneous platform, we
implemented and optimized feature extraction and
convolution tasks on CPU, GPU, and DSP, and measured
chip-level energy consumption.

First, we implemented a convolution layer, which is
commonly used, and is the most computation-intensive stage,
in object recognition and object tracking tasks. The left side
of Figure 2 summarizes the performance and energy
consumption results: when running on the CPU, each
convolution takes about 8 ms to complete, consuming 20 mJ;
when running on the DSP, each convolution takes 5 ms to
complete, consuming 7.5 mJ; when running on a GPU, each
convolution takes only 2 ms to complete, consuming only
4.5 mJ. These results confirm that GPU is the most efficient
computing unit for convolution tasks, both in performance
and in energy consumption.

Figure 2: Convolution and Feature Extraction Performance and
Energy: DSP is best suited for feature extraction, and GPU is best
suited for convolution.

Next, we implemented feature extraction, which generates
feature points for the localization stage, and this is the most
computation expensive task in the localization pipeline. The
right side of Figure 2 summarizes the performance and
energy consumption results: when running on a CPU, each
feature extraction task takes about 20 ms to complete,
consuming 50 mJ; when running on a GPU, each
convolution takes 10 ms to complete, consuming 22.5 mJ;

when running on a DSP, each convolution takes only 4 ms
to complete, consuming only 6 mJ. These results confirm
that DSP is the most efficient computing unit for feature
processing tasks, both in performance and in energy
consumption. Note that we did not implement other tasks in
autonomous driving, such as localization, planning, obstacle
avoidance etc. on GPUs and DSPs as these tasks are control-
heavy and would not efficiently execute on GPUs and DSPs.

5.2 Autonomous Driving on Mobile Processor
We seek to explore the edges of the envelope and understand
how well an autonomous driving system could perform on
the aforementioned ARM mobile SoC. Figure 3 shows the
vision-based autonomous driving system we implemented
on this mobile SoC. We utilize the DSP for sensor data
processing tasks, such as feature extraction and optical flow;
we use GPU for deep learning tasks, such as object
recognition; we use two CPU threads for localization tasks
to localize the vehicle at real-time; we use one CPU thread
for real-time path planning and we use one CPU thread for
obstacle avoidance. Note that multiple CPU threads can run
on the same CPU core if a CPU core is not fully utilized.

Figure 3: Autonomous Navigation System on Mobile SoC: we fully
utilize the heterogeneous computing platform to achieve
performance and energy efficiency.

Surprisingly, it turns out that the performance was quite
impressive when we ran this system on the ARM Mobile
SoC. The localization pipeline is able to process 25 images
per second, almost keeping up with image generation at 30
images per second. The deep learning pipeline is capable of
performing 2 to 3 object recognition tasks per second. The
planning and control pipeline is designed to plan a path
within 6 ms. When running this full system, the SoC
consumes 11 W on average. With this system, we were able
to drive the vehicle at around 5 miles per hour without any
loss of localization, quite a remarkable feat, considering that
this ran on a mobile SoC. With more computing resources,
the system should be capable of processing more data and
allowing the vehicle to move at a higher speed, eventually
satisfying the needs of a production-level autonomous
driving system.

5.3 Design of Computing Platform
The reason why we could deliver this performance on an
ARM mobile SoC is that we fully utilized the heterogeneous
computing resources of the system and used the best suited
computing unit for each task so as to achieve best possible

performance and energy efficiency. However, there is a
downside as well: we could not fit all the tasks into such a
system, for example, object tracking, change lane prediction,
cross-road traffic prediction, etc. In addition, we need for the
autonomous driving system to have the capability to upload
raw sensor data and processed data to the cloud but the
amount of data is so large that it would take all of the
available network bandwidth.

The aforementioned functions, object tracking, change lane
prediction, cross-road traffic prediction, data uploading etc.
are not needed all the time. For example, the object tracking
task is triggered by the object recognition task and the traffic
prediction task is triggered by the object tracking task. The
data uploading task is not needed all the time either since
uploading data in batches usually improves throughput and
reduces bandwidth usage. If we designed an ASIC chip for
each of these tasks, it would be a waste of chip area, but an
FPGA would be a perfect fit for these tasks. We could have
one FPGA chip in the system and have these tasks time-share
the FPGA. It has been demonstrated that using Partial-
Reconfiguration techniques [5], an FPGA soft core could be
changed within less than a few milliseconds, making time-
sharing possible in real-time.

Figure 4: Computing Stack for Autonomous Driving: consisting of
application, operating system, runtime, and computing layers.

In Figure 4, we show our proposed computing stack for
autonomous driving. At the level of the computing platform
layer, we have an SoC architecture consisting of an I/O
subsystem that interacts with the front-end sensors; a DSP to
pre-process the image stream to extract features; a GPU to
perform object recognition and some other deep learning
tasks; a multi-core CPU for planning, control, and
interaction tasks; an FPGA that can be dynamically
reconfigured and time-shared for data compression and
uploading, object tracking, and traffic prediction, etc. These
computing and I/O components communicate through
shared memory. On top of the computing platform layer, we
have a run-time layer to map different workloads to the
heterogeneous computing units through OpenCL, and to
schedule different tasks at runtime with a run-time execution
engine. On top of the Run-Time Layer, we have an
Operating Systems Layer utilizing Robot Operating System

(ROS) design principles [9], which is a distributed system
consisting of multiple ROS nodes, each encapsulating a task
in autonomous driving.

5.4 Discussion
At PerceptIn, we have implemented and shipped products
with the aforementioned autonomous driving computing
stack, which provides several benefits: 1.) it is modular:
more ROS nodes can be added if more functions are required
2.) it is secure: ROS nodes provide a good isolation
mechanism to prevent nodes from impacting each other 3.)
it is highly dynamic: the run-time layer can schedule tasks
for max throughput, lowest latency, or lowest energy
consumption 4.) it can deliver high performance: each
heterogeneous computing unit is used for the most suitable
task to achieve highest performance 5.) it is energy-efficient:
we can use the most energy-efficient computing unit for each
task, for example, a DSP for feature extraction.

6. CONCLUSIONS
Existing computing solutions for Level 4 autonomous
driving often consume thousands of Watts, dissipate
enormous amounts of heat, and cost tens of thousands of
dollars. These power, heat, and cost barriers thus make
autonomous driving technologies difficult to transfer to the
general public. We proposed and developed an autonomous
driving computing architecture and software stack that is
modular, secure, dynamic, high-performance, and energy-
efficient. Our prototype system on an ARM Mobile SoC
consumes 11 W on average and is able to drive a mobile
vehicle at 5 miles per hour. With more computing resources,
the system will be able to process more data and will
eventually satisfy the need of a production-level autonomous
driving system.

7. ACKNOWLEDGMENTS
This work is partly supported by the National Science
Foundation under Grant No. XPS-1439165. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of NSF.

8. REFERENCES
[1] Policy on Automated Vehicles, NHTSA,

http://www.nhtsa.gov/staticfiles/rulemaking/pdf/Automated_
Vehicles_Policy.pdf

[2] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S.
Kammel, J. Kolter, D. Langer, O. Pink, V. Pratt, M.
Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling,
and S. Thrun. Towards fully autonomous driving: Systems
and algorithms. In Proceedings of IEEE Intelligent Vehicles
Symposium 2011

[3] J. Levinson and S. Thrun, "Robust vehicle localization in
urban environments using probabilistic maps," in 2010 IEEE
International Conference on Robotics and Automation. IEEE,
May 2010

[4] A. Teichman, J. Levinson, and S. Thrun, "Towards 3d object
recognition via classification of arbitrary object tracks," in
2011 IEEE International Conference on Robotics and
Automation. IEEE, May 2011

[5] S. Liu, R. N. Pittman, A. Forin, and J-L. Gaudiot,
“Achieving Energy Efficiency through Runtime Partial
Reconfiguration on Reconfigurable Systems,” ACM
Transactions on Embedded Computing Systems, Vol. 12, No.
3, March 2013

[6] D. Scaramuzza, F. Fraundorfer, "Visual Odometry Part I:
The First 30 Years and Fundamentals [Tutorial]", IEEE
Robotics & Automation Magazine, vol.18, no.4, 2011

[7] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning,”
Nature, 521:436–444, May 2015.

[8] Qualcomm Snapdragon 820 Processor,
https://www.qualcomm.com/products/snapdragon/processors
/820

[9] Robot Operating System, http://www.ros.org/

[10] S. Thrun, W. Burgard, and D. Fox, “Probabilistic Robotics,”
MIT Press, 2005

[11] N. Wang and D.-Y. Yeung. “Learning a deep compact image
representation for visual tracking,” in Annual Conference on
Neural Information Processing Systems (NIPS), 2013

[12] E. Galceran, A. G. Cunningham, R. M. Eustice, and E.
Olson, “Multipolicy decision-making for autonomous driving
via changepoint-based behavior prediction,” in Proceedings
of Robotics: Science & Systems Conference, 2015

[13] E. Frazzoli, M.A. Dahleh, and E. Feron. Real-Time Motion
Planning for Agile Autonomous Vehicles, AIAA Journal of
Guidance, Control, and Dynamics, Volume 25, Issue 1, 2002.

[14] M. Althoff, O. Stursberg, and M. Buss. Model-based
probabilistic collision detection in autonomous driving. IEEE
Transactions on Intelligent Transportation Systems, 10:299 –
310, 2009.

[15] P.J. Besl, D. M. Neil, A method for registration of 3d shapes,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 2, pp. 239-256, February 1992.

Dr. Shaoshan Liu is the co-founder of PerceptIn. He attended UC
Irvine for his undergraduate and graduate studies and obtained a
Ph.D. in Computer Engineering in 2010. His research focuses on
Computer Architecture, Big Data Platforms, Deep Learning
Infrastructure, and Robotics. He has over eight years of industry
experience: before co-founding PerceptIn, he was with Baidu USA,

where he led the Autonomous Driving Systems team. Before
joining Baidu USA, he worked on Big Data platforms at LinkedIn,
Operating Systems kernel at Microsoft, Reconfigurable Computing
at Microsoft Research, GPU Computing at INRIA (France),
Runtime Systems at Intel Research, and Hardware at Broadcom.
Email: shaoshan.liu@perceptin.io

Dr. Jie Tang is the corresponding author and she is currently an
associate professor in the School of Computer Science and
Engineering of South China University of Technology,
Guangzhou, China. Before joining SCUT, Dr. Tang was a post-
doctoral researcher at the University of California, Riverside and
Clarkson University from Dec. 2013 to Aug. 2015. She received
the B.E. from the University of Defense Technology in 2006, and
the Ph.D. degree from the Beijing Institute of Technology in 2012,
both in Computer Science. From 2009 to 2011, she was a visiting
researcher at the PArallel Systems and Computer Architecture Lab
at the University of California, Irvine, USA. Email:
cstangjie@scut.edu.cn

Dr. Zhe Zhang is the co-founder of PerceptIn. He received the
Bachelor’s degree in Automation from Tsinghua University,
Beijing, China in 2005. He received a PhD degree in Robotics from
State University of New York (SUNY) at Stony Brook, NY, USA
in 2009. His PhD was on vision based robotic 3D mapping and
localization. From 2009 to 2014, Zhe was with Microsoft Robotics
working on mapping, localization, navigation, and self-recharge
solutions on a prototype consumer robot. In May 2014, Zhe joined
Magic Leap Mountain View office and was leading sparse/dense
mapping and pose tracking efforts. Email: zhe.zhang@perceptin.io

Dr. Jean-Luc Gaudiot received the Diplôme d'Ingénieur from
ESIEE, Paris, France in 1976 and the M.S. and Ph.D. degrees in
Computer Science from UCLA in 1977 and 1982, respectively. He
is currently Professor in the Electrical Engineering and Computer
Science Department at UC, Irvine. Prior to joining UCI in 2002, he
was Professor of Electrical Engineering at the University of
Southern California since 1982. His research interests include
multithreaded architectures, fault-tolerant multiprocessors, and
implementation of reconfigurable architectures. He has published
over 250 journal and conference papers. His research has been
sponsored by NSF, DoE, and DARPA, as well as a number of
industrial companies. He has served the community in various
positions and was just elected to the presidency of the IEEE
Computer Society for 2017. E-mail: gaudiot@uci.edu

