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Abstract— Many driver assistance systems such as Adaptive
Cruise Control require the identification of the closest vehicle
that is in the host vehicle’s path. This entails an assignment of
detected vehicles to the host vehicle path or neighboring paths.
After reviewing approaches to the estimation of the host vehicle
path and lane assignment techniques we introduce two methods
that are motivated by the rationale to filter measured data as
late in the processing stages as possible in order to avoid delays
and other artifacts of intermediate filters. These filters generate
discrete posterior probability distributions from which a path
or “lane” index is extracted by a median estimator. The relative
performance of those methods is illustrated by a ROC using
experimental data and labeled ground truth data.

I. INTRODUCTION

Driver assistance systems that react to other vehicles e.
g. adaptive cruise control (ACC) or automatic emergency
braking (AEB) or collision mitigation braking (CMB) need
to have a means to identify the vehicle/object that is most
relevant to the system under consideration. For ACC for
example the object is sought that the host vehicle is following
whereas for AEB or CMB the object is sought that the
host vehicle is most likely to crash into. In ACC systems
this function is often referred to as track selection or target
selection or target object selection (TOS).

The common approach to tackle this problem has been
to obtain a fused and filtered estimate of the host vehicle
path based on all available proprioceptive and exterocep-
tive sensor data. There is ample literature on obtaining an
improved estimate of the host vehicle path by fusing and
filtering inertial data (wheel speeds, yaw rate) with video line
markings, road boundaries, common motion of other vehi-
cles, and other clues about the host vehicle’s path (HVP), see
e. g. [1], [2], [3]. After having obtained an HVP estimate the
closest object inside this path is selected as ACC target. This
approach works well if the estimated path is not very noisy
and in particular does not veer over several lane widths on a
time scale much shorter than that of a normal lane change.
However, if the path estimate exhibits fast fluctuations which
can happen e. g. if the path is only based on inertial data,
the path assignment might fail occasionally. Modifying the
path filter such that those fast fluctuations will be suppressed
may also make the track selection less sensitive in situations
where a fast object selection or deselection is required such
as in lane changes of the host vehicle or the target vehicle.
Instead we propose methods that postpone the filtering which
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is commonly applied to the host vehicle path to the final
quantity, namely the lane assignment itself.

The topic of path or lane assignment has already been
addressed in the following articles: In [4] the vehicle’s lane
states are modeled by a three-state Hidden Markov Model
to which the Viterbi algorithm to estimate the optimal lane
assignment sequence as well as a so-called Lane Filter to
recursively estimate the optimal current lane assignment is
applied. This Lane Filter turns out to be a discrete Bayes
filter followed by a MAP estimator.

In [5] the lane assignment is performed by fuzzy logic
in the lateral position and lateral velocity in circular path
coordinates from which an unfiltered quantity called lane-
probability is derived.

In [6] the normalized lateral position (NLP) is used as a
continuous generalization of the discrete lane number. This
NLP is computed by propagation of probabilities using the
unscented transform and is based upon the target vehicle’s
position in Cartesian host vehicle coordinates and (possi-
bly fused) lane curvature and lane width information. The
discrete lane assignment is performed using postulated lane
occupancy likelihood functions and contains no filtering.

In [7] two methods – a discrete and a continuous one – of
a probabilistic lane assignment are described. The continuous
method describes the computation of a continuous lane
“number” similar to the NLP from [6]. This continuous
lane number is computed at every time step by propaga-
tion of probability distributions to second order and is not
filtered. The discrete method computes the probabilities of
the host vehicle being in three different lanes as well as
the probabilities of the target vehicle being in those lanes
and then computes their joint probabilities by multiplication
thereby implicitly assuming statistical independence. Again,
those joint probabilities are not filtered. Both methods use
an approximation of a circular arc by a third order polyno-
mial and also approximate the lateral position of the target
objects perpendicular to the estimated curved path by the
lateral position with respect to a host vehicle fixed Cartesian
coordinate system.

In [8] an incremental sampling of the probability distribu-
tions of target vehicles and the host vehicle path was applied
to the non-linear equation for the time to cutin/cutout.

In all of the above described approaches (except [4])
filtering is not performed on the lane index or the NLP
but occurs at earlier stages of the estimation. In contrast
we propose here two filters where the filtering is applied
to the final quantity - the path index - or the lateral position
in path coordinates which is related to the path index by
algebraic discretization. In the first technique presented in
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this paper we apply a discrete Bayes filter to the lane
index - similar to the Lane Filter from [4] - albeit with
adaptive measurement likelihoods that take into account
the uncertainties of all measured quantities and a velocity-
dependent Markov transition matrix with a band structure.

This paper is organized as follows: in the first section we
illustrate the concept of a host vehicle path and introduce
the two new methods to be compared as well as the com-
parison setup. Then we describe the two path assignment
approaches, namely the Discrete Path Assignment Filter and
the Continuous Path Assignment Filter and their correspond-
ing estimators. In the fourth section we present experimental
results of the comparison of the two approaches based on
an unfiltered path estimate using yaw rate and host vehicle
speed. A review of the probability distribution transformation
from Cartesian to circular path coordinates is relegated to the
appendix.

II. COMPARISON SETUP

We want to assign vehicles/objects ahead of the host
vehicle either to its path or its neighboring “lanes”. Note
that the host vehicle path need not coincide with traffic
lanes delimited by line markings; this is the case e. g. in
lane change scenarios, see fig. 1. Here we also distinguish
between the host vehicle (HV) coordinates (x, y) which
describe a Cartesian, vehicle fixed coordinate system and the
host vehicle path (HVP) coordinates (xP , yP ) which describe
a locally orthogonal coordinate system whose origin is also
at the host vehicle and whose curved x−axis follows the
HVP.
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Fig. 1. Bird’s eye view of host and target vehicle with host vehicle
coordinates and host vehicle path coordinates.

The variables {ybnd,iP } with i = 1 . . . 4 delimit the host
vehicle path and neighboring “lanes” along the HVP. We
want to estimate the HVP index l ∈ L = {0, 1, 2, 3, 4} for
all detected vehicles; its interpretation is given in table II.

As an input to the HVP assignment filter we assume a list
of vehicle objects - possibly based upon multi-sensor fusion
- with kinematic attributes (x, y, ẋ, ẏ) in Cartesian vehicle
fixed coordinates. We also assume sensor input with cues

TABLE I
PATH INDEX

l interpretation
0 left of left path
1 left path
2 center (host) path
3 right path
4 right of right path

about the vehicle path: e. g. an “inertial” path based upon
yaw rate and speed (see also the appendix) as well as line
markings detected by video. These individual path cues are
then fed into the HVP assignment filter module depicted in
dark gray in fig. 2. The first stage in the HVP assignment
filter module is the transformation of the objects’ probability
distribution functions (pdfs) from HV coordinates to HVP
coordinates using the individual path cues, also represented
by pdfs. The crucial point here is that this transformation as
well as the original path cue sensor inputs should not contain
any filters in order to postpone filtering to the final stage.
In particular, yaw rate, speed, detected lines, etc, should be
raw measurements. The objects’ pdfs in HVP coordinates are
then fed into two different filters: one is a discrete Bayes filter
with a discrete posterior path index distribution as output, the
other is a continuous Bayes filter represented by a Kalman
filter with a posterior lateral path coordinate distribution as
output. This continuous distribution is discretized using the
measurement likelihood function of the discrete Bayes filter.
Then median estimators are applied to both distributions in
order to arrive at an estimate of the path index.
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Fig. 2. Overview of the HVP assignment filter and the simulation setup
to compare the discrete and continuous approaches to path assignment.

In the next two sections the two filter choices - the discrete
and the continuous Bayes filter - are introduced.

III. DISCRETE PATH ASSIGNMENT FILTER

The probability of an assigned lane l at time tk de-
pends on the history of the lateral positions of objects,
i. e. p(lk|Zk) where Zk = {zP,k, zP,k−1, . . . }. Here, zP,k
denotes the set of measurements at time tk containing the
lateral position of the object in path coordinates yobjP,k and



the set of measured lane boundaries in path coordinates
{ybnd,1P,k , ybnd,2P,k , ybnd,3P,k , ybnd,4P,k }:

zP,k = {yobjP,k, y
bnd,1
P,k , ybnd,2P,k , ybnd,3P,k , ybnd,4P,k }. (1)

In many situations only the two innermost boundaries
ybnd,2P,k , ybnd,3P,k will be detected by a video system and the
position of the other two boundaries will then have to
be extrapolated from the width of the inner lane. If no
lane boundary is detected then also default values for the
innermost boundaries will have to be used.

To this filtering problem a discrete Bayes filter can be
applied, for a review see e. g. [9], [10].

A. Bayes filter update

The update step of a discrete Bayes filter for this setup
reads

p(lk|Zk) =
p(zP,k|lk)p(lk|Zk−1)∑

mk∈L p(zP,k|mk)p(mk|Zk−1)
(2)

Hence we need to model the measurement likelihood
p(zP,k|lk).

1) Modeling of measurement likelihoods: The Bayes up-
date requires an expression for the measurement likelihood
p(zP,k|lk). However, it is not straightforward to model this
likelihood since the state lk with five discrete values is much
simpler than the set of measurements zP,k. Therefore we
will specify the inverse measurement model p(lk|zP,k) and
then relate it to the measurement likelihood by using Bayes’
theorem.

By Bayes’ theorem the measurement likelihood is related
to the inverse measurement model by

p(zP,k|lk) = p(lk|zP,k)
p(zP,k)

p(lk)
(3)

Assuming a uniform a priori distribution for p(lk) the
quotient in eq. (3) cancels in the Bayes update expression
and eq. (2) becomes

p(lk|Zk) =
p(lk|zP,k)p(lk|Zk−1)∑

mk∈L p(mk|zP,k)p(mk|Zk−1)
(4)

To compute the probability that lane l is occupied at tk
we compute the probability that the object is left of the right
boundary ybnd,l+1

P,k and subtract the probability that the object
is left of the left lane boundary ybnd,lP,k , i. e.

p(lk|zP,k) =

∫ 0

−∞
p(yobjP,k − y

bnd,l+1
P,k |zP,k)d(yobjP,k − y

bnd,l+1
P,k )

−
∫ 0

−∞
p(yobjP,k − y

bnd,l
P,k |zP,k)d(yobjP,k − y

bnd,l
P,k )(5)

If the individual probability distributions for the lateral
positions in HVP coordinates of the object and the lane
boundaries are represented by N (yobjP,k;µobjP,k, σ

obj
P,k) and

N (ybnd,lP,k ;µbnd,lP,k , σbnd,lP,k ) the integrands in eq. (5) above are
given by

p(ỹbnd,lP,k |zP,k) =

N (ỹbnd,lP,k ;µobjP,k − µ
bnd,l
P,k ,

√
(σobjP,k)2 + (σbnd,lP,k )2)

where ỹbnd,lP,k := yobjP,k − y
bnd,l
P,k . Then

p(lk|zP,k) = Φ

 µbnd,l+1
P,k − µobjP,k√

(σobjP,k)2 + (σbnd,l+1
P,k )2


−Φ

 µbnd,lP,k − µ
obj
P,k√

(σobjP,k)2 + (σbnd,lP,k )2

 (6)

where Φ is the cumulative distribution function of the stan-
dard normal distribution. By using the inverse measurement
model we have derived the Bayes update step under the
mild assumption of a uniformly distributed a priori lane
assignment probability. This approach differs from the one in
[6] where the measurement model p(zP,k|lk) was postulated
in a piecewise, heuristic manner.

The parameters µbnd,lP,k , σbnd,lP,k constitute input from the
transformation module (“Transform objects to path coor-
dinates”) in fig. 2. As an illustration the inverse measure-
ment likelihoods have been plotted in fig. 3 and fig. 4 for
two different values of the effective variance (σleff,k)2 =

(σobjP,k)2+(σbnd,lP,k )2 where the variances of all lane boundaries
were taken to be identical.
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Fig. 3. Inverse measurement likelihood functions for σl
eff = 0.3m.

−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

Inverse measurement likelihood

µobj
P  [m], σl

eff = 2m

p(
l|z

P
)

 

 

p(0|zP)

p(1|zP)

p(2|zP)

p(3|zP)

p(4|zP)

Fig. 4. Inverse measurement likelihood functions for σl
eff = 2.0m.



It can be seen that for a small effective variance the lane
assignment likelihoods stay roughly constant over almost the
entire width of the lane whereas for large effective variances
the likelihoods approximate a Gaussian shape except for the
boundary likelihoods. Integration of the likelihood functions
over µobjP,k yields the width of the lane which is infinite for
the likelihoods of the boundary states ’left of left path’ and
’right of right path’.

B. Bayes filter prediction

The Bayes filter prediction is given by

p(lk|Zk−1) =
∑
lk−1

p(lk|lk−1)p(lk−1|Zk−1) (7)

where the Markov transition matrix p(lk|lk−1) is modeled
as a perturbation of the identity matrix, i. e. objects tend to
stay in their lanes, with small probabilities for transitions to
neighboring lanes, but not to next-to-neighboring lanes.1

p(lk|lk−1) = (8)
1−ε−η ε+0.5|η|−η 0 0 0

ε+η 1−2ε−|η| ε+0.5|η|−η 0 0

0 ε+0.5|η|+η 1−2ε−|η| ε+0.5|η|−η 0

0 0 ε+0.5|η|+η 1−2ε−|η| ε−η

0 0 0 ε+0.5|η|+η 1−ε+η


Here, ε denotes the default probability for transitions between
neighboring lanes and η is an additional increment or decre-
ment parameter, respectively, that can depend for example
upon the lateral velocity of the object or upon a detected
indicator signal. The specific expressions involving η arise
from the following assumptions: the velocity perturbation is
additive; a velocity to the right should increase the transition
probability from the current lane the right lane and decrease
the probability to the left path; and the columns of the
Markov transition matrix must add up to one for proper
normalization.

C. Estimator for HVP assignment

After having obtained an a posteriori probability distribu-
tion of lane indices by discrete Bayes filtering a single lane
index estimate needs to be extracted by an estimator. This
is done by a median estimator, i. e. by determining the lane
index lestk for which∑

lk≤lestk

p(lk|Zk) ≥ 0.5 and
∑

lk≥lestk

p(lk|Zk) ≥ 0.5 (9)

If the probability of this lane estimate is also above a certain
threshold p(lestk |Zk) ≥ plmin then this estimate is accepted
as an assigned lane for use by a subsequent track selection;
otherwise no lane will be assigned to this object. We have
decided against a mean estimator because it is less robust
and against a MAP estimator because for strongly oscillating
host vehicle paths the lane probability distribution can exhibit
several maxima of similar height. An example distribution
where the left lane is assigned is depicted in fig. 5.

1A similar transition structure albeit with partly different states was used
in [11].
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IV. CONTINUOUS PATH ASSIGNMENT FILTER

The first step in the continuous case is the filtering
of the object’s lateral position in HVP coordinates: yobjP .
Then, its continuous distribution function is mapped onto
a discrete lane assignment distribution using path boundary
information. Finally, a median estimator is applied to extract
a single lane assignment value.

A. Dynamical system for lateral HVP coordinate

The state is ŷobjP where the diacriticˆserves to distinguish
this filtered quantity from the unfiltered measurement yobjP
in eq. (1). In order to be able to compare results using
continuous filtering to discrete filtering on an equal footing
the velocity is modeled as an input uk to the dynamical
system in analogy to (8) and is not part of the state. However,
inclusion of derivatives (velocity, acceleration, ...) of the
lateral position in the state is straightforward and appropriate
for more dynamic situations. The dynamical model is a
discrete-time counterpart white noise velocity model with

ξk+1 = ξk + ∆tkuk + ∆tkνk (10)

with ∆tk = tk+1 − tk and νk the process noise. The
measurement equation is

zk = ξk + wk (11)

where zk is the lateral position in host vehicle path coor-
dinates. For circular paths arising from host vehicle yaw
rate and velocity, the lateral position is given by eq. (13) as
described in the appendix. For non-circular paths, this lateral
position can be provided by other path cues as indicated
in fig. 2. To this one-dimensional system a Kalman filter is
applied yielding a posterior distribution N (ŷobjP,k; µ̂objP,k, σ̂

obj
P,k).

In order to satisfy one of the prerequisites for a Kalman filter
we have also verified in the appendix that the propagation
of pdfs of the parameters of eq. (13) by Taylor expansion is
a valid approximation; hence zk is given by eq. (14) from
the appendix and the variance of the measurement noise wk
is given by eq. (15).

B. Map to discrete lane distribution and estimator

With the lane boundary information contained in zP,k
(from eq. (1)) the inverse measurement likelihood eq. (6) can



be applied to arrive at a discrete probability distribution for
the five path assignment possibilities from table II. Note that
in this case the mean and standard deviation µobjP,k, σ

obj
P,k are

replaced by µ̂objP,k, σ̂
obj
P,k from the filtered pdf of ŷobjP,k. Finally,

as in sec. III-C a median estimator is applied followed by
thresholding.

V. EXPERIMENTAL RESULTS

We have evaluated both algorithms using recorded exper-
imental data from highway and country road scenarios with
a total length of ca. 117 minutes of ground truthed data.
Here path cue inputs from the camera were disabled, hence
the only source of path information was due to the inertial
host vehicle signals yaw rate and speed. For a representative
comparison of both approaches we have reduced the number
of free parameters in each algorithm to one: namely the
value of the default transition to neighboring lanes ε for the
Discrete Path Assignment Filter and the standard deviation
σν of the process noise for the Continuous Path Assignment
Filter. Other parameters such as sensor characteristics or
the thresholds for the median estimators are identical. With
those parameters in the ranges ε ∈ {1e−1...1e−6} and σν ∈
{0.04...0.4m/s} the ROC curve in fig. 6 was generated.
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Fig. 6. ROC curve of correct host lane assignments (true positives) versus
incorrect host lane assignments (false positives).

It can be seen that the Continuous Path Assignment Filter
has a better true positive (TP) rate than the Discrete Path
Assignment Filter whereas the false positive (FP) rate can be
lower for the Discrete Path Assignment Filter albeit at the
cost of a low TP rate. For comparison with a path assignment
method where filtering is done at the path estimation level
and not at the lane assignment level we have also plotted
the ROC point of an assignment method where the path
itself is filtered and estimated and the path assignment is
done by projecting the vehicles’ position into this path
and the neighboring paths and evaluating the assigned path
geometrically using its current lateral position (“Path Filter
with geom. Assignment”).

The overall worse performance of the discrete filter might
be due the fact that the discrete filter contains less informa-
tion than the continuous one because the discrete probability
distribution consists of five values for each lane or path.
Hence information whether the target vehicle is directly
in the middle of a lane or displaced to the left or right
boundary is averaged over by a single probability for this
lane. In contrast, the continuous filter generates a continuous
a posteriori distribution for the lateral displacement with
respect to the host vehicle trajectory yobjP,k. The subsequent
discretization is just an algebraic map without additional
filtering.

VI. CONCLUSIONS

We have comparatively evaluated two techniques of path
assignment that were motivated by the requirement to post-
pone filtering as late as possible in the estimation process.
In the discrete case the filtering was indeed performed on
the final discrete path index distribution, in the continuous
case the filtering was performed on the lateral displacement
followed by discretization. We have derived path index
measurement likelihoods - used by both techniques - from
first principles making the minimal assumption of a uniform
a priori distribution.

Our numerical study suggests that the continuous filtering
although the filtering is not directly done on the final
quantity has advantages with respect to the discrete approach.
Furthermore, in addition to the numerical evidence in favor
of the continuous filtering, the discrete approach contains
more modeling assumptions: the assignment probability is
averaged over the width of a lane in the filtering stage -
as discussed above, and the prediction requires modeling
assumptions about lane transitions which were subsumed
in this paper into the parameters ε and η. We have also
shown that in relevant parameter regions of forward looking
sensors the propagation of probability distributions by Taylor
expansion of formula (13) is a valid approximation.

VII. APPENDIX: INERTIAL HVP TRANSFORMATION

If no lane markings are detected and no other information
about the HVP such as guard rails are available, then the
only source of information about the HVP are inertial host
vehicle data, i. e. the host vehicle speed v and its yaw rate
ψ̇. Using the common assumption of a steady-state circular
motion the vehicle will travel on a circular arc with radius
r = v

ψ̇
as depicted in fig. 7.

Here we also allow for a non-vanishing heading angle α,
i. e. the host vehicle path at the host vehicle’s reference point
– the middle of the front bumper – is not tangential to the
vehicle’s longitudinal axis but is rotated by an angle α(

xcenterp

ycenterp

)
=

(
cos(α) − sin(α)
sin(α) cos(α)

)(
0
r

)
(12)

Then the lateral distance yP in HVP coordinates (xP , yP ) of
an object with HV coordinates (x, y) is given by (see also
[5], [6])

yP = r − sgn(r)

√
(x+ sin(α)r)

2
+ (y − cos(α)r)

2 (13)
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Fig. 7. Bird’s eye view of host and target vehicle with host vehicle
coordinates and host vehicle trajectory coordinates from inertial data.

This is the minimal distance to the estimated HVP. In a prob-
abilistic framework the parameters µP,k, σP,k of the pdf of
yP,k must be determined. The pdfs of the signals in eq. (13)
are propagated by Taylor expansion, i. e. given the vector
ζk = (vk, ψ̇k, xk, yk)>, its mean µζk = (µvk, µ

ψ̇
k , µ

x
k, µ

y
k)>

and its covariance matrix Vζk we get

µP,k =
µvk

µψ̇k

− sgn(
µvk

µψ̇k

) · (14)

·
√

(µxk + sin(α)
µvk

µψ̇k

)2 + (µyk − cos(α)
µvk

µψ̇k

)2

σ2
P,k = ∂ζyP,k (µζk)Vζk (∂ζyP,k (µζk))

> (15)

Here, ∂ζyP,k (µζk) denotes the Jacobi matrix of yP,k at
µζk . In order to validate that Taylor expansion results in
an accurate approximation of the pdf of eq. (13) we have
performed a Monte-Carlo study where 24576 different pdfs
of x, y, v, and ψ̇ were propagated through (13) by sampling
with 5000 samples. The values for x ranged between one
and 110m, the value for y was calculated by letting the
angle range between −21 and 21 degrees. Velocities of 1 to
70m/s were taken into account and the yaw rates considered
ranged from −0.7 to 0.7rad/s. Then we compared the
resulting normalized histograms to Gaussian distributions
parametrized by eqs. (14) and (15). For comparison of two
pdfs the Hellinger distance was chosen since it satisfies all
conditions of a mathematical metric. In fig. 8 the distribution
of Hellinger distances between the Monte-Carlo run and the
Gaussian from Taylor expansion is plotted for all 24576 pdfs.

The largest distance value is ca. 3. In order to assess the
consequence of such a value we have plotted the normalized
histogram with the largest Hellinger distance together with
its corresponding Gaussian in fig. 9. It can be seen that the
histogram with that distance still approximates the Gaussian
to high accuracy. Hence we conclude that in the chosen pa-
rameter ranges the propagation of pdfs by Taylor expansion
is appropriate.
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