
Vision-based Robotic Arm Imitation by Human
Gesture
Cheng Xuan, Zhiqiang Tang, Jinxin Xu
Tsinghua University, University of Alberta
Beijing, People’s Republic of China, Edmonton, Canada
xc17@mails.tsinghua.edu.cn, ztang4@ualberta.ca, jinxin3@ualberta.ca 1

Abstract

One of the most efficient ways for a learning-based robotic arm to learn to process
complex tasks as human, is to directly learn from observing how human complete
those tasks, and then imitate. Our idea is based on success of Deep Q-Learning
(DQN) algorithm according to reinforcement learning, and then extend to Deep
Deterministic Policy Gradient (DDPG) algorithm. We developed a learning-based
method, combining modified DDPG and visual imitation network. Our approach
acquires frames only from a monocular camera, and no need to either construct a
3D environment or generate actual points. The result we expected during training,
was that robot would be able to move as almost the same as how human hands did.

1. Introduction

Designing a robotic arm control system which aims at everyday tasks is one of the biggest chal-
lenges among current robot researches.

Recently, as Machine Learning being more and more popular, Deep Reinforcement Learning (DRL)
have performed decently well dealing with some general and simple tasks, such as letting robotic
arms learn to open doors with different kinds of handles after a lot of training (Yahya et all.,
2016). However, the idea of letting robots work in vary situations and try to solve a same task
in all those different cases is sort of intuitive. The main problem is that such idea might require
several months’ training (Levine et all., 2016), and therefore it may not as practical as we expected
in everyday tasks.

Our primary goal is to let the robotic arm itself learn from human, and to touch, push or even pick
up items according to how exactly human do. This approach is able to significantly decrease the
number of training steps by visually imitate human demonstrations. Further more, unlike other
approaches of robot controlling with DDPG, which applied a random exploration noise while se-
lecting an action, our algorithm allows robot to explore on purpose according to human movement,
so that it will be more efficient in finding the best solution. A primary contributions we have done
is that we modified DDPG algorithm, where we applied a Heuristic value to help to choose next
actions, and we call that a Heuristic DDPG. This approach significantly reduce those unnecessary
explorations accelerate our training efficiency, and since this approach is able to help robot to learn
from human, our robot can perform in a human-like way, which makes it practical dealing with
everyday tasks.

1Authors contributed equally

1

ar
X

iv
:1

70
3.

04
90

6v
2

 [
cs

.R
O

]
 4

 O
ct

 2
01

8

2. Algorithm

Our method has two components. To generate heuristic values, we built a visual imitation neural
network which used a deep convolutional neural network (CNN) to compare the similarity which
is represented by our heuristic values, between human movement and robotic move trajectories.
Moreover, we used a modified DDPG (Lillicarp et all., 2016) to continuously control the robot
based on current frame from the camera and heuristic values acquired from imitation neural net-
work.

Figure 1: Overview Framework including Heuristic DDPG network and imitation neural network

To make the overall framework more clear, let’s go through this in following procedures. we
firstly moved our hands from up to down and from left to right in front of the camera and recorded
a video. Then, we moved our robot arm and let it process what human just did. Next, we built a
convolutional neural network which took both robot and human hands’ frames of motion as input
and locations of either the robotic arm or human hands in frames as output. After this, we were
able to start to train the network and acquire heuristic values. After training imitation network,
we can start testing our model on some simple tasks-pushing a button in front of the robot camera
for example. Each frame gained from the camera will be feed into the imitation network and get
estimated hands positions, and then we push every hand position into a stack which will turn into
a sequence of data and form a trajectory. Finally, the robotic arm will start to move under the
observation of camera and each frame will go through two parts. One is the imitation network
to estimate current position of robot and then get a trajectory, the other is DDPG network to
control robot based on its current state. Before actuating the robot, our system will compare the

2

similarity of human hands and robot trajectories, and then generate a value of difference which is
called heuristic action value. The actual movement for robot will be sum of heuristic value and
DDPG action output, which actually will be able to reduce unnecessary exploration.

2.1 Data Acquisition and Preprocessing

Since our goal is to imitate human hands movement using our robotic arm, we firstly need to do
a space mapping with robot and human. Unlike building a transformation matrix to describe the
relative position of human hands and robot, we used the recorded images instead to acquire those
positions which are represented by image coordinates.

Figure 2: Environment of data acquisition

We manually Tagged those images, and then tagged names by coordinate values of hands or
robot. Finally we fed these images to the imitation net, and start to train our network. To increase
the number of training datasets and robustness of the neural net, we did some image preprocessing-
we increased the brightness and decreased the contrast, normalized standard deviation, and added
salt and pepper noise on original images. Image translation, rotation, and flipping were not per-
formed since the position information is important in this case.

3

Figure 3: Imitation Network

2.2 Imitation Network

Our visual imitation network is a CNN based network, which has three convolution layers, two max
pooling layers, and two fully connected layers. CNNs are commonly used in image classifications,
and in our approach, it is used for position estimation of our robot and hands. The output is a
type of one-hot encoding and has 25 values, we reshaped the 25*1 one dimensional output array
into 5*5 two dimensional matrix to stand for 25 region in the image.

Figure 4: The black grid stands for output matrix according to imitation network, since output is
one-hot encoding the index of 1 in the matrix corresponding positions of hands or robot gripper
in images. Therefore the estimated coordinate for the hand in image shown is (0,3)

4

2.3 Heuristic DDPG net

DDPG algorithm is successfully used in continuously-especially high dimensional which in our case
is 36 different set of actions-control applications. Inspired from underlying Deep Q-Learning to
the continuous action spaces. DDPG is an actor-critic(Sutton et all., 2015), model-free algorithm
based on the deterministic policy gradient (Lillicarp et all., 2016). Since DDPG needs to do ran-
dom exploration to find optimal actions, and however, continuous actions usually have large action
spaces. As a result, training a DDPG network usually needs millions of steps, which may not be
a problem for simulated tasks such as playing atari games, but will be problematic in real world
application. For example, controlling a robotic arm which has seven or eight rollers. To conquer
this challenge, we came up with an idea called Heuristic exploration.

Algorithm 1 Imitation network and modified DDPG

1: Initialize imitation network Hnet(θ) Maphand
2: Load imitation training images imagerobot and imagehand
3: for i from 1 to maximum number of steps do
4: Train imitation network Hnet(imagerobot, imagehand, θ)
5: end for
6: Imagesethuman consists of series of images recorded by camera
7: for i in range of size(Imagesethuman) do
8: Maphand[i] = Hnet(imagesethuman[i], θ)
9: end for

10: Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weight θQ and θµ

11: Initialize target network Q′ and µ′ with weights θQ
′ ← θQ, θµ

′ ← θµ

12: Initialize replay buffer R
13: for episode = 1,M do
14: Initialize a random process N for action exploration
15: Receive initial observation state s1
16: for t = 1,T do
17: imagerobot ← from camera
18: Maprobot = Hnet(imagerobot, θ)
19: Hval = Euclidian(Maprobot,Maphand[t])
20: Select action at = µ(st, θ

µ) + Hval

21: Execute action at and observe reward rt new state st+1

22: Store transition (st, at, rt, st+1) in R
23: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
24: Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′

)
25: Update critic by minimizing the loss: L = 1

N

∑
i(yi −Q(si, ai|θQ))2

26: Update the actor policy using the sampled policy gradient:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

27: Update the target networks: θQ
′ ← τθQ + (1− τ)θQ

′

28: Update the target networks: θµ
′ ← τθµ + (1− τ)θµ

′

29: end for
30: end for

5

A major problem of learning in continuous action spaces using reinforcement learning is useless
exploration. The standard DDPG algorithm uses an exploration policy which adds some random
value of noise while selecting actions,

µ′(st) = µ(st|θµ) +N (1)

Where µ′ is exploration policy network and N is the noise value. Theoretically, DDPG is a
random search algorithm and therefore unexceptionally inefficient. To improve the efficiency while
exploring, we changed selection of actions based on,

µ′(st) = µ(st|θµ) +Ht (2)

where Ht is the heuristic value which is the result of comparing human and robot trajectories
passing through our imitation network.

3. References

Yahya, Ali, Li, Adrian, Kalakrishnan, Mrinal, Chebotar, Yevgen and Levine Sergey. Collective
Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search. arXiv:1610.00673.

Levine, Sergey, Pastor, Peter, Krizhevsky, Alex, Quillen, Deirdre. Learning Hand-Eye Coordina-
tion for Robotic Grasping with Deep Learning and Large-Scale Data Collection. arXiv:1603.02199

P. Lillicrap, Timothy, J. Hunt, Jonathan, Pritzel, Alexander et all. Continuous Control with Deep
Reinforcement Learning. arXiv:1509.02971v5

S.Sutton, Richard, G.Barto, Andrew. Reinforcement Learning: An Introduction second edition.
In Policy Approximation, p227-p230, 2015

6

http://arxiv.org/abs/1610.00673
http://arxiv.org/abs/1603.02199
http://arxiv.org/abs/1509.02971

	1 Introduction
	2 Algorithm
	2.1 Data Acquisition and Preprocessing
	2.2 Imitation Network
	2.3 Heuristic DDPG net

	3 References

