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Abstract

The doctrine of double effect (DDE ) is a long-
studied ethical principle that governs when actions
that have both positive and negative effects are to
be allowed. The goal in this paper is to automate
DDE . We briefly present DDE , and use a first-
order modal logic, the deontic cognitive event cal-
culus, as our framework to formalize the doctrine.
We present formalizations of increasingly stronger
versions of the principle, including what is known
as the doctrine of triple effect. We then use our
framework to successfully simulate scenarios that
have been used to test for the presence of the prin-
ciple in human subjects. Our framework can be
used in two different modes: One can use it to
build DDE -compliant autonomous systems from
scratch; or one can use it to verify that a given AI
system is DDE -compliant, by applying a DDE

layer on an existing system or model. For the latter
mode, the underlying AI system can be built using
any architecture (planners, deep neural networks,
bayesian networks, knowledge-representation sys-
tems, or a hybrid); as long as the system exposes
a few parameters in its model, such verification is
possible. The role of the DDE layer here is akin
to a (dynamic or static) software verifier that ex-
amines existing software modules. Finally, we end
by sketching initial work on how one can apply our
DDE layer to the STRIPS-style planning model,
and to a modified POMDP model. This is prelimi-
nary work to illustrate the feasibility of the second
mode, and we hope that our initial sketches can be
useful for other researchers in incorporating DDE

in their own frameworks.

1 Introduction

The doctrine of double effect (DDE) is a long-studied ethi-
cal principle that enables adjudication of ethically “thorny”
situations in which actions that have both positive and
negative effects appear unavoidable for autonomous agents
[McIntyre, 2014]. Such situations are commonly called
moral dilemmas. The simple version of DDE states that such
actions, performed to “escape” such dilemmas, are allowed

— provided that 1) the harmful effects are not intended; 2) the
harmful effects are not used to achieve the beneficial effects
(harm is merely a side-effect); and 3) benefits outweigh the
harm by a significant amount. What distinguishes DDE

from, say, naı̈ve forms of consequentialism in ethics (e.g. act
utilitarianism, which holds that an action is obligatory for an
autonomous agent if and only if it produces the most util-
ity among all competing actions) is that purely mental inten-
tions in and of themselves, independent of consequences, are
considered crucial (as condition 2 immediately above con-
veys). Of course, every major ethical theory, not just con-
sequentialism, has its passionate proponents; cogent surveys
of such theories make this plain (e.g. see [Feldman, 1978]).
Even in machine ethics, some AI researchers have explored
not just consequentialism and the second of the two domi-
nant ethical theories, deontological ethics (marked by an em-
phasis on fixed and inviolable principles said by their de-
fenders to hold no matter what the consequences of abrogat-
ing them), but more exotic ones, for example contractualism
(e.g. see [Pereira and Saptawijaya, 2016b]) and even divine-
command ethics (e.g. see [Bringsjord and Taylor, 2012]).
DDE in a sense rises above philosophical debates about
which ethical theory is preferred. The first reason is
that empirical studies have found that DDE plays a
prominent role in an ordinary person’s ethical decisions
and judgments [Cushman et al., 2006]. For example, in
[Hauser et al., 2007], a large number of participants were
asked to decide between action and inaction on a series of
moral dilemmas, and their choices adhered to DDE , irre-
spective of their ethical persuasions and backgrounds, and
no matter what the order in which the dilemmas were pre-
sented. In addition, in legal systems, criminality requires the
presence of malicious intentions [Fletcher, 1998], and DDE

plays a central role in many legal systems [Allsopp, 2011;
Huxtable, 2004].1 Assuming that autonomous systems will
be expected to adjudicate moral dilemmas in human-like
ways, and to justify such adjudication, it seems desirable to
seek science and engineering that allows DDE , indeed even
nuanced, robust versions thereof, to be quickly computed.

1On the surface, criminal negligence might seem to require no
intentions. While that might be true, even in criminal negligence
it seems rational to ask whether the negligence was accidental or
something the “suspect” had control over. This suggests a milder
form of intention, or something similar, but not exactly intention.
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2 Prior Work

We quickly review prior rigorous modeling of DDE .
Mikhail in [Mikhail, 2011] presents one of the first careful
treatments of the doctrine. While the presentation of the doc-
trine makes use of some symbolism, the level of formalization
is not amenable to automation. [Bentzen, 2016] presents a
model-theoretic formalization of a simple version of the doc-
trine. While this is an important first step, the calculus pre-
sented by Bentzen does not have any computational realiza-
tion. However, there are two independent strands of research
with implementations for DDE : that of Berreby et al. [2015]

and Pereira and Saptawijaya [2016a]; both use logic program-
ming. Notably, while the Berreby et al. explicitly eschew
counterfactuals for modeling DDE , Pereira and Saptawijaya
model DDE using counterfactuals. To our knowledge, both
the projects present one of the first formal models of DDE

that can be implemented.
It should be noted, however, that both of these formal sys-

tems are extensional, and it is well-known that when dealing
with intensional states such as knowledge, belief, intention
etc., extensional systems can quickly generate inconsisten-
cies [Bringsjord and Govindarajulu, 2012] (see the appendix
for more details). The expressivity challenge is both quantifi-
cational and intensional; this challenge is acute for the logic-
programming paradigm, as opposed to one based — as is ours
— on formal languages beyond first-order logic and its vari-
ants, and proof theories beyond resolution and its derivatives.
In particular, DDE requires elaborate structures for quantifi-
cation (including, inevitably, first-order numerical quantifiers
such as ∃k : k ∈ R, since quantification over utilities is essen-
tial), and many intensional operators that range over quanti-
fiers, starting with the epistemic ones. Needless to say, mod-
eling and simulation at the propositional level, while truly
excellent in the case of [Pereira and Saptawijaya, 2016a], is
insufficiently expressive.

Among the many empirical experiments centered around
DDE , the one in [Malle et al., 2015] deserves a mention.
Malle et al. devise an experiment in which they place either a
human or a robot as the central actor in a hypothetical DDE

scenario, and study an external viewer’s moral judgement of
action or inaction by the human or robot. This study shows
that humans view ethical situations differently when robots
participate in such situations; and the study demonstrates the
need for rigorous modeling of DDE to build well-behaved
autonomous systems that function in DDE -relevant scenar-
ios.

3 The Calculus

In this section, we present the deontic cognitive event calcu-
lus (DC EC ). Dialects of this calculus have been used to for-
malize and automate highly intensional reasoning processes,
such as the false-belief task [Arkoudas and Bringsjord, 2008]

and akrasia (succumbing to temptation to violate moral prin-
ciples) [Bringsjord et al., 2014].2 DC EC is a sorted (i.e.
typed) quantified modal logic (also known as sorted first-
order modal logic). The calculus has a well-defined syntax

2Arkoudas and Bringsjord [2008] introduced the general family
of cognitive event calculi to which DC EC belongs.

and proof calculus; see [Bringsjord et al., 2014]. The proof
calculus is based on natural deduction [Gentzen, 1935], and
includes all the introduction and elimination rules for first-
order logic, as well as inference schemata for the modal op-
erators and related structures. A snippet of DC EC is shown
in the Appendix.

3.1 Syntax

First-order Fragment

The first-order core of DC EC is the event calculus
[Mueller, 2006]. Though we use the event calculus, our ap-
proach is compatible with other calculi (e.g. the situation cal-
culus) for modeling events and their effects.

Modal Fragment

The modal operators present in the calculus include the stan-
dard operators for knowledge K, belief B, desire D, inten-
tion I, etc. The general format of an intensional operator is
K(a, t,φ), which says that agent a knows at time t the propo-
sition φ. Here φ can in turn be any arbitrary formula.

The calculus also includes a dyadic deontic operator O.
The unary ought in standard deontic logic is known to lead
to contradictions. Our dyadic version of the operator blocks
the standard list of such contradictions, and beyond.3

3.2 Semantics

First-order Fragment

The semantics for the first-order fragment is the standard
first-order semantics. The truth-functional connectives
∧,∨,→,¬ and quantifiers ∀,∃ for pure first-order formulae
all have the standard first-order semantics.

Modal Fragment

The semantics of the modal operators differs from what is
available in the so-called Belief-Desire-Intention (BDI) log-
ics [Rao and Georgeff, 1991] in many important ways. For
example, DC EC explicitly rejects possible-worlds seman-
tics and model-based reasoning, instead opting for a proof-
theoretic semantics and the associated type of reasoning
commonly referred to as natural deduction [Gentzen, 1935;
Francez and Dyckhoff, 2010]. Briefly, in this approach,
meanings of modal operators are defined via arbitrary com-
putations over proofs, as we will soon see.

Reasoner (Theorem Prover)

Reasoning is performed through a novel first-order modal
logic theorem prover, ShadowProver, which uses a tech-
nique called shadowing to achieve speed without sacrific-
ing consistency in the system. Extant first-order modal
logic theorem provers that can work with arbitrary inference
schemata are built upon first-order theorem provers. They
achieve the reduction to first-order logic via two methods.
In the first method, modal operators are simply represented
by first-order predicates. This approach is the fastest but

3A nice version of the list is given lucidly in [McNamara, 2010].



can quickly lead to well-known inconsistencies as demon-
strated in [Bringsjord and Govindarajulu, 2012]. In the sec-
ond method, the entire proof theory is implemented intri-
cately in first-order logic, and the reasoning is carried out
within first-order logic. Here, the first-order theorem prover
simply functions as a declarative programming system. This
approach, while accurate, can be excruciatingly slow. We use
a different approach, in which we alternate between calling
a first-order theorem prover and applying modal inference
schemata. When we call the first-order prover, all modal
atoms are converted into propositional atoms (i.e., shadow-
ing), to prevent substitution into modal contexts. This ap-
proach achieves speed without sacrificing consistency. The
prover also lets us add arbitrary inference schemata to the
calculus by using a special-purpose language. While we use
the prover in our simulations, describing the prover in more
detail is out of scope for the present paper.4

4 Informal DDE

We now informally but rigorously present DDE . We as-
sume we have at hand an ethical hierarchy of actions as in
the deontological case (e.g. forbidden, neutral, obligatory);
see [Bringsjord, 2017]. We also assume that we have a utility
or goodness function for states of the world or effects as in
the consequentialist case. For an autonomous agent a, an ac-
tion α in a situation σ at time t is said to be DDE -compliant
iff :

C1 the action is not forbidden (where we assume an ethical hier-
archy such as the one given by Bringsjord [2017], and require
that the action be neutral or above neutral in such a hierarchy);

C2 The net utility or goodness of the action is greater than some
positive amount γ;

C3a the agent performing the action intends only the good effects;

C3b the agent does not intend any of the bad effects;

C4 the bad effects are not used as a means to obtain the good ef-
fects; and

C5 if there are bad effects, the agent would rather the situation be
different and the agent not have to perform the action. That is,
the action is unavoidable.

See Clause 6 of Principle III in [Khatchadourian, 1988] for
a justification of of C5. This clause has not been discussed in
any prior rigorous treatments of DDE , but we feel C5 cap-
tures an important part of when DDE is normally used, e.g.
in unavoidable ethically thorny situations one would rather
not be present in. C5 is necessary, as the condition is subjunc-
tive/counterfactual in nature and hence may not always follow
from C1 −C4, since there is no subjunctive content in those
conditions. Note that while [Pereira and Saptawijaya, 2016a]

model DDE using counterfactuals, they use counterfactuals
to model C4 rather than C5.

That said, the formalization of C5 is quite difficult, requir-
ing the use of computationally hard counterfactual and sub-

4The prover is available in both Java and Common Lisp
and can be obtained at: https://github.com/naveensundarg/prover.
The underlying first-order prover is SNARK available at:
http://www.ai.sri.com/∼stickel/snark.html.

junctive reasoning. We leave this aside here, reserved for fu-
ture work.

5 Formal DDE

The formalization is straightforward given the machinery of
DC EC . Let Γ be a set of background axioms, which could
include whatever the given autonomous agent under consid-
eration knows about the world; e.g., its understanding of
physics, knowledge and beliefs about other agents and itself,
etc. The particular situation that might be in play, e.g., “the
autonomous agent is driving,” is represented by a formula σ.
We use ground fluents for effects.

We assume that we have a utility function µ that maps from
fluents and times to real-number utility values. µ needs to be
defined only for ground fluents:

µ : Fluent×Moment → R

Good effects are fluents with positive utility, and bad ef-
fects are fluents that have negative utility. Zero-utility fluents
could be neutral fluents (which do not have a use at the mo-
ment).

5.1 Defining means ⊲

The standard event calculus and DC EC don’t have any
mechanism to say when an effect is used as a means for an-
other effect. While we could employ a first-order predicate
and define axiomatically when an effect is used as a means
for another effect, we take a modal approach that does not re-
quire any additional axioms beyond what is needed for mod-
eling a given situation. Intuitively, we could say an effect e1

is a mere side effect for achieving another effect e2 if by re-
moving the entities involved in e1 we can still achieve e2; oth-
erwise we say e1 is a means for e2. Our approach is inspired
by Pollock’s [1976] treatment, and while similarities can be
found with the approach in [Pereira and Saptawijaya, 2016a],
we note that our definition requires at least first-order logic.
Given a fluent f , we denote by ⊙ the set of all constants and
function expressions in f . For example:

⊙
(

hungry
(

jack
)

)

=
{

jack
}

⊙
(

married
(

jack,sister(mary)
)

)

=
{

jack,sister(mary),mary
}

We need one more definition: the state of the world with-
out a given set of entities. Let ⊗(Γ,θ), where Γ is a set of
formulae and θ is a set of ground terms, be defined as below:

⊗
(

Γ,θ
)

=
{

ψ ∈ Γ | ψ does not contain any term in θ
}

Note that the above definition relies on the Unique Names
Assumption commonly used in most formulations of the
event calculus. This assumption ensures that every object in
the domain has at most one name or expression referring to it.
If this assumption does not hold, we can have the following
slightly more complicated definition for ⊗.

https://github.com/naveensundarg/prover
http://www.ai.sri.com/~stickel/snark.html


⊗
(

Γ,θ
)

=

{

ψ ∈ Γ

∣

∣

∣

∣

ψ does not contain any s such that

∃t ∈ θ : Γ ⊢ s = t

}

We introduce a new modal operator ⊲, means, that says
when an effect is a means for another effect.

⊲ : Formula×Formula → Formula

The meaning of the operator is defined computationally be-
low. The definition states that, given Γ, a fluent f holding true
at t1 causes or is used as a means for another fluent g at time
t2, with t2 > t1, iff the truth condition for g changes when we
remove formulae that contain entities involved in f . While
this definition is far from perfect, it suffices as a first cut and
lets us simulate experimental scenarios that have been used to
test DDE ’s presence in humans. (Three other similar defini-
tions hold when we look at combinations of fluents holding
and not holding.) The equation below follows (Note that ⊢ is
non-monotonic, as it includes the event calculus):

Γ ⊢⊲
(

Holds
(

f , t1
)

,Holds
(

g, t2
)

)

iff











Γ ⊢ t2 > t1∧
[

Γ ⊢ Holds
(

f , t1
)

∧

Γ ⊢ Holds
(

g, t2
)

]

⇒
[

Γ−⊗
(

Γ,⊙( f )
)

⊢¬Holds
(

g, t2
)

]











For example, let e1 be “throwing a stone s at a window
w” and e2 be “the window w getting broken.” We can see
that e2 is not just a mere side effect of e1, and the definition
works, since, if the stone is removed, e2 wouldn’t happen.
This definition is not perfect. For instance, consider when
there are common objects in both the events: the intuitiveness
breaks down (but the definition still works). We might for
example let e1 be “hitting a window w with a bat b.” If the
window and bat are not present, e2 would not happen.

5.2 The Formalization

Note that the DDE (Γ,σ,a,α, t,H) predicate defined below,
though defined using DC EC , lies outside of the formal lan-
guage of DC EC . While DDE is not fully formalized in
DC EC , the individual clauses F1 −F4 are. This is how we
can verify the conditions in the simulations described later. It
is trivial to define a new symbol and formalize the predicate
in DC EC : DDE1 ⇔ F1 ∧F2 ∧F3 ∧F4.

What is not trivial, we concede, is how this works with
other modalities. For example, can we efficiently derive
K(a, t1,K(b, t2,DDE (Γ,σ,a,α, t,H))) given some other for-
mulae Γ? This could be difficult because the predicate’s def-
inition below involves provability, and one has to be careful
when including a provability predicate.

That said, for future work, we plan on incorporating this
within an extended dialect of DC EC . One immediate draw-
back is that while we can have a system-level view of whether
an action is DDE -sanctioned, agents themselves might not
know that. For example, we would like to able to write down
“a knows that b knows that c’s action is DDE -sanctioned.”

Given the machinery defined above, we now proceed to the
formalization. Assume, for any action type α carried out by

an agent a at time t, that it initiates the set of fluents α
a,t
I ,

and terminates the set of fluents α
a,t
T . Then, for any action α

taken by an autonomous agent a at time t with background
information Γ in situation σ, the action adheres to the doc-
trine of double effect up to a given time horizon H, that is
DDE (Γ,σ,a,α, t,H) iff the conditions below hold:

Formal Conditions for DDE

F1 α carried out at t is not forbidden. That is:

Γ 6⊢ ¬O
(

a, t,σ,¬happens
(

action(a,α), t
)

)

F2 The net utility is greater than a given positive real γ:

Γ ⊢

H

∑
y=t+1

(

∑
f∈αa,t

I

µ( f ,y)− ∑
f∈αa,t

T

µ( f ,y)

)

> γ

F3a The agent a intends at least one good effect. (F2 should
still hold after removing all other good effects.) There is

at least one fluent fg in α
a,t
I with µ

(

fg,y
)

> 0, or fb in

α
a,t
T with µ( fb,y) < 0, and some y with t < y ≤ H such

that the following holds:

Γ ⊢











∃ fg ∈ α
a,t
I I
(

a, t,Holds
(

fg,y
)

)

∨

∃ fb ∈ α
a,t
T I
(

a, t,¬Holds
(

fb,y
)

)











F3b The agent a does not intend any bad effect. For all fluents

fb in α
a,t
I with µ( fb,y)< 0, or fg in α

a,t
T with µ

(

fg,y
)

>
0, and for all y such that t < y ≤ H the following holds:

Γ 6 ⊢ I
(

a, t,Holds
(

fb,y
)

)

and

Γ 6 ⊢ I
(

a, t,¬Holds
(

fg,y
)

)

F4 The harmful effects don’t cause the good effects. Four
permutations, paralleling the definition of ⊲ above, hold
here. One such permutation is shown below. For any bad
fluent fb holding at t1, and any good fluent fg holding at
some t2, such that t < t1, t2 ≤ H, the following holds:

Γ ⊢ ¬⊲
(

Holds
(

fb, t1
)

,Holds
(

fg, t2
)

)

F5 This clause requires subjunctive reasoning. The current
formalization ignores this stronger clause. There has
been some work in computational subjunctive reasoning
that we hope to use in the future; see [Pollock, 1976].

Doctrine of Triple Effect

The doctrine of triple effect (DT E) was proposed in
[Kamm, 2007] to account for scenarios where actions that
are viewed as permissible by most philosophers and deemed
as such by empirical studies (e.g. the switch action in the



third scenario in [Hauser et al., 2007]) are not sanctioned by
DDE , as they involve harm being used as a means to achieve
an action. DT E allows such actions as long as the harm is
not explicitly intended by the agent. Note that our version of
DDE subsumes DT E through condition C4.

6 Scenarios

The trolley problems are quite popular in both philosophical
and empirical studies in ethics. Hauser et al. [2007] found
empirical support that DDE is used by humans, courtesy of
experiments based on a set of trolley problems. They use a
set of 19 trolley problems in their experimentation, and de-
scribe in detail four of these. We consider the first two of
these problems in our study here. The problem scenarios are
briefly summarized below; common to both this setup: There
are two tracks track1 and track2. There is a trolley loose on
track1 heading toward two people P1 and P2 on track1; nei-
ther person can move in time. If the trolley hits them, they
die. The goal is to save this pair.5

Scenario 1 There is a switch that can route the trolley to
track2. There is a person P3 on track2. Switching the
trolley to track2 will kill P3. Is it okay to switch the trol-
ley to track2?

Scenario 2 There is no switch now, but we can push P3 onto
the track in front of the trolley. This action will damage
the trolley and stop it; it will also kill P3. Is it okay to
push P3 onto the track?

DDE -based analysis tells us it is okay to switch the trolley
in Scenario 1, as we are killing the person merely as a side
effect of saving P1 and P2. In Scenario 2, similar analysis
tells us it is not okay to push P3, because we are using that
person as a means toward our goal.

7 Simulations

At the core of our simulation is a formalization of the basic
trolley scenario based on the event calculus. We use a discrete
version of the event calculus, in which time is discrete, but
other quantities and measures, such as the utility function, can
be continuous. We have the following additional sorts: Trolley

and Track. We also declare that the Agent and the Trolley sorts
are subsorts of a Moveable sort, the instances of which are
objects that can be placed on tracks and moved. We use the
following additional core symbols:

position : Moveable×Track×Number → Fluent

dead : Agent → Fluent

onrails : Trolley×Track → Fluent

switch : Trolley×Track×Track → ActionType

push : Agent×Track×Number → ActionType

The utility function µ is defined as follows:

µ( f , t) =

{

−1 if f ≡ dead(P)

0 otherwise

5For computational purposes, the exact number of persons is not
important as long as it is greater than one.

We set the threshold γ at 0.5. The simulation starts at time
t = 0 with the only trolley, denoted by trolley, on track1. We
have an event-calculus trajectory axiom shown below as part
of Γ:

∀t : Trolley, track : Track,s : Moment
[

Trajectory
(

onrails(t, track),s,position(t, track,∆),∆
)]

The above axiom gives us the trolley’s position at different
points of time. Γ also includes axioms that account for non
effects. For example, in the absence of any actions, we can
derive:

Γ ⊢ Holds
(

position
(

trolley, track1,23
)

,23
)

We also have in the background Γ a formula stating that
in the given trolley scenario the agent ought to save both P1

and P2. Ideally, while we would like the agent to arrive at
this obligation from a more primitive set of premises, this
setup is closer to experiments with human subjects in which
they are asked explicitly to save the persons. Note the agent
performing the action is simply denoted by I, and let the time
of the test be denoted by now.

O

(

I,now,σtrolley,

[

¬∃t : Moment Holds (dead(P1, t))∧

¬∃t : Moment Holds (dead(P2, t))

])

Given that the agent knows that it is now in situation
σtrolley, and the agent believes that it has the above obliga-
tion, we can derive from DC EC ’s inference schemata what
the agent intends:



































































K
(

I,now,σtrolley

)

,

B

















I,now,O

















I,now,σtrolley,










¬∃t : Moment Holds
(

dead
(

P1, t
)

)

∧

¬∃t : Moment Holds
(

dead
(

P2, t
)

)











































,

O

(

I,now,σtrolley,

[

¬∃t : Moment Holds (dead(P1, t))∧

¬∃t : Moment Holds (dead(P2, t))

]

)



































































⊢ I






I,now,







¬∃t : Moment Holds
(

dead
(

P1, t
)

)

∧

¬∃t : Moment Holds
(

dead
(

P2, t
)

)













In both the simulations, P1 is at position 4 and P2 is at posi-
tion 5 on track1. In Scenario 1, P3 is at position 3 on track2,
and the train can be switched from position 3 on track1 to
position 0 on track2.

In Scenario 2, we push P3 onto position 3 on track1. The
total number of formulae and run times for simulating the
two scenarios with and without the actions are shown below.
Note these are merely event-calculus simulation times. These
are then used in computing DDE(Γ,σ,a,α, t,H). The event-
calculus simulation helps us compute F2.



Simulation Time (s)

Scenario |Γ| No action Action performed

Scenario 1 39 0.591 1.116
Scenario 2 38 0.602 0.801

ShadowProver was then used to verify that F1, F3a, and F3b

hold. Both the scenarios combined take 0.57 seconds for F1,
F3a, and F3b. The scenarios differ only in F4. The pushing
action fails to be DDE -compliant due to F4. For verifying
that F4 holds in Scenario 1 and doesn’t hold in Scenario 2,
it takes 0.49 seconds and 0.055 seconds, respectively.6

8 On Operationalizing the Principle

Given the above formalization, it’s quite straightforward to
build logic-based systems that are DDE -compliant.7 But
how do we apply the above formalization to existing models
and systems that are not explicitly logic-based? We lay down
a set of conditions such models must satisfy to be able to ver-
ify that they are DDE -compliant. We then sketch how we
could use DDE in two such modified systems: a STRIPS-
like planner and a POMDP type model.

The problem now before us is: Given a system and a utility
function, can we say that the system is DDE -compliant? No,
we need more information from the system. For example, we
can have two systems in the same situation, the same util-
ity functions and same set of available actions.8 One system
can be DDE -compliant while the other is not. For exam-
ple, assume that we have two autonomous driving systems d1

and d2. Assume that d2 has learned to like killing dogs and
intends to do so if possible during its normal course of oper-
ation. While driving, both come across a situation where the
system has to hit either a human or a dog. In this scenario,
d1’s action to hit the dog would be DDE -compliant while
d2’s action will not be. Therefore, the formalization requires
that we have access to an agent’s intentions at all times.

One common objection to requiring that intentions be sep-
arate from utilities states that utilities can be used to derive
intentions. This is mistaken: it is not always possible to de-
rive intentions from a utility function. For example, there
might be a state that has high utility but the agent might not
intend to realize that state, as it could be out of reach for that
agent (low perceived probability of success).

For instance, winning a million dollars (w) has high utility,
but most rational agents might not intend w, as they know
this event is (alas) out of their reach. This holds for similar
high-utility states.

6All the axioms for the two simulations, ShadowProver,
and the combined DDE implementation can be obtained here:
https://goo.gl/9KU2L9.

7For examples of logic-based systems in pure first-order logic,
see [Mueller, 2006].

8Where does a utility function come from? The obvious way
to get a utility function seems to be to learn such a function.
There are good arguments that such learning can be very hard
[Arnold et al., 2017]. For now, we are not concerned with how such
a utility function is given to us. For exposition and economy assume
that it already exists.

At a minimum, we believe utility and perceived probability
of success go into an agent’s intentions. This seems to align
with the human case when we are looking at motivations, i.e.
expectancy-value theory. How motivations could transform
into intentions is another open research question.

8.1 Requirements

Practically speaking, there is a spectrum of systems that our
techniques will be dealing with. At one end, we will en-
counter systems that are complete black boxes taking in per-
cepts from the environment and spitting out actions. Since
DDE requires us to look at intentions of systems, such black-
box systems will be impossible to verify. We can of course
ask the system to output its intention through language as one
of its possible actions, but this means that we are relying on
the system’s honest reporting of its internal states. At the
other end of the spectrum, we have complete white-box sys-
tems. We can be fully confident that we can get what the sys-
tem intends, believes, knows, etc. at any point in time. Ver-
ifying such systems is possible, in theory at least. While we
don’t know what kind of shape autonomous systems will take
and where they will fall in the spectrum, we can explicitly list
information we need from such systems before we can start
the verification process. One such specification follows.

Gray Box Requirement

Given any autonomous system a, at any point of time t, we
should at least be able to assert the following, if true, in order
to verify that it is DDE-compliant:

1. The system’s intentions: (¬)I(a, t,φ)

2. Prohibitions: ¬O(a, t,σ,¬φ)

How would we go about applying the formalization to
other formal systems? We very briefly sketch two examples.

STRIP-like Planner

We first look at a STRIPS-style planning system. Briefly, a
STRIPS-style planner has a set of actions {ai} and a set of
states {si}. The states are nothing but sets of formulae or
atoms. The individual formulae would be our effects. Each
action a has a set of preconditions pre(a), a set of formulae
that should hold in a given state to execute that action in that
state. After executing an action a in a state s, the new state is
given by s∪additions(a)−deletions(a). The planner is given
an explicit goal φ. This means that we know (¬)I(a, t,φ) triv-
ially. If we have an ethical hierarchy for the available set of
actions, we then satisfy the gray-box requirement. What is
then needed is a definition for ⊲, an effect used as means
for another effect. The formalism gives us one possible way
to define ⊲. A plan ρ is nothing but a sequence of actions.
Given a plan ρ, we say an effect e1 is used as means for an-
other effect e2, if e1 ∈ pre(a1), a1 is an action in the plan and
e2 ∈ additions(a2), and a1 comes before a2.

POMDP-derived System

Partially observable Markov decision process (POMDP)
models have been quite successful in a large number of do-
mains. It is highly likely that some of the first autonomous
systems might be based on POMDPs. We note that in such

https://goo.gl/9KU2L9


models, the only goal is to maximize a reward function. An-
other issue is that states are atomic. In order to discern be-
tween good and bad effects, we would need states to be de-
composed into smaller components. One possible approach
could use factored markov decision processes, which are
MDPs in which states are represented as a mapping m from a
set of state variables Θ = {s1,s2, . . . ,sn} to a set of values V .
Here the utility and reward function could be defined on the
assignments; i.e., reward(s) = ∑µ(si  ν), where µ assigns
a utility value to a particular assignment of a state variable.
Additionaly, the formalism could specify one or more goal
states that the model seeks to attain while maximizing the re-
ward along the way, giving us (¬)I(a, t,φ).

9 Heirarchies of Doctrines

Our formalization, summarized in the equation below, gives
rise to multiple hierarchies of the doctrine. We discuss some
of the hierarchies below.

DDE (Γ,σ,a,α, t,H)⇔ F1 ∧F2 ∧F3 ∧F4

Horizon One obvious knob in the above equation is the horizon
H. Increasing H will give us stronger versions of the doctrine.
Since our formalization is in first-order modal logic, the hori-
zon need not be finite: we could set the horizon to infinity,
H = ω, and still obtain a tractable model, as long as we care-
fully develop our formalization.9

Agent Generality Instead of just checking whether an action at
a given time is DDE-compliant, we could ask whether an
autonomous agent a in a given situation σ will be DDE-
compliant at all times. This gives us the following condition:

∀α :ActionType, t :Moment. DDE (Γ,σ,a,α, t,H)

Situation Generality In the hierarchy above, the quantification
was over objects. We could ask whether an autonomous agent
would be DDE-compliant in all situations. That would corre-
spond to a quantification over formulae (see centered formula
immediately below), something not supported in the version of
DC EC used herein.

∀σ :Formula,α :ActionType, t :Moment.DDE (Γ,σ,a,α, t,H)

Counterfactual Reasoning The presence or absence of counter-
factual reasoning in F5 would correspond to a very strong ver-
sion of the doctrine, but one that would also be very hard to au-
tomate in the general case. We note that there are hierarchies of
counterfactual reasoning (see [Pollock, 1976]) that could cor-
respond to hierarchies of versions of DDE .

10 Conclusion

We now quickly summarize the chief contributions of the
foregoing, and end by presenting future lines of work. Our
primary contribution is the presentation of a novel compu-
tational logic, or cognitive calculus, in which important ver-
sions of DDE are formalized. As a part of this calculus,
we formalized an effect being used as a means for another
effect via the modal operator ⊲. We also supplied an in-
formal but rigorous version, C1 −C4, of the doctrine itself,

9It’s a well-known fundamental result that first-order logic can
handle infinite models with a finite number of axioms; see e.g. Ch.
12 in [Boolos et al., 2003].

from which we built our formalization F1 −F4. Included in
this formalization is the clause C5/F5, which requires sub-
junctive and counterfactual reasoning, an aspect that hitherto
has simply not been considered in any systematic treatment
of DDE . Our formalization subsumes the doctrine of triple
effect, DT E ; we have achieved the first computational simu-
lations of the doctrine. A byproduct of these simulations is an
event-calculus formalization of a demanding class of trolley
problems (widely used in empirical and philosophical studies
of ethics). We noted that our formalization gives rise to hier-
archies of doctrines with varying strengths. Our readers can
choose a particular strength doctrine that fits their needs.

Future work includes simulating more intricate “ethically
thorny” scenarios. Despite our progress, we note that our
formalization is devoid of any mechanisms for handling
uncertainty, and we are in the process of extending our
work to include reasoning based on probabilistic versions of
DC EC .10 We also note that we have not said much about
how our formalization could interact with an autonomous
learning agent. We observe that even the possibility that
such an intricate principle as DDE /DT E is learnable us-
ing existing learning frameworks remains open to question
[Arnold et al., 2017]. In the short term, a guaranteed-to-
be-fruitful but less ambitious area of development will be
the deployment of our mechanization of DDE in existing
systems, and adapting existing formal models, as briefly
discussed above, to exploit this mechanization. Finally,
we note that since we are using first-order (multi) modal
logic, we will eventually run into efficiency issues, as even
vanilla first-order logic’s decision problem, Γ ⊢ γ, is Turing-
undecidable. There are a number of techniques to mitigate
this issue. One approach is to exploit a library of com-
monly used proof patterns codified in a denotational proof
language; see [Arkoudas and Bringsjord, 2008]. We are cau-
tiously optimistic, as many formal enterprises outside of
AI (e.g. software verification [Khasidashvili et al., 2009] and
formal physics [Stannett and Németi, 2014]) routinely face
such challenges and surmount them.

Acknowledgements

We are grateful to the Office of Naval Research for funding
that enabled the research presented in this paper. We also
thank Dr. Daniel Thero for reading a draft of the paper and
providing valuable feedback. We are also grateful for the in-
sightful reviews provided by the five anonymous referees.

10There exist probabilistic versions of the event calculus. We
will leverage similar work.



A Deontic Cognitive Event Calculus

We provide here a short primer on the deontic cognitive event
calculus (DC EC ). A calculus is a set of axioms in a for-
mal logic. For example, the event calculus is a set of axioms
couched in first-order logic. DC EC is a set of axioms in
sorted first-order modal logic (also known as sorted quanti-
fied modal logic) that subsumes the event calculus.

While first-order logic is an extensional system, modal
logics are intensional systems. Note that there is a profound
difference between intension vs. intention. One can have an
intention to bring something about; this is traditionally cap-
tured by particular intensional operators. In other words, put
concretely, the intention operator I is an intensional operator,
but so is D for desire, B for believes, and P for perceives, etc.

DC EC is intensional in the sense that it includes inten-
sional operators. Unfortunately, the situation is further con-
fused by the fact that traditionally in philosophy of mind, in-
tentionality means the so-called “aboutness” of some men-
tal states, so that my belief that Melbourne is beautiful is
in this sense intentional, while my mental state has nothing
to do with intending something. Most logicians working in
formal intensional systems believe that at least intensional
logic is required to formalize intentional states [Zalta, 1988].
One simple reason is that using plain first-order logic leads
to unsound inferences as shown below. In the inference be-
low, we have an agent a that knows that the killer in a par-
ticular situation is the person that owns the knife. Agent a
does not know that the Moe is the killer, but it’s true that
Moe is the owner of the knife. If the knowledge operator
K is a simple first-order predicate, we will get the proof
shown below, which produces a contradiction from sound
premises. See [Bringsjord and Govindarajulu, 2012] for a se-
quence of stronger representation schemes in first-order logic
for knowledge and belief that still result in inconsistencies.

Modeling Knowlege (or any Intension) in First-order Logic

1 K(a, Killer (owner (knife))) ; given

2 ¬K(a,Killer (Moe)) ; given

3 Moe = owner (knife) ; given

4 K(a,Killer (Moe)) ; first-order inference from 3 and 1

5 ⊥ ; first-order inference from 4 and 2

A.1 Syntax of Deontic Cognitive Event Calculus

DC EC is a sorted calculus. A sorted system can be thought
of as being analogous to a typed single-inheritance program-
ming language. We show below some of the important sorts
used in DC EC . Among these, the Agent, Action and Action-

Type sorts are not native to the event calculus.

Sort Description

Agent Human and non-human actors.

Time The Time type stands for time in the domain. E.g. simple,

such as ti, or complex, such as birthday(son( jack)).
Event Used for events in the domain.

ActionType Action types are abstract actions. They are instantiated at

particular times by actors. Example: eating.

Action A subtype of Event for events that occur as actions by

agents.

Fluent Used for representing states of the world in the event calcu-

lus.

The figures below show the syntax and inference schemata
of DC EC . The syntax is quantified modal logic. Commonly
used function and relation symbols of the event calculus are
included. Particularly, note the following modal operators:
P for perceiving a state, K for knowledge, B for belief, C
for common knowledge, S for agent-to-agent communication
and public announcements, B for belief, D for desire, I for
intention, and finally and crucially, a dyadic deontic opera-
tor O that states when an action is obligatory or forbidden
for agents. It should be noted that DC EC is one specimen
in a family of easily extensible cognitive calculi. Since the
semantics of DC EC is proof-theoretic, as long as a new con-
struct has appropriate inference schemata, the extension is
sanctioned.

Syntax

S ::= Object | Agent | ActionType | Action ⊑ Event | Moment | Formula | Fluent

f ::=































































action : Agent×ActionType → Action

initially : Fluent → Formula

Holds : Fluent×Moment → Formula

happens : Event×Moment → Formula

clipped : Moment×Fluent×Moment → Formula

initiates : Event×Fluent×Moment → Formula

terminates : Event×Fluent×Moment → Formula

prior : Moment×Moment → Formula

t ::= x : S | c : S | f (t1, . . . , tn)

φ ::=











t : Formula | ¬φ | φ∧ψ | φ∨ψ | P(a, t,φ) | K(a, t,φ) | C(t,φ)

S(a,b, t,φ) | S(a, t,φ) | B(a, t,φ) | D(a, t,Holds( f , t ′)) | I(a, t,φ)

O(a, t,φ,(¬)happens(action(a∗,α), t ′))

The figure below shows the inference schemata for
DC EC . RK and RB are inference schemata that let us model
idealized agents that have their knowledge and belief closed
under the DC EC proof theory. While normal humans are
not dedcutively closed, this lets us model more closely how
deliberate agents such as organizations and more strategic ac-
tors reason. (Some dialects of cognitive calculi restrict the
number of iterations on intensional operators.) R1 and R2

state respectively that it is common knowledge that percep-
tion leads to knowledge, and that it is common knowledge
that knowledge leads to belief. R3 lets us expand out com-
mon knowledge as unbounded iterated knowledge. R4 states
that knowledge of a proposition implies that the proposition
holds. R5 to R10 provide for a more restricted form of rea-
soning for propositions that are common knowledge, unlike
propositions that are known or believed. R12 states that if an
agent s communicates a proposition φ to h, then h believes
that s believes φ. R14 dictates how obligations get translated



into intentions.

Inference Schemata

K(a, t1,Γ), Γ ⊢ φ, t1 ≤ t2

K(a, t2,φ)
[RK]

B(a, t1,Γ), Γ ⊢ φ, t1 ≤ t2

B(a, t2,φ)
[RB]

C(t,P(a, t,φ)→ K(a, t,φ))
[R1]

C(t,K(a, t,φ)→ B(a, t,φ))
[R2]

C(t,φ) t ≤ t1 . . . t ≤ tn

K(a1, t1, . . .K(an, tn ,φ) . . .)
[R3]

K(a, t,φ)

φ
[R4]

C(t,K(a, t1,φ1 → φ2))→ K(a, t2,φ1)→ K(a, t3,φ2)
[R5]

C(t,B(a, t1,φ1 → φ2))→ B(a, t2,φ1)→ B(a, t3,φ2)
[R6]

C(t,C(t1,φ1 → φ2))→ C(t2,φ1)→ C(t3,φ2)
[R7]

C(t,∀x. φ → φ[x 7→ t])
[R8]

C(t,φ1 ↔ φ2 →¬φ2 →¬φ1)
[R9]

C(t, [φ1 ∧ . . .∧φn → φ]→ [φ1 → . . .→ φn → ψ])
[R10]

S(s,h, t,φ)

B(h, t,B(s, t,φ))
[R12]

I(a, t,happens(action(a∗,α), t ′))

P(a, t,happens(action(a∗,α), t))
[R13]

B(a, t,φ) B(a, t,O(a, t,φ,χ)) O(a, t,φ,χ)

K(a, t,I(a, t,χ))
[R14]
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