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Abstract— We present a new social animal inspired emotional
swarm intelligence technique. This technique is used to solve a
variant of the popular collective robots problem called foraging.
We show with a simulation study how simple interaction
rules based on sensations like hunger and loneliness can lead
to globally coherent emergent behavior which allows sensor
constrained robots to solve the given problem.

I. INTRODUCTION

Foraging [1] is a collective robotics problem that derives
biological inspiration from the behavior of ants [2]. Ants
engaged in foraging, scout for prey, recruit nest mates when
prey has been located, and work together as a group to
bring back food to the nest. Foraging belongs to a class of
problems known as coverage problems [3]. Typically, the
objective of such problems is to ensure that certain areas of
interest within a search space are explored by one or many
robots. Applications of such problems include lawn mowing
[4], harvesting [5], and mine removal [6].

Solutions to such problems can involve one or multi-
ple robots. Multi-robot approaches [7] [8] are particularly
attractive because of the significant saving in time. How-
ever, designing provably complete solutions which require a
methodological search of the environment come with draw-
backs in the form of expensive sensors and computational
resource requirements [9]. Moreover, shortcomings during
practical implementation like sensor errors makes it difficult
to guarantee completeness. In such situations, solutions that
are based on random search techniques [10] and do not
require expensive sensors become just as effective.

Biologically inspired techniques such as swarm intelli-
gence utilize this philosophy of inexpensive design to solve
coverage problems in general [11] and more particularly
many variants of the foraging problem [12]. Swarm intel-
ligence [13] uses metaphors adopted from the behavior of
social insects to provide solutions to complex engineering
problems. Typically, these solutions are found to be adaptive,
robust and scalable [14]. In this paper, We adopt the same
design goals of swarm intelligence especially the idea of
self-organization, i.e. we try to ensure that a coherent global
pattern can emerge from the local interactions of a system’s
constituent units. In this paper, we propose a metaheuristic
that derives inspiration from human emotions to solve a
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variant of the foraging problem which we will call an in-
situ foraging problem. The goal here is to utilize a swarm
of robots to remove certain objects of interest which we
will refer to as prey distributed in a two-dimensional search
space which will be referred to as the field. In particular,
we take an evolutionary perspective [15] of emotions as
mechanisms that have evolved to ensure survival of the
species. Specifically, we use hunger and loneliness as a basis
to design rules of interaction for the swarm. The paper is
organized as follows: In the next section, we first present
the biological foundations that our metaheuristic is founded
upon. We continue by describing the metaheuristic in detail
and a broader description of the different behaviors exhibited
by the robots. Next, we present a study of the performance
of our algorithm viz a viz two control algorithms. We then
conclude by discussing results generated using a sensor based
simulation model [14] and make certain comments on future
directions for this work.

II. BIOLOGICAL FOUNDATIONS

Evolutionary psychologists [15] believe that certain ac-
tions and behaviors observed in humans do not necessarily
require complicated cognitive decision making mechanisms.
They are to be considered as specific programs that have
evolved to deal with certain recurrent problems. Furthermore,
they hypothesize the existence of a ’super program’ - emotion
that is designed by natural selection to select, coordinate and
recalibrate one subset of many mutually exclusive behaviors
(sub programs) so that the net output is to optimally deal with
the specific problem and maximize the individual’s chances
of survival. We adopt this philosophy of emotions in the
design of local decision rules which decide the individual’s
emotional state that maximizes the success of the system in
completing the given task.

Hunger is an emotional drive that ensures that a living
being eats the appropriate amount of food for survival. We
normally associate it with two states: Hungry and Satiated.
A state change occurs depending on the time spent till now
without food and the amount of capacity left. We adopt this
idea to design a rule which decides whether a robot should
invite other robots to the location of a prey or not. The
change of state from satiated to hungry determines whether
the robot will act altruistically or more selfishly to minimize
cooperation.

An evolutionary viewpoint of loneliness is that of a sense
of isolation that ensures that an individual seeks out other
members of the same species (conspecifics) whether to re-
produce or to get protection from predators [16]. Inspiration
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is taken from this to allow robots to decide whether they will
stop or re-issue invitations depending on whether they find
company they find at the location of the prey.

A combination of both biologically plausible rules control
the level of cooperation which takes place during grazing.
This has the advantage of ensuring that the number of robots
that graze at a particular area is not externally specified by
a global controller or some sort of sophisticated coordina-
tion mechanism. This form of local self-organized behavior
becomes even more relevant in critical applications such as
clearing of nuclear spills where electronic sensors don’t work
properly due to the effect of radiation [17].

III. METAHEURISTICS

A. Behaviors

Each robot engages in two or more subtasks that de-
pending on the heuristic used, the foraging problem can be
decomposed into:

• Random search: The robot looks for prey randomly
exploring the field within the given time interval. Once
prey is found, the robot settles down to graze (or remove
the prey). If the robot is recruited or invited to graze
at a particular location, it switches to directed search
behavior.

• Directed Search: The robot searches for prey in a
specific direction along which a broadcast signal is
being sent. It continually moves towards the broadcast
signal unless it locates a closer signal or locates any
prey.

• Grazing: Once the robot locates a prey which it is able
to do only when it is right at the location of the prey, it
stops and settles to remove the prey at a fixed rate, RG

till its container is completely full. Once this happens,
It shuts down operation.

• Inviting: In order to communicate that it has found
something of interest, A robot broadcasts pheromones
which are dispersed within a certain radius. This enables
other robots which can detect the pheromones to engage
in a directed search which leads them towards the source
of the pheromone broadcast, i.e. the inviting robot. The
decision to invite is dependent on the metaheuristic
involved.

B. The hunger-loneliness metaheuristic

Every robot’s interaction in a time step with the rest of the
swarm is determined by its current emotional state. This is in
turn dependent on the value of Hunger (H) and Loneliness

DIRECTED SEARCH RANDOM SEARCH        GRAZE

Invite detected                                          Attractor detected

No attractor at invite location                                     Attractor removed                

Attractor detected

Fig. 1. Overview of robot behaviors.

(L parameters which are both bounded within a given interval
[1, 100]. The two parameters are updated on the basis of the
following rules:

• Hunger update rule: Increase or decrease H within the
given bounds depending on whether a robot has grazed
prey in the current time step or not.

• Loneliness update rule: Increase or decrease L within
the given bounds depending on whether a grazing robot
is within a certain proximity of other grazing robots.
Keep increasing L when the robot is not grazing in the
current time step.

Every robot is in one of four emotional states, depending on
the value of H and L. The robot sends an invite only when
its hunger is satiated and its loneliness is high (HLLH ).
Hunger is satiated (HL) when 1 ≤ H ≤ 50 and is high
(HH) when 50 ≤ H ≤ 100. Similarly, the robot has low
loneliness LL, when 1 ≤ L ≤ 50 and high loneliness (LH ),
when 50 ≤ L ≤ 100. In a realistic scenario involving robots
that have fixed battery power, energy can be conserved by
selectively performing invites to a particular location.

The advantage of this is that in a realistic scenario involv-
ing robots that have limited capacity to graze prey

C. The random search metaheuristic

This is the first of two control metaheuristics which we use
to compare the performance of our algorithm against. Each
robot independently searches for prey and grazes when it
finds them. However, no robot transmits invitation signals
and there is no explicit cooperation with other robots.

D. The random search-immediate invite metaheuristic

This control metaheuristic places a high emphasis on
cooperation to the extent that each robot starts sending out
invite signals once it immediately starts grazing at the spot
where prey is found. Robots that respond to invite engage in
a directed search towards the point where the prey is present.

IV. EMPIRICAL STUDY

A. Experimental setup

A simple particle model is used to simulate the robots.
We don’t consider any kinematic or dynamic constraints on
the robots in this study. The robots placed in the field are
free to move out of it while conducting a random search.
Constraints on the robots include a fixed invite broadcast
range and that even if a robot detects prey, it will not be
able to determine the size of the prey. Each robot also has
a fixed container size capacity of 100 with a grazing rate
of RG = 1. During the random search, the robot engages
in a two-dimensional random walk [18] where its trajectory
in N time steps is composed of N two-dimension vectors
with random orientations and fixed magnitude l. For such a
random walk, the root-mean-square distance traveled after
N steps of length l is given by drms = l

√
N. drms is

particularly significant in the design of the environment such
that the spatial distribution of prey is such that the robots
can ideally cover the entire area within the allocated time of
N steps. Also, each prey covers the same spatial area with



their densities determining the number of robots required to
remove the prey.

B. Heuristic performance measure

Similar to other analyses of foraging problems [12], we
adopt an efficiency measure which is the ratio of the total
income derived during solving the problem to the costs
incurred during this period. In our particular variant of the
foraging problem, we define income as the net prey content
removed during the N time step run of the simulation.
Cost incurred is the total energy spent by the robots in
broadcasting invite signals. Assuming that the power used
up while transmitting an invite during one time step, P is
constant, the heuristic efficiency ν during one run of the
algorithm is given as

ν =
Total prey content

P × ΣrobotsInvite duration
(1)

C. Simulation results

The simulation is run in the MATLAB simulation envi-
ronment in a field containing 60 robots which are assigned
to clear prey whose cumulative content is 6000 within a a
given simulation time of N = 1500. The robots are assumed
to take discrete steps of length, l = 0.5. The invite broadcast
range is 30 and the power P used in transmitting an invite
during one time step is 0.05. Prey are assumed to be small
circular patches of radius 1. There are two types of prey,
small ones which contain 50 quantity of prey and large ones
which contain 2900. The prey are randomly dispersed within
the search space bounded by an imaginary edge length of
40. The robots are placed at two distinct patterns across the
field as shown in Fig.2(a) and Fig.2(b). Each configuration
is simulated for 500 runs and two cumulative performance
measures, Fig.3 and Fig.4, are reported.

D. Discussion

Case A: Robots dispersed from two locations into field

As shown in Fig.2(a), the robots are released from two
opposite corners into the field at the start of the simulation.
The percentage prey grazed is measured for all three heuris-
tics over five hundred runs. We observe from Fig.3(a) that
the Hunger-loneliness heuristic removes fifty percent of the
total prey content for over four hundred runs. The Random
search-immediate invite heuristic does equivalently as well
for only two hundred and fifty runs. However, as shown in
Fig.4(a), it is the performance measure ν that shows that
Random search-immediate invite heuristic tends to make the
apparent gains in prey removal an expensive affair due to the
energy expended in blindly making invites.

Case B: Robots dispersed from four locations into field

Fig.2(b) shows the robots split up into groups of fifteen.
Each group is released into the field from one of the four
corners. The empirical analysis of performance is repeated.
Although, the percentage of prey removed (Fig.3(b)) does
not show any appreciable change between random search-
immediate invite heuristic and hunger-loneliness heuristic,

Fig. 4(b) shows the strong improvement in hunger-loneliness
heuristic when it comes to balancing the needs of conserving
energy and removing prey.

V. CONCLUSION

We presented a new metaheuristic that adopts inspira-
tion from emotions observed in social animals to enable a
swarm of robots self-organize to exhibit emergent behavior
in the form of removal of prey scattered randomly in the
search space. There are several limitations that merit further
exploration. These include utilizing a more detailed robot
model where collision avoidance and robot dynamics are
taken into account. In future work, we would also like to
explore if it is possible to integrate a form of learning where
the values of Hunger (H) and Loneliness (L) parameters at
which the emotional state switch takes place can depend on
the configuration of the environment.
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(a) Case A: Robots dispersed from two locations into the field.
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(b) Case B: Robots dispersed from four locations into the field.

Fig. 2. Various robots configurations.
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(b) Case B

Fig. 3. Total prey content removed for five hundred runs of all three heuristics.
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Fig. 4. The values ν for five hundred runs of all three heuristics.
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