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Abstract— When balancing, a humanoid robot can be easily
subjected to unexpected disturbances like external pushes. In
these circumstances, reactive movements as steps become a
necessary requirement in order to avoid potentially harmful
falling states. In this paper we conceive a Model Predictive
Controller which determines a desired set of contact wrenches
by predicting the future evolution of the robot, while taking
into account constraints switching in case of steps. The control
inputs computed by this strategy, namely the desired contact
wrenches, are directly obtained on the robot through a modifi-
cation of the momentum-based whole-body torque controller
currently implemented on iCub. The proposed approach is
validated through simulations in a stepping scenario, revealing
high robustness and reliability when executing a recovery
strategy.

I. INTRODUCTION

The unpredictable nature of the real world is one of the
leading obstacles to the widespread diffusion of robots out-
side labs. These complicated mechanical systems ought to be
robust against a wide spectrum of disturbances. Considering
humanoid robots, the aim for robustness translates into pre-
venting stumbling. Despite the apparent straightforwardness
of such an objective, complications arise when facing it
from an algorithmic point of view. Considering humanoid
robots, problems arise due to their intrinsic underactuation
[1] which, in essence, means that by exploiting all theirs
actuated degrees-of-freedom they can control their internal
configuration, but they cannot affect directly their global
pose. For example, an astronaut in the space is free to move
all his limbs, but without exploiting any hooking he cannot
move inside the spaceship. On the contrary, by exploiting
contacts with the environment it is possible to circumvent
this limitation. Additional difficulties arise by the fact that
contacts may change over time. This results in a different
evolution of the constrained dynamical system making the
overall system hybrid [2], i.e. it possesses both a continuous
and discrete time dynamics.

An appealing research problem consists in applying Model
Predictive Control (MPC) techniques to these particular
systems. MPC is a particular optimal control method which
enables the introduction of the feedback into the optimization
procedure thanks to the “Receding Horizon Principle” [3],
[4], [5]. The basic concept consists in solving, at each
time step, a new finite-horizon optimal control problem
initialized at the current plant state. At every time instant
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only the first control input is then applied to the plant. Model
predictive controllers are appealing for controlling hybrid
systems [6], [7] since the full hybrid model can be exploited.
Indeed, thanks to the prediction capabilities, it is possible to
include inside the formulation both time- and state-dependent
switching, performing anticipatory actions for the imminent
variation in the dynamics. However MPC does not solve
those problems related to the numerical integration of hybrid
systems, which indeed is an open research problem.

In literature the original underactuated hybrid dynamics
is usually scaled down to simplified models, making the
problem easier to be handled. Simple models like the Linear
Inverted Pendulum (LIP) [8] are widely adopted. In this
context, MPC has been applied in order to stabilize walking
patterns [9], [10], [11], especially of position controlled
robots. The result is usually a slow and steady walking style
characterized by a nearly constant Center of Mass (CoM)
height. The LIP model has been applied also in [12] with
a robot equipped with force controlled joints. While being
easily applicable, this simple model provides only a limited
amount of informations about the actual dynamics of the
robot. A related popular approach is based on the Capture
Point framework [13]. While keeping the model complexity
low, this technique allows to evaluate the possibility of the
robot to stay in the upright position. Starting from the simple
Linear Inverted Pendulum, the model has been progressively
enriched [14] to catch different robot peculiarities. This
method is particularly interesting due to the possibility of
drawing stability criteria [15] and in [16] authors applied
MPC techniques based on the Capture Point formulation.
A recent trend seems to move in a different direction. The
CoM dynamic model is substituting the simple pendulum,
especially when planning complex trajectories. In [17], [18],
[19] a kinematic planner is merged with one based on the
CoM dynamics to accomplish complex and feasible motions,
while taking into account different contact locations. The
main issues of this approach are usually related to the
computational complexity, while the optimization problem
is generally non-convex, introducing problems of local min-
ima. In other applications, only the momentum dynamics is
considered. In [20] only the 3D CoM acceleration is taken
into consideration, while in [21] authors propose a convex
upper bound of the angular momentum to be minimized. In
[22] the derivative of the angular momentum is approximated
by using quadratic constraints together with slack variables
necessary to keep the approximation error low. Nevertheless,
in this approach, it is not possible to directly penalize the use
of the angular momentum, while introducing many additional
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variables into the formulation.
Following this direction, we present here a momentum-

based whole-body torque controller based on a MPC for-
mulation. In particular, the dynamic evolutions of the robot
linear and angular momentum are taken into account. We
thus make use of a reduced model: differently from simpli-
fied models used in literature, the robot momentum is an
exact model that captures the global behaviour of the robot.
We deal with the complications introduced by the derivative
of the angular momentum by resorting to a Taylor expansion.
The presented controller allows to deal directly with the
intrinsic hybrid dynamic of the system by considering time-
varying constraints. The peculiarity of our approach also
resides in the fact that the computed control inputs, i.e. the
contact wrenches, are directly applied on the robot, rather
than used to define a joint position reference trajectory. In
particular, the presented scheme inherits its structure from the
momentum-based whole body torque controller [23], [24],
[25] implemented on iCub. Torque control is particularly
suitable for our application given that it permits to absorb the
impacts efficiently, maintaining the balance also in case of
robot positioning errors. We tested this approach on the iCub
humanoid robot while performing a step recovery strategy.

II. BACKGROUND

A. Notation

Throughout this paper we adopt the following notation.
• I represents an inertial reference frame with the origin

placed on the ground, while the orientation is so that
the z−axis points against the gravity and the x−axis is
oriented frontally with respect to the robot.

• 1n represents a n×n identity matrix. 0n×m ∈ Rn×m is
a zero matrix while 0n = 0n×1 is a zero column vector
of size n.

• xCoM ∈ R3 is the position of the center of mass with
respect to I.

• ‖x‖2W = x>Wx is the weighted square norm of x.
• x∧ ∈ R3×3 denotes the skew-symmetric matrix such

that x∧y = x × y, where × denotes the cross product
operator in R3.

• d·e denotes the ceiling operator which outputs the
rounding of the argument toward +∞.

B. Whole-body torque control

The predictive controller we propose in this paper, relies
on a whole-body optimization-based torque controller for the
stabilization of the desired contact wrenches. The original
whole-body control algorithm is a momentum-based hier-
archical controller composed of two control objectives [24],
[25]. The first, and most priority objective, is the tracking of a
desired robot momentum while the second is the stabilization
of the zero dynamics.

In this paper we slightly modify the original controller
by directly commanding desired contact wrenches. We thus
“substitute” the first control objective, i.e. generation of
contact wrenches to track a desired robot momentum, with
our controller proposed in this paper.

The second objective, which is left as in the original
controller, is responsible for constraining the joint variables
and avoid internal divergent behaviours [25]. When described
as an optimization problem, this second objective can be
formulated as:

min
τ

‖τ − ψ‖2 (1a)

s.t. M(q)ν̇ + h(q, ν)− J>fref = Bτ (1b)

Jν̇ + J̇ν = 0 (1c)

ψ := hj(q, 0)− J (j),>fref −Kj
p(qj − qrefj )−Kj

d q̇j
(1d)

Eq.(1b) describes the free-floating dynamics of the mechani-
cal system [26, Ch. 7], where (q, ν) is the free-floating state
of the robot. Eq.(1c) is the constraint equation describing the
kinematic constraints associated with the contacts. Eq.(1d),
which resembles a PD plus gravity and contact wrenches
compensation, plays the role of a desired joint torque ref-
erence where hj and J (j) denotes the joint space bias term
and Jacobian respectively. Note that the controller depends
on two inputs: fref and qrefj . As we will show later, our
predictive controller is responsible of choosing the former
quantity, while the latter is the output of a inverse kinematics
algorithm.

III. PROBLEM FORMULATION

A. The model

In this work, we examine the scenario where the only
contacts available are those expressed at the feet. Without
loss of generality, we consider as a test case the robot
balancing on single support and performing a step adopting
the right foot as swing limb. The rate of change of the robot
momentum, when expressed in a frame located at the center
of mass with the same orientation of I, has the following
expression:[

ẍCoM

Ḣang

]
=

[
m−113 03×3

03×3 13

] [
CoMXl

CoMXr

] [
fl
fr

]
+ḡ (2)

where m ∈ R is the mass of the robot and ḡ the 6D gravity
acceleration. The indexes l and r refer to left and right foot
respectively. fi ∈ R6, with i either l or r, is the contact
wrench, composed of 3D forces and torques applied at the
contact point, namely fi =

[
f>i , τ

>
i

]
. Matrices CoMXi, have

the following particular structure:

CoMXi =

[
13 03×3

(xi − xCoM)∧ 13

]
. (3)

The presence of xi, highlights the dependency of the mo-
mentum from the foot position, but the presented model does
not carry any information about the robot kinematics. The
variables involved in the formulation do not affect directly
xi, thus it is not possible to define its feasible values properly.
In addition, due to the very dynamic task the robot is going
to perform, the tracking of a reference for the swing foot
may not be perfect. Consequently, local modifications of a
preplanned foot trajectory might not have a relevant role.



In literature the foot positioning problem is usually ad-
dressed by exploiting the LIP model, as in [27], [28] or [29].
The kinematics limitations can be introduced through simple
box constraints, which may not have a direct connection with
the actual robot kinematic limits. As a consequence we rely
on external planners to decide where to place the foot. This
information will be considered as a datum for the presented
strategy, thus keeping its computational complexity low.

For similar reasons we can assume to know the instant
where the impact is going to happen, here called timpact.
Given the application we consider, the time necessary to take
the step should be as little as possible. Consequently, it has
been chosen to be the minimum time the robot needs to
physically perform the step given its limits. This happened to
be a common assumption in literature ([27], [29], [18]), since
it also avoids to introduce integer variables into the optimal
control formulation, thus avoiding np-hard complexity.

B. The angular momentum

The second set of rows of Eq.(2), represents the derivative
of angular momentum Ḣang, i.e.:

Ḣang =

l,r∑
i

(xi − xCoM)∧ fi + τi. (4)

If we consider both xCoM and fi as two optimization vari-
ables, its product renders the formulation non-convex and
thus much harder to be solved, mainly due to possible local
minima. In our application, we can admit a certain level
of approximation, since during the step this quantity does
not need to be precisely controlled to zero. On the other
hand, angular momentum can be used to penalize the usage
of contact wrenches. For that purpose the Taylor expansion
(around the last available values of fi and xCoM) truncated
to the first order represents an acceptable approximation:

Ḣang ≈
{l,r}∑
i

τi +
(
xi − x0

CoM

)∧
f0
i +

+
(
xi − x0

CoM

)∧ (
fi − f0

i

)
+

+
(

f0
i

)∧ (
xCoM − x0

CoM

)
⇒ Ḣang ≈

{l,r}∑
i

τi +
(
xi − x0

CoM

)∧
fi +

+
(

f0
i

)∧ (
xCoM − x0

CoM

)
. (5)

Notice that the anticommutative property of the cross prod-
uct, i.e. x∧y = −y∧x, has been exploited. The superscript
0 refers to the last feedback retrieved from the robot, which
will be used as the point around which we compute the
Taylor expansion. By truncating at the first order, the ap-
proximation error is o

((
fi − f0

i

) (
xCoM − x0

CoM

))
. Thus, the

less the CoM moves from the feedback position the better the
approximation will be. This is usually the case given short
prediction windows.

Finally, we define γ as the state and f as the control
variable for the MPC problem,

γ :=
[
x>CoM ẋ>CoM H>ang

]>
∈ R9, (6a)

f :=
[
f>l f>r

]>
∈ R6 (6b)

then, we can rewrite Eq.(2) as:

γ̇ = Ẽvγγ + F̃γf + G̃γ + S̃0
γ (7)

where

Ẽvγ =

 03×3 13 03×3

03×3 03×3 03×3(
f0
l + f0

r

)∧
03×3 03×3

 ,
F̃γ =

 03×3 03×3 03×3 03×3

m−113 03×3 m−113 03×3(
xl − x0

CoM

)∧
13

(
xr − x0

CoM

)∧
13

 ,
G̃γ =

 05

−g
03

 , S̃0
γ =

[
06

−
(
f0
l + f0

r

)∧
x0

CoM

]
.

Here, S̃0
γ introduces the constant terms resulting from the

Taylor approximation. Under the above considerations, the
model described by Eq.(7) is affine and can be easily inserted
into a QP formulation, as described in Sec. V.

C. Constraints definition

The constraints introduced in the formulation are mainly
physical limitations induced by contacts. Considering con-
tacts located at the feet, those constraints enforce the fea-
sibility of the exerted wrenches. For example, the applied
wrenches must be within the friction cone (approximated
through a polyhedral convex cone) while their point of
application (i.e. the center of pressure, CoP) should lie inside
the support polygon. Formally, we can write these constraints
linearly as follows:

Aclfl ≤ bcl ∀t : t ≤ tf . (8)

Notice that these constraints are consistent only if the foot
is in contact. Thus, they have not to be applied on the swing
limb, as the corresponding required wrench should be null
when t < timpact. The constraints applied on the swing foot
attempt to catch the hybrid nature of the system by varying
in time. Formally:{

fr = 06 ∀t : t < timpact

Acrfr ≤ bcr ∀t : timpact ≤ t ≤ tf .
(9)

By considering the CoM dynamics only, we elude the
complications introduced by time-varying constraints on the
robot configuration after the establishment of a new contact
(e.g. the velocity of the corresponding foot should be zero).



D. Cost function definition

The cost function Γ possesses different components that
act only before or after the impact. Formally, it has the
following expression:

Γ =
1

2

(∫ tf

0

∥∥∥γ(τ)− γd(τ)
∥∥∥2

Kγ
dτ+ (10a)

+

∫ tf

t̄imp

∥∥∥γ(τ)− γd(τ)
∥∥∥2

Kimp
γ

dτ+ (10b)

+

∫ tf

0

∥∥f(τ)
∥∥2

Kf
dτ+ (10c)

+
∥∥∥γ(tf )− γd(tf )

∥∥∥2

Kimp
γ

)
. (10d)

K
(·)
(·) is a real positive semi-definite matrix of gains with

suitable dimensions, accounting also for unit of measurement
mismatches inside Γ. t̄imp is the minimum between timpact
and tf (to avoid negative integrals when the impact is
expected to occur after tf ) while, for the sake of simplicity,
the initial time instant is set to zero. Note that it is possible to
vary the cost applied to the state γ after the impact through
the use of the matrix Kimp

γ . Finally, a terminal cost term,
weighted by the same matrix Kimp

γ , models the finiteness of
the control horizon.

Particular attention has been payed to the choice of the
references, here expressed with the superscript d. Indeed,
even if the model carries no information on how the step
is made, the CoM dynamics highly influences the resultant
motion. The choice of the references are therefore crucial for
performing a step correctly, since they are the only insight we
could give to the controller about the desired posture of the
robot. On the other hand, to provide a precise CoM trajectory
would reduce the benefits and the efficiency of the MPC
controller. After the completion of the step, we would like
to have the CoM over the convex hull centroid. Nevertheless,
this objective does not constraint the CoM trajectory during
the step. Ideally, we could leave the optimizer to come out
with an optimal trajectory, given initial and final conditions.
For this reason, we decide to weight the traverse components
(i.e. x and y) of the CoM position only in the terminal cost
Eq.(10d) and after the step is made, Eq.(10b). On the other
hand, the z−component of the CoM position is continuously
weighted, allowing to have some authority over the CoM
trajectory, useful to perform the step movement correctly.
The CoM velocity and the angular momentum are always
minimized.

As a last term, we weight the requested reaction forces
with the goal of avoiding impulsive responses. Additionally,
having smooth references for the desired wrenches allows
to reduce the tracking error introduced by the underlying
momentum controller.

E. References definition for the whole-body torque controller

The outputs of the MPC strategy are used as references
for the whole-body torque controller described in Section

II-B. In particular, fref = f , i.e. the contact wrenches
are directly used as references. Regarding the desired joint
positions qrefj , we solve an inverse kinematics problem, viz.,
we impose a desired pose for the swing foot, following as
close as possible the center of mass trajectory defined by the
MPC controller.

IV. MPC AS A STEP TRIGGER

Let us consider the scenario where the robot has to perform
a step because of an external perturbation. In principle we
could leverage the presented MPC formulation to define the
moment in which to start the motion, up to now considered
as a datum. This moment can be defined as the instant where
the controller is not able to bring the CoM back to a desired
equilibrium point, given the present support configuration. In
other words, the constraints related to the balancing configu-
ration prevent the controller to recover from the push. Thus,
it is necessary to step and change balancing configuration in
order to avoid a fall. The availability of a prediction horizon
particularly suits this idea. Hypothetically, if tf = ∞, as
soon as the robot is pushed, we could predict whether or
not the controller will be able to absorb the disturbance
completely. In practice this is not true. The finiteness of the
prediction horizon hides the actual recovery capabilities of
the controller, thus it is still necessary to define an heuristic.
By considering the very last predicted state, we can set the
following condition:

‖xCoM (tf )− xdCoM‖+kv‖ẋCoM (tf )− ẋdCoM‖ < d̄. (11)

When Eq.(11) is violated, the robot performs the step. Both
kv and d̄ ∈ R are user-defined parameter affecting the
sensitivity to pushes. The smaller d̄ the more the robot will
be inclined to take a step, while kv allows to regulate the
relative importance of the two errors. Notice that Eq.(11)
does not depend directly on the feet dimensions.

In order to be effective, this heuristic needs the MPC
strategy to be in charge of sending references to the robot,
even if the step will not be performed at all. Indeed, Eq.(11)
is based on a prediction which assumes that all the computed
wrenches are directly applied on the system. Nevertheless,
notice that here the goal is different from what has been
presented in Sec. III-D. In a sense, the robot should do its
best to avoid a step. As a consequence, looking at Eq.(10),
t̄imp will be equal to tf (i.e. the step will not occur at all),
while Kγ should be equal to Kimp

γ . In practice, the cost
function should resemble the case where the impact already
happened, in order to weight correctly the whole state terms.

V. QUADRATIC PROGRAMMING TRANSCRIPTION

We solve the finite-horizon optimal control problem pre-
sented in the previous section by using direct numerical
methods. In particular we convert the original optimal control
problem into a single Quadratic Programming (QP) problem
to be solved at each time step.



The general form of a QP problem is the following:

minimize
χ

1

2
χ>Hχ + χ>g (12a)

subject to: Aχ ≤ b (12b)

where χ ∈ Rn is the set of optimization variables, H ∈
Rn×n a positive semi-definite matrix (the “Hessian” matrix),
g ∈ Rn the “gradient” vector, while A ∈ Rng×n and b ∈ Rng
define the set of ng constraints applied to the optimization
variables.

A. Model transcription

We discretize the model using forward Euler formulation.
Different approaches may have been chosen, as described
in [30], but we decided that Euler integration was suitable
thanks to its simplicity. Discretizing Eq.(7), we obtain:

γ(k + 1) = Evγγ(k) + Fγf(k) +Gγ + S0
γ (13)

where Evγ = 19 + dtẼvγ , Fγ = dtF̃γ , Gγ = dtg̃γ , S
0
γ =

dtS̃0
γ while k ∈ N, k = 0, · · · , N − 1 is the discrete time,

N = dtf/dte and dt ∈ R is the time step length.
We can now define the optimization vector χ as the

collection of all the states and control variables over the
horizon. Formally:

χ =



γ(1)
f(0)

...
γ(k)

f(k − 1)
...

γ(N)
f(N − 1)


, χ ∈ R9N+12N . (14)

We thus opted for leaving the state γ as an optimization
variable. This choice allows for an easy reformulation of the
cost function, while preserving a particular sparse structure
which may be useful for the optimizer.

According to the receding horizon principle, at each time
step, f(0) will be applied to the system, through a modified
version of the balancing controller implemented on iCub, as
presented in Sec. III-A.

A crucial point to be considered, is the definition of the
time instant at which the impact occurs. We assume the
impact to be impulsive and taking place at the beginning of a
time step which we denote with kimpact. We further assume
that the control input f(k) is applied piecewise constantly,
i.e. constant from instant k to k + 1. Note that, in view of
the above two assumptions, setting kimpact = 0 implies that
both feet are at contact already at the initial time k = 0.

As mentioned previously, we do not directly model the
distance between the swing foot and the ground, but we com-
pute the position and the expected impact time at the begin-
ning of the push strategy. The following procedure describes
how we update the expected impact instance throughout the
proposed MPC controller. Assuming the initial time instant

to be always set to zero, we start with a value of kimpact
equal to dtimpact/dte. At each controller execution, we set
the new value to max{kimpact−1, 1}, which implies that, if
the impact has not occurred yet, we saturate kimpact to 1, i.e.
we expect the impact to occur at the second time step in order
to avoid requiring wrenches on a swinging limb. If the impact
has occurred, instead, kimpact is correctly set to 0. Note that
the formal definition of the impact time and the trajectory
control of mechanical system with unilateral constraints (as
it is our case), are still an open research problem [31], [32].

It is now possible to write the discretized dynamics as an
equality constraints, transforming the initial continuous time
optimal control problem into Eq.(12). By expanding Eq.(13)
over the horizon we get the following constraint:(

Ev − eγ
)
χ = −G− Evγ0 − S0 (15)

where Ev ∈ R9N×21N and G, Evγ0 , S
0 ∈ R9N×1. The

matrix eγ ∈ R9N×21N selects the terms related to state γ
from vector χ, while Ev has a peculiar banded structure due
to the choice of vector χ. In particular, different repetitions
of Evγ and Fγ are included, replicating Eq.(13) for each
time step in the control horizon.

The dependency from γ(0) is considered through matrix
Evγ0 , constituted by only zeros, except from the first block
of nine rows, which are equal to Evγ . Finally G considers
the gravitational effects, while S0 contains the constant terms
related to the angular momentum.

A similar approach can be used to transcribe the con-
straints presented in III-C:

Ahor χ ≤ bhor. (16)

Matrices Ahor and bhor condense the constraints of Eq.(8)
and Eq.(9) for each time instant. In order to avoid a varying
number of constraints from one MPC execution to the other,
we adopted a simple expedient. An upper and lower bound
on the normal force fz are added, among friction and CoP
constraints. In order to set the wrench on the swing foot
to zero, it is simply necessary to set both the previously
mentioned upper and lower bound to zero. All the other
components of the wrench are automatically set to zero
thanks to the friction and CoP constraints. Thus, it is simply
necessary to correctly handle the terms inside bhor without
changing the number of constraints.

B. Cost function transcription

The last stage of the transcription process involves the
cost function of Eq.(10). As before, this process consists
in a discretization stage followed by a reformulation phase
necessary to express the cost function in terms of χ. This
latter stage is omitted here, but it simply exploits the appro-
priate extractor matrices, as it has been done for the model
transcription through eγ .

Starting from the first term, Eq.(10a), the discretization
corresponds to

(10a)⇒ Γγ =
1

2

N∑
k=1

∥∥∥γ(k)− γd(k)
∥∥∥2

Kγ
(17)



noticing that the cost is evaluated starting from 1, avoiding
to consider the feedback γ(0).

Similarly, the other contributions can be discretized as:

(10b)+(10d)⇒ Γimpγ =

=
1

2

N∑
k=k̄imp

∥∥∥γ(k)− γd(k)
∥∥∥2

Kimp
γ

, (18a)

(10c)⇒ Γf =
1

2

N−1∑
k=0

∥∥f(k)
∥∥2

Kf
, (18b)

where k̄imp is the minimum between N and kimpact, so that
Γimpγ is composed by at least one term, as if there was a
terminal cost like in Γ.

We can exploit the simple structure of the cost function
to further weight the difference of desired reaction forces
between two subsequent time-steps, in order to avoid abrupt
changes in the control input. This new cost term in the
discrete case has the following form:

Γdf =
1

2

N−1∑
k=0

∥∥f(k)− f(k − 1)
∥∥2

Kdf
(19)

with Kdf a suitable positive semi-definite matrix of gains
and initialized with f(−1), considered as a datum, e.g. at the
beginning it corresponds to the wrench necessary to satisfy
the equilibrium of the robot momentum.

Finally, the overall cost function Γ is:

Γ = Γγ + Γimpγ + Γf + Γdf . (20)

VI. SIMULATION RESULTS

The presented MPC approach has been tested in the
Gazebo simulator [33] by using the iCub model. The iCub
humanoid robot [34] has been conceived to study develop-
mental cognitive systems. It possesses 53 actuated joints, but
only a total of 23 degrees of freedom (DoF) are used for
balancing tasks, i.e. we do not consider those located in the
eyes and in the hands.

Driven by the need of fast prototyping, the presented con-
troller has been developed using the MATLAB R©/Simulink R©

environment, taking advantage of WBToolbox library [35]
and YARP Plugins [36] to establish connection with the
simulator. In order to test the presented MPC scheme,
we conceived a simple stepping scenario, where the robot,
balancing on its left foot, will use the right foot to take a
step. This simple scenario allows us to test the performance
of the proposed controller with a single contact activation.

We present the results of different pushes, applied on the
traverse plane, with an angle with respect to the lateral axis
(pointing to the right of the robot), of 20◦ (Fig. 1a), −20◦

(Fig. 1b) and 45◦ (Fig. 1c).
We choose a time step of 10ms, coincident with the rate

of the whole-body torque controller, and a controller horizon
of N = 25. We noticed that the chosen value of N is
sufficient to allow the effectiveness of the strategy when the
robot is pushed from different directions. The push is nearly

impulsive, applied on the chest with a magnitude around
100N, which is about one third of the robot weight force.

Figure 1 shows the CoM evolution for the three exper-
iments, i.e. with different directions of pushes. It can be
noticed in both Figures 1a and 1c that two pushes occur.
The first one does not violate the condition in Eq.(11), thus
it does not force the robot to take a step. The second one,
instead, triggers a change in the support feet configuration,
and as a consequence, a new desired configuration for the
CoM.

Figure 2 represents the tracking of the desired vertical
forces output by the MPC controller for the side-push
experiment. Remarkably, the normal force on the right foot
appears to be tracked also across the step. Figure 3 shows
one of the benefits of torque control. The tracking of the
joint position reference on the right knee undergoes a strong
perturbation after the step. When hitting the ground, the
intrinsic compliance introduced by torque control allows to
absorb the impact, especially on this joint. This induce a
peak of 30◦ of tracking error, but the robot is still able to
balance. In addition, torque control helps avoiding problems
related to a not perfect placement of the swing foot before
the impact.

Summarizing, the presented controller allows the robot to
recover from pushes of various intensity and directions, while
remaining able to perform involved step movements.

VII. CONCLUSIONS AND FUTURE WORK

The proposed controller adopts a slightly approximated
model of the robot linear and angular momentum dynamics
in a predictive framework. It allows to take into account
step movements by varying the structure of constraints and
cost functions across the change of contacts configuration.
The uncertainty on its actual time instant is considered by
a “shift” in the prediction window. An heuristic is also
employed to determine a condition for stepping. The contact
wrenches are assumed to be control inputs and realized by
the robot through a modified version of the iCub momentum-
based whole-body torque controller.

Taking [37] into a comparison, this approach avoids the
definition of a CoM trajectory along the step, leaving the
responsibility to the optimizer rather than to the designer.
As a return, the proposed strategy presents higher robustness
properties with the drawback of an increased computational
complexity. Since this approach has been meant to provide
reaction in real-time, efforts have to be payed in order to
reduce the time needed to get a solution. At the present
time it takes almost 0.1 seconds to solve an instance of
the presented formulation on a machine running Ubuntu
16.04. The PC is equipped with a quad-core Intel R© Core
i5@2.30GHz and 16GB of RAM. MOSEK R© is the selected
solver, accessed through the MATLAB R© interface CVX [38].
An optimized C++ version of this strategy is currently under
development. In addition, for a practical implementation
on the real robot, the delay between the feedback and the
actual generation of references should be reduced as much
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Fig. 1: CoM evolution during three different experiments of push recovery. The single dashed lines in (a) and (c) show a
not-enough-strong push to violate the condition in Eq. (11). The external push force has been applied, with respect to the
lateral axis, at 20◦, −20◦ and 45◦ for the cases (a), (b) and (c) respectively.
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Fig. 2: Vertical components of the contact forces during
the side-step experiment. Measured forces are plotted with
dashed lines, while desired forces with the solid lines.

as possible. Alternatively, we might consider a one step delay
for the application of the control action, directly in the model.

An additional entry on the checklist of future improve-
ments consists in providing the MPC controller with infor-
mation about the leg kinematics. This would allow to insert
the step peculiar characteristics (step duration and location)
directly inside the optimization.
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