

Time-Varying Formation Controllers for Unmanned Aerial Vehicles Using Deep
Reinforcement Learning

Ronny Conde*. José Ramón Llata*. Carlos Torre-Ferrero*

*Electronics Technology, Systems and Automation Engineering Department at the University of Cantabria, 39005, Santander,
Spain

(Corresponding Author: ronny.conde@gmail.com)

Abstract: We consider the problem of designing scalable and portable controllers for unmanned aerial
vehicles (UAVs) to reach time-varying formations as quickly as possible. This brief confirms that deep
reinforcement learning can be used in a multi-agent fashion to drive UAVs to reach any formation while
taking into account optimality and portability. We use a deep neural network to estimate how good a state
is, so the agent can choose actions accordingly. The system is tested with different non-high-dimensional
sensory inputs without any change in the neural network architecture, algorithm or hyperparameters, just
with additional training.
Keywords: Reinforcement learning control, multi-vehicle systems, flying robots, autonomous vehicles,
decentralized control and systems, deep neural networks, deep reinforcement learning, time-varying
formation control, unmanned aerial vehicles (UAVs).

1. INTRODUCTION

Recently, formation control of unmanned aerial vehicles
(UAVs) has attracted lots of researchers due to its broad
potential applications, including search and rescue missions
(Waharte et al., 2009) and wide area surveillance (Nigam et
al., 2012). Considering these examples, it seems clear that
widespread formation control systems will have a positive
impact on society, from improving public security to saving
lives after natural disasters.

For a UAV formation controller to become widespread the
following requirements, among many others, should be met:

• Time-varying Formations: It should be able to work
with time-varying formations, the most general case,
to empower users to come up with new applications.
Time-varying formations are those where relative
separations and bearings change with time.

• Portability: It should generalize to any formation and
work with different sensory inputs without requiring
complex design processes. This requirement will help
potential users deploy the system quickly and easily.

• Scalability: It should function properly with an
arbitrarily large number of UAVs, which may be
needed in some applications.

• Optimality: It should drive UAVs to reach formation
as quickly as possible. Just guaranteeing stability may
not be enough for some applications. Moreover, we
want UAVs to do their best when desired formations
are not feasible, because of UAV dynamic
limitations, to help users design applications quickly,
without checking formation feasibility.

Although many formation control strategies have been
proposed, we have not found any approach that covers all these
requirements.

A decentralized approach is needed for scalability. According
to (Zhang and Mehrjerdi, 2013), it is less affected by
computational and communicative bottlenecks. However,
designing decentralized systems is difficult. We need global
behaviors to emerge from individual ones without a central
unit monitoring the accomplishment of the mission and
sharing that information with team members.

It is so hard that most decentralized approaches study fixed
formations. Only a few results have been obtained for time-
varying formations, the most general case. These good results
were achieved using consensus theory. Consensus theory can
be used to analyze stability, getting necessary and sufficient
conditions, but it is not evident, at least, how to guarantee
optimality in the way we have defined it. Another issue of this
approach is that complex design processes may be necessary
when changing sensory inputs or the required formation.

Theoretically, a multi-agent system trained with classical
reinforcement learning (RL) would meet most of the desired
properties. It would be scalable because of the decentralized
approach. Optimality requirement would be satisfied because
RL is about agents learning optimal policies. However, it
would be only partially portable. Even though the system
could easily generalize to different time-varying formations, it
would require complex design processes to come up with
appropriate hand-crafted features when the sensory input
changes.

In 2013, Mnih et al. presented a deep learning model able to
learn control policies directly from sensory input, without
relying on hand-crafted features, using reinforcement learning

(Mnih et al., 2013, Mnih et al., 2015). Now, thanks to this
work, it seems clear that all desired requirements could be met
by using this approach: Deep Reinforcement Learning.

1.1 Specific Limitations

For the sake of simplicity and to reduce computational needs,
we do not consider obstacle avoidance, different
communication topologies, delays, noisy sensors, complex
UAV models or high-dimensional sensory inputs. All these
elements will be part of future research.

1.2 Main Contributions

This paper supports that deep reinforcement learning is a
feasible approach to develop scalable, optimal and portable
time-varying formation controllers for UAVs.

• This brief confirms that deep reinforcement learning
can be used to train individual UAVs to behave
optimally in any time-varying formation, covering
scalability and optimality.

• Even more, it supports that a deep reinforcement
learning agent can be trained to drive UAVs to reach
different time-varying formations in a plug-and-play
fashion. This point partially covers portability.

• This work substantiates that generalizing to different
sensory inputs can be done without complex design
processes, just with additional training, at least for
non-high-dimensional sensory inputs. Now, our
definition of portability is covered.

• This paper demonstrates that this approach also
works with unfeasible formations, because of UAV
dynamic limitations.

2. PROBLEM DEFINITION

We developed a simulation environment to test the solution,
including different formation sets and sensory inputs.

2.1 Simulation Environment

Training / Test Mode: During training, each simulated UAV
receives a reward signal depending on how close it is to its
desired position in the formation, according to the following
equation:

𝑟 = − (𝑥 −	𝑥')) + (𝑦 −	𝑦')) (1)
Where 𝑟 is the reward signal, (𝑥, 𝑦) the position of the UAV
and (𝑥', 𝑦') the desired position in the formation.

UAV Model: The simulator models rotary-wing UAVs, like
quadrotors or vertical take-off and landing aircrafts (VTOL).
Since the trajectory dynamics has much larger time constants
than the attitude dynamics, the formation control can be
implemented with an inner/outer loop structure. The inner loop
controls the attitude, and the outer loop is used to drive the
UAVs to the desired positions (Dong et al., 2015, Karimoddini
et al., 2013).

Because our agent controls the outer-loop, each UAV can be
modeled as a point-mass system described by the following
double integrator (Dong et al., 2015):

𝑥 𝑡 = 𝑣/ 𝑡
𝑦 𝑡 = 𝑣0(𝑡)
𝑣/ 𝑡 = 𝑢/ 𝑡
𝑣0 𝑡 = 𝑢0(𝑡)

 (2)

Where (𝑥, 𝑦) denotes the position of the UAV, (𝑣/, 𝑣0)
represents its velocity and (𝑢/, 𝑢0) the control inputs.

Two-Dimensional Environment: For the sake of simplicity, all
quadrotors move in the XY plane.

Labelled Homogeneous Robots: All UAVs are homogeneous
but not interchangeable. Each UAV knows its desired position
in the formation at every time step.

Discrete Control Commands: The controller chooses actions
from a discrete set 𝒜	 = 	 {→,←, ↑, ↓, □}	at each time step,
where “→” represents positive acceleration on the x axis, “←”
represents negative acceleration on the x axis, “↑” represents
positive acceleration on the y axis, “↓” represents negative
acceleration on the y axis and “□” represents no acceleration.

Formation Training Set, ℱ;<=>?>?': The simulation
environment provides different time-varying formations for
the training of our controller.

Formation Test Set, ℱ;@A;: The formations included in this set
are different from the ones included in ℱ;<=>?>?' because we
want to test whether the approach generalizes to any time-
varying formation. We have also included non-feasible
formations to prove that the system can handle them.

Sensory Inputs: Two sensory inputs are provided to check if
the solution satisfies the portability requirement:

• Precise localization system. Each UAV knows its
position and the velocity estimation at each time step.

• Distance to four landmarks. Each UAV knows the
distance to four landmarks and the velocity
estimation at each time step.

For the sake of simplicity, and to reduce computational needs,
we work with non-high dimensional sensory inputs. High-
dimensional ones would require a model with higher capacity.

Episodic Environment: Every four hundred time steps the
simulation is reset, placing each simulated UAV in a new start
position and choosing a new formation from the appropriate
set.

2.2 Checking Requirements

The following checklist has been used to verify the
requirements:

• Optimality. The controller should try to maximize
cumulative reward on each episode, reaching
formation as quickly as possible and keeping it
afterward.

• Portability. The controller should be trained with
formations from ℱ;<=>?>?' and work properly with
formations from ℱ;@A; if sensory input remains the
same. Even more, the system should work in the same
way with another sensory input just with additional
training.

• Scalability. A different controller instance should be
loaded on each UAV. No central unit is allowed.

• Time-varying and non-feasible formations were
included in ℱ;@A;.

3. DEEP REINFORCEMENT LEARNING AS A
FEASIBLE APPROACH

RL is the area of machine learning concerned with how
software agents ought to take actions based on experience.
During training, the agent receives a reward signal at each time
step, used to define its goal, and learns how to maximize the
total reward it receives.

3.1 Training Cycle

During training, the following cycle is repeated until the
episode ends:

• The agent combines the UAV sensory input with the
information about its role in the formation into a state
𝑠. State is defined as the information taken into
account by the agent to choose the next action.

• The agent picks action 𝑎, from the available actions
set 𝒜, given the current state, 𝑠.

• After executing the selected action, the agent ends up
in a new state, 𝑠’, and receives the appropriate
reward, 𝑟. 𝑠’ was obtained by combining the new
sensory data with the formation specification.

Fig 1. Training Cycle, repeated until the episode ends.

3.2 Discount Factor and Stochasticity

RL takes into account stochasticity. Ending up in a new state
𝑠’ is partly random and given by the transition function
𝑇 𝑠, 𝑎, 𝑠F = 	𝑃 𝑠F	 	𝑠, 𝑎), the probability of ending up in 𝑠’
given the prior state and chosen action. As a result, we may not

receive the same rewards by choosing the same actions. For
this reason, we use discounted rewards to calculate the
expected total reward until the end of the episode:

𝑅; = 𝛾(>J;)𝑟>?
>K; (3)

where 𝑡 is the current time step, 𝑛 is the length of the episode,
and 𝛾 is a real number between 0 and 1, called discount factor,
that reflects how much the agent takes into account future
rewards.

3.3 Q-values and Optimal Behavior

A Q-state represents the commitment of executing an action
from a state. E.g. {(𝑠,←), (𝑠, ↑), (𝑠, →), (𝑠, ↓), (𝑠, □)} is the list
of the Q-states associated to a hypothetical state 𝑠. A value is
assigned to each state-action pair, Q-value or 𝑄 𝑠, 𝑎 , to
estimate how good is choosing an action from a state.

𝑄(𝑠, 𝑎) maps each Q-state to the expected total discounted
reward if the agent executes action 𝑎 from state 𝑠 and behaves
optimally afterward. E.g. 𝑄(𝑠,←) returns the expected total
discounted reward, 𝔼[𝑟; 	+ 	ɣ𝑟;QR + 	ɣ)𝑟;Q) + 	…], after
choosing action “←” from state 𝑠 and behaving optimally
afterward, selecting the actions with the highest Q-value.

Once all Q-values are calculated, the optimal behavior can be
easily extracted. The agent just needs to choose the action with
the highest associated Q-value at each time step to be optimal.

3.4 Deep Reinforcement Learning

The problem implies a continuous state space but, how can an
infinite amount of Q-states be stored? A lookup table cannot
be used. Besides, the agent needs to be able to estimate Q-
values of state-action pairs it has not visited before.

Classical approaches use linear combinations of hand-crafted
features to approximate 𝑄(𝑠, 𝑎). However, coming up with
good hand-crafted features is a tough problem because 𝑄(𝑠, 𝑎)
usually has strong non-linearities. This approach does not meet
our portability requirement because changes in the sensory
input would require a complex design process to come up with
new hand-crafted features.

In this work, a different approach to estimating Q-values is
used: deep neural networks. Deep neural networks can learn
useful features by themselves if enough data is provided. Even
more, according to (Krizhevsky et al., 2012), they usually learn
better representations than hand-crafted features. As a result,
the agent can work with different sensory inputs just with
additional training.

3.5 Epsilon-Greedy

Before diving into how to train the neural network, the
exploratory strategy during training needs to be considered.

If the agent always chooses the greedy action, the one with the
highest Q-value, it could get stuck in suboptimal strategies.

To avoid this problem, epsilon-greedy is used as the
exploratory strategy. A random action is chosen with a small
probability 𝜀, picking the greedy one otherwise.

3.6 Deep Neural Network Training

Since 𝑄(𝑠, 𝑎) are real values, the neural network can be trained
like in a regression problem.

The Bellman optimality equation is used to come up with an
appropriate loss function:

𝑄 𝑠, 𝑎 = 	𝔼AV 𝑟 + 	𝛾𝑀𝑎𝑥=V∈𝒜𝑄 𝑠F, 𝑎F s, 𝑎] (4)
The Loss function was calculated by using (4):

𝐿 = 	 R
)
	 𝑟 + 	𝛾𝑀𝑎𝑥=V∈𝒜𝑄 𝑠F, 𝑎F − 𝑄(𝑠, 𝑎) (5)

However, applying it naively has several problems, including:

• Learning from consecutive samples is inefficient, due
to the strong correlations between them.

• Since learning the current parameters determines the
next data sample, the process could be unstable.

To solve these problems, we use a technique called Experience
Replay (Lin, 1993). The last N agent´s transitions are stored in
a dataset called Replay Memory and, at each time step,
samples of transitions are drawn at random from the Replay
Memory to train the network. This solution stabilizes the
whole training process.

3.7 How the Approach Solves the Problem

Scalability. A different agent instance is in charge of each
UAV.

Optimality. RL is about software agents learning how to
behave optimally. Optimality is defined by a reward strategy,
and the agent learns how to behave optimally with training.

Portability. Thanks to the rich state space our agent generalizes
to any time-varying formation without any additional process.
Because of the use of a deep neural network to approximate Q-
values, our agent works with different sensory inputs just with
additional training.

4. SYSTEM SPECIFICATION

The same neural network architecture and hyperparameters
were used across all scenarios, needed for portability.

4.1 Neural Network Architecture

In addition to the input layer, which depends on the state
representation, the model has three fully-connected hidden
layers, with 128, 64 and 32 rectified linear units (ReLU)
respectively. The output layer is a fully-connected one with a
single output, the approximation of 𝑄(𝑠, 𝑎).

We used Keras (Chollet, 2015) on top of Theano (Team et al.,
2016) to build and train the deep neural network. We selected
these platforms because of Keras' focus on fast
experimentation, Theano's ability to run on GPU and the
availability of a Python API, our development language.

We chose RMSProp as the optimizer and “Uniform” as the
weight initialization strategy. Specific details are presented
below.

4.2 Hyperparameters

Epsilon-greedy module: 𝜀 was equal to 0.5 during training.

Replay Memory Size: It stores the 10] most recent transitions.

Replay Memory Start Size: The agent followed a random
policy for 10^ transitions to populate the replay memory
before learning starts.

RMSProp Parameters: 5 ∙ 10J] was used as a learning
rate,	10Ja as epsilon (Small value added for numerical
stability) and 0.9 as rho (Gradient moving average decay
factor).

Discount Factor: 𝛾 was set to 0.95.

Minibatch Size: We used 16 training samples to compute each
SGD update.

4.3. Reward Clipping and Normalization

The reward function (1) offered by the simulation environment
lacks a lower limit. Two normalization steps have been applied
to avoid large errors:

1. The reward has been increased by 1. After this
operation, the new upper limit is 1.

2. The reward has been clipped to [-1, +1]

5. MAIN EVALUATION

5.1 Generalization to Different Non-High-Dimensional
Sensory Inputs

The agent was trained using both sensory inputs provided by
the simulation environment: precise localization system and
distance to three landmarks. The total clipped reward collected
per episode was used as the primary metric to evaluate the
progress of the agent. This metric tends to be very noisy,
especially when 𝜀 is set to a relatively high value, 0.5. A
Savitzky-Golay filter has been used in (Fig. 2) and (Fig 3.) to
smooth the data and mitigate this problem.

The upper limit of the metric in (Fig. 2) and (Fig. 3) is 400
because the maximum normalized reward is 1.0 per time step
and the simulation environment resets every four hundred time
steps. However, the following points make it impossible to
reach the upper limit during training:

• 𝜀 has been set to 0.5, a relatively high value. It means
that, during training, a random action, instead of the
greedy one, is chosen with a probability of 0.5 at
every time step.

• The actions are chosen from a discrete set 𝒜	 = 	 {→
,←, ↑, ↓, □}, instead of using a continuous action
space.

• A small neural network has been used to avoid
complexity and computational needs, so the capacity
of the model is relatively small.

However, despite all these limitations, (Fig 2.) and (Fig. 3)
show steady learning processes in both scenarios.

The same neural network, architecture, hyperparameters and
algorithm have been used in both situations, including the
learning rate and the epsilon-greedy values. (Fig. 2) and (Fig.
3) display similar results, with the exception that the second
scenario, distance to three landmarks, requires more training
to get to similar cumulative rewards, 1500 episodes instead of
1000.

Fig. 2. Total clipped reward collected per episode using a
precise localization system as sensory input.

These results support the idea that deep reinforcement learning
can be used to build agents able to generalize to different
sensory inputs with just additional training.

Fig. 3. Total reward collected per episode using the distance
to four landmarks as sensory input.

5.2. Generalization to Different Time-Varying Formations

The agent was trained with formations drawn at random from
ℱ;<=>?>?'. In this section we want to find out how the agent
behaves with formations from ℱ;@A;, formations it has not seen
before.

To be more specific, (Fig. 4) shows the trajectories of five
UAVs following an eight-figure pattern while keeping a phase

separation of 2𝜋/5 for 400 time steps, the episode length. This
formation is similar to the one used in (Dong et al., 2015). Each
simulated UAV was controlled by an instance of the trained
agent.

Fig. 4. Trajectories of five UAVs trying to follow an eight-
figure pattern while keeping a phase separation of 2𝜋/5.

Despite the fact that all formations included in ℱ;@A; are not
feasible because of the discrete action space, (Fig. 5) shows
how the system handles a more obvious non-feasible
formation. It would be unfeasible even with a continuous
action space because of the acute angles of the pattern. Again,
each simulated UAV was controlled by an instance of the
trained agent.

Fig. 5. Trajectories of five UAVs trying to reach a non-
feasible time-varying formation while keeping a phase
separation of 2𝜋/5.

6. RELATED WORK

The related work is analyzed from two different perspectives:
UAV formation control and Deep Reinforcement Learning.

6.1 UAV Formation Control

Centralized vs. Decentralized Architecture: The decentralized
approach was highly influenced by (Zhang and Mehrjerdi,
2013). This survey reported that centralized systems do not
scale well as formation size increases because of
communication bottlenecks and the lack of use of the
computational resources available on each vehicle. This was

stated to be true even when the most advanced optimization
solvers are used.

Time-Varying Formations: Most decentralized approaches to
UAV formation control study fixed formations. Few
successful approaches have been reported for time-varying
formations, the most general case. These good results were
achieved using consensus theory, like (Dong et al., 2015) or
(Rui et al., 2015). Consensus theory can be used to analyze
stability but is not evident, at least, how it can be used to
guarantee optimality in the way we have defined it. Another
problem with this approach is that complex design processes
may be necessary when changing sensory inputs or the
required formation.

6.2 Deep Reinforcement Learning

Combining RL algorithms with nonlinear function
approximators, like neural networks, could cause the training
process to diverge, so the vast amount of work in RL used to
focus on linear function approximators (Tsitsiklis and Van
Roy, 1997).

The main problem when using RL with neural networks is that
RL agents incrementally update their parameters while they
observe a stream of experience, breaking the independent and
identically distributed assumption of many stochastic gradient-
based algorithms.

However, in 2013, Mnih et al. presented a deep learning model
able to learn control policies directly from sensory input (Mnih
et al., 2013, Mnih at al., 2015). They did it using experience
replay (Lin, 1993), which addresses the stability problem by
mixing more and less recent experience when updating the
neural network weights.

Thanks to this work, it seems clear that this approach can be
used to meet portability because hand-crafted features are not
needed anymore. Even more, according to (Krizhevsky et al.,
2012), deep neural networks can, usually, learn better
representations than hand-crafted features if enough data is
provided.

7. CONCLUSIONS

This paper confirmed the feasibility of using deep
reinforcement learning to develop scalable, optimal and
portable time-varying formation controllers for UAVs.

Scalability requirement was met because an agent was trained
to control individual UAVs and different instances were
installed on each vehicle.

Optimality was also considered. The reward strategy was used
to define what we meant by optimal, and the agent learned how
to behave optimally with training.

Besides, we showed that our system generalizes to different
time-varying formations and confirmed that is able to work
with different non-high-dimensional sensory inputs just with
additional training, thanks to a deep neural network to
approximate 𝑄(𝑠, 𝑎).

We did not consider important aspects of UAV formation
controllers, including obstacle avoidance, complex UAV
models and high-dimensional sensory inputs. These topics will
be part of future research.

REFERENCES

Lin, L.J., 1993. Reinforcement learning for robots using neural
networks (No. CMU-CS-93-103). Carnegie-Mellon Univ
Pittsburgh PA School of Computer Science.

Tsitsiklis, J.N. and Van Roy, B., 1997. An analysis of
temporal-difference learning with function
approximation. IEEE transactions on automatic control,
42(5), pp.674-690.

Waharte, S., Trigoni, N. and Julier, S., 2009, June.
Coordinated search with a swarm of uavs. In 2009 6th
IEEE Annual Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks
Workshops (pp. 1-3). IEEE.

Nigam, N., Bieniawski, S., Kroo, I. and Vian, J., 2012. Control
of multiple UAVs for persistent surveillance: algorithm
and flight test results. IEEE Transactions on Control
Systems Technology, 20(5), pp.1236-1251.

Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems (pp. 1097-1105).

Zhang, Y. and Mehrjerdi, H., 2013, May. A survey on multiple
unmanned vehicles formation control and coordination:
normal and fault situations. In Unmanned Aircraft
Systems (ICUAS), 2013 International Conference on (pp.
1087-1096). IEEE.

Karimoddini, A., Lin, H., Chen, B.M. and Lee, T.H., 2013.
Hybrid three-dimensional formation control for
unmanned helicopters. Automatica, 49(2), pp.424-433.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D. and Riedmiller, M., 2013.
Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

Rui, W., Xiwang, D., Qingdong, L., Qilun, Z. and Zhang, R.,
2015, July. Adaptive time-varying formation control for
high-order LTI multi-agent systems. In Control
Conference (CCC), 2015 34th Chinese (pp. 6998-7003).
IEEE.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J.,
Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland,
A.K., Ostrovski, G. and Petersen, S., 2015. Human-level
control through deep reinforcement learning. Nature,
518(7540), pp.529-533.

Dong, X., Yu, B., Shi, Z. and Zhong, Y., 2015. Time-varying
formation control for unmanned aerial vehicles: theories
and applications. IEEE Transactions on Control Systems
Technology, 23(1), pp.340-348.

Chollet, A., 2016. Keras. https://github.com/fchollet/keras.
Team, T.T.D., Al-Rfou, R., Alain, G., Almahairi, A.,

Angermueller, C., Bahdanau, D., Ballas, N., Bastien, F.,
Bayer, J., Belikov, A. and Belopolsky, A., 2016. Theano:
A Python framework for fast computation of
mathematical expressions. arXiv preprint
arXiv:1605.02688.

