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Abstract: We consider the problem of designing scalable and portable controllers for unmanned aerial 
vehicles (UAVs) to reach time-varying formations as quickly as possible. This brief confirms that deep 
reinforcement learning can be used in a multi-agent fashion to drive UAVs to reach any formation while 
taking into account optimality and portability. We use a deep neural network to estimate how good a state 
is, so the agent can choose actions accordingly. The system is tested with different non-high-dimensional 
sensory inputs without any change in the neural network architecture, algorithm or hyperparameters, just 
with additional training. 
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1. INTRODUCTION 

Recently, formation control of unmanned aerial vehicles 
(UAVs) has attracted lots of researchers due to its broad 
potential applications, including search and rescue missions 
(Waharte et al., 2009) and wide area surveillance (Nigam et 
al., 2012). Considering these examples, it seems clear that 
widespread formation control systems will have a positive 
impact on society, from improving public security to saving 
lives after natural disasters. 

For a UAV formation controller to become widespread the 
following requirements, among many others, should be met: 

• Time-varying Formations: It should be able to work 
with time-varying formations, the most general case, 
to empower users to come up with new applications. 
Time-varying formations are those where relative 
separations and bearings change with time. 

• Portability: It should generalize to any formation and 
work with different sensory inputs without requiring 
complex design processes. This requirement will help 
potential users deploy the system quickly and easily. 

• Scalability: It should function properly with an 
arbitrarily large number of UAVs, which may be 
needed in some applications. 

• Optimality: It should drive UAVs to reach formation 
as quickly as possible. Just guaranteeing stability may 
not be enough for some applications. Moreover, we 
want UAVs to do their best when desired formations 
are not feasible, because of UAV dynamic 
limitations, to help users design applications quickly, 
without checking formation feasibility. 

Although many formation control strategies have been 
proposed, we have not found any approach that covers all these 
requirements. 

A decentralized approach is needed for scalability. According 
to (Zhang and Mehrjerdi, 2013), it is less affected by 
computational and communicative bottlenecks. However, 
designing decentralized systems is difficult. We need global 
behaviors to emerge from individual ones without a central 
unit monitoring the accomplishment of the mission and 
sharing that information with team members. 

It is so hard that most decentralized approaches study fixed 
formations. Only a few results have been obtained for time-
varying formations, the most general case. These good results 
were achieved using consensus theory. Consensus theory can 
be used to analyze stability, getting necessary and sufficient 
conditions, but it is not evident, at least, how to guarantee 
optimality in the way we have defined it. Another issue of this 
approach is that complex design processes may be necessary 
when changing sensory inputs or the required formation. 

Theoretically, a multi-agent system trained with classical 
reinforcement learning (RL) would meet most of the desired 
properties. It would be scalable because of the decentralized 
approach. Optimality requirement would be satisfied because 
RL is about agents learning optimal policies. However, it 
would be only partially portable. Even though the system 
could easily generalize to different time-varying formations, it 
would require complex design processes to come up with 
appropriate hand-crafted features when the sensory input 
changes. 

In 2013, Mnih et al. presented a deep learning model able to 
learn control policies directly from sensory input, without 
relying on hand-crafted features, using reinforcement learning 



 
 

     

 

(Mnih et al., 2013, Mnih et al., 2015). Now, thanks to this 
work, it seems clear that all desired requirements could be met 
by using this approach: Deep Reinforcement Learning. 

1.1 Specific Limitations 

For the sake of simplicity and to reduce computational needs, 
we do not consider obstacle avoidance, different 
communication topologies, delays, noisy sensors, complex 
UAV models or high-dimensional sensory inputs. All these 
elements will be part of future research. 

1.2 Main Contributions 

This paper supports that deep reinforcement learning is a 
feasible approach to develop scalable, optimal and portable 
time-varying formation controllers for UAVs. 

• This brief confirms that deep reinforcement learning 
can be used to train individual UAVs to behave 
optimally in any time-varying formation, covering 
scalability and optimality. 

• Even more, it supports that a deep reinforcement 
learning agent can be trained to drive UAVs to reach 
different time-varying formations in a plug-and-play 
fashion. This point partially covers portability. 

• This work substantiates that generalizing to different 
sensory inputs can be done without complex design 
processes, just with additional training, at least for 
non-high-dimensional sensory inputs. Now, our 
definition of portability is covered. 

• This paper demonstrates that this approach also 
works with unfeasible formations, because of UAV 
dynamic limitations. 

 

2. PROBLEM DEFINITION 

We developed a simulation environment to test the solution, 
including different formation sets and sensory inputs. 

2.1 Simulation Environment 

Training / Test Mode: During training, each simulated UAV 
receives a reward signal depending on how close it is to its 
desired position in the formation, according to the following 
equation: 

𝑟 = − (𝑥 −	𝑥')) + (𝑦 −	𝑦')) (1) 
Where 𝑟 is the reward signal, (𝑥, 𝑦) the position of the UAV 
and (𝑥', 𝑦') the desired position in the formation. 

UAV Model: The simulator models rotary-wing UAVs, like 
quadrotors or vertical take-off and landing aircrafts (VTOL). 
Since the trajectory dynamics has much larger time constants 
than the attitude dynamics, the formation control can be 
implemented with an inner/outer loop structure. The inner loop 
controls the attitude, and the outer loop is used to drive the 
UAVs to the desired positions (Dong et al., 2015, Karimoddini 
et al., 2013). 

Because our agent controls the outer-loop, each UAV can be 
modeled as a point-mass system described by the following 
double integrator (Dong et al., 2015): 

𝑥 𝑡 = 𝑣/ 𝑡
𝑦 𝑡 = 𝑣0(𝑡)
𝑣/ 𝑡 = 𝑢/ 𝑡
𝑣0 𝑡 = 𝑢0(𝑡)

 (2) 

Where (𝑥, 𝑦) denotes the position of the UAV, (𝑣/, 𝑣0) 
represents its velocity and (𝑢/, 𝑢0) the control inputs. 

Two-Dimensional Environment: For the sake of simplicity, all 
quadrotors move in the XY plane. 

Labelled Homogeneous Robots: All UAVs are homogeneous 
but not interchangeable. Each UAV knows its desired position 
in the formation at every time step. 

Discrete Control Commands: The controller chooses actions 
from a discrete set 𝒜	 = 	 {→,←, ↑, ↓, □}	at each time step, 
where “→” represents positive acceleration on the x axis, “←” 
represents negative acceleration on the x axis, “↑” represents 
positive acceleration on the y axis, “↓” represents negative 
acceleration on the y axis and “□” represents no acceleration. 

Formation Training Set, ℱ;<=>?>?': The simulation 
environment provides different time-varying formations for 
the training of our controller. 

Formation Test Set, ℱ;@A;: The formations included in this set 
are different from the ones included in ℱ;<=>?>?' because we 
want to test whether the approach generalizes to any time-
varying formation. We have also included non-feasible 
formations to prove that the system can handle them. 

Sensory Inputs: Two sensory inputs are provided to check if 
the solution satisfies the portability requirement: 

• Precise localization system. Each UAV knows its 
position and the velocity estimation at each time step. 

• Distance to four landmarks. Each UAV knows the 
distance to four landmarks and the velocity 
estimation at each time step. 

For the sake of simplicity, and to reduce computational needs, 
we work with non-high dimensional sensory inputs. High-
dimensional ones would require a model with higher capacity. 

Episodic Environment: Every four hundred time steps the 
simulation is reset, placing each simulated UAV in a new start 
position and choosing a new formation from the appropriate 
set. 

2.2 Checking Requirements 

The following checklist has been used to verify the 
requirements: 

• Optimality. The controller should try to maximize 
cumulative reward on each episode, reaching 
formation as quickly as possible and keeping it 
afterward. 



 
 

     

 

• Portability. The controller should be trained with 
formations from ℱ;<=>?>?' and work properly with 
formations from ℱ;@A; if sensory input remains the 
same. Even more, the system should work in the same 
way with another sensory input just with additional 
training. 

• Scalability. A different controller instance should be 
loaded on each UAV. No central unit is allowed. 

• Time-varying and non-feasible formations were 
included in ℱ;@A;. 

 

3. DEEP REINFORCEMENT LEARNING AS A 
FEASIBLE APPROACH 

RL is the area of machine learning concerned with how 
software agents ought to take actions based on experience. 
During training, the agent receives a reward signal at each time 
step, used to define its goal, and learns how to maximize the 
total reward it receives. 

3.1 Training Cycle 

During training, the following cycle is repeated until the 
episode ends: 

• The agent combines the UAV sensory input with the 
information about its role in the formation into a state 
𝑠. State is defined as the information taken into 
account by the agent to choose the next action. 

• The agent picks action 𝑎, from the available actions 
set 𝒜, given the current state, 𝑠. 

• After executing the selected action, the agent ends up 
in a new state, 𝑠’, and receives the appropriate 
reward, 𝑟. 𝑠’ was obtained by combining the new 
sensory data with the formation specification. 

 

Fig 1. Training Cycle, repeated until the episode ends. 

 

3.2 Discount Factor and Stochasticity 

RL takes into account stochasticity. Ending up in a new state 
𝑠’ is partly random and given by the transition function 
𝑇 𝑠, 𝑎, 𝑠F = 	𝑃 𝑠F	 	𝑠, 𝑎), the probability of ending up in 𝑠’ 
given the prior state and chosen action. As a result, we may not 

receive the same rewards by choosing the same actions. For 
this reason, we use discounted rewards to calculate the 
expected total reward until the end of the episode: 

𝑅; = 𝛾(>J;)𝑟>?
>K;  (3) 

where 𝑡 is the current time step, 𝑛 is the length of the episode, 
and 𝛾 is a real number between 0 and 1, called discount factor, 
that reflects how much the agent takes into account future 
rewards. 

3.3 Q-values and Optimal Behavior 

A Q-state represents the commitment of executing an action 
from a state. E.g. {(𝑠,←), (𝑠, ↑), (𝑠, →), (𝑠, ↓), (𝑠, □)} is the list 
of the Q-states associated to a hypothetical state 𝑠. A value is 
assigned to each state-action pair, Q-value or 𝑄 𝑠, 𝑎 , to 
estimate how good is choosing an action from a state. 

𝑄(𝑠, 𝑎) maps each Q-state to the expected total discounted 
reward if the agent executes action 𝑎 from state 𝑠 and behaves 
optimally afterward. E.g. 𝑄(𝑠,←) returns the expected total 
discounted reward, 𝔼[𝑟; 	+ 	ɣ𝑟;QR + 	ɣ)𝑟;Q) + 	… ], after 
choosing action “←” from state 𝑠 and behaving optimally 
afterward, selecting the actions with the highest Q-value. 

Once all Q-values are calculated, the optimal behavior can be 
easily extracted. The agent just needs to choose the action with 
the highest associated Q-value at each time step to be optimal. 

3.4 Deep Reinforcement Learning 

The problem implies a continuous state space but, how can an 
infinite amount of Q-states be stored? A lookup table cannot 
be used. Besides, the agent needs to be able to estimate Q-
values of state-action pairs it has not visited before. 

Classical approaches use linear combinations of hand-crafted 
features to approximate 𝑄(𝑠, 𝑎). However, coming up with 
good hand-crafted features is a tough problem because 𝑄(𝑠, 𝑎) 
usually has strong non-linearities. This approach does not meet 
our portability requirement because changes in the sensory 
input would require a complex design process to come up with 
new hand-crafted features. 

In this work, a different approach to estimating Q-values is 
used: deep neural networks. Deep neural networks can learn 
useful features by themselves if enough data is provided. Even 
more, according to (Krizhevsky et al., 2012), they usually learn 
better representations than hand-crafted features. As a result, 
the agent can work with different sensory inputs just with 
additional training. 

3.5 Epsilon-Greedy 

Before diving into how to train the neural network, the 
exploratory strategy during training needs to be considered. 

If the agent always chooses the greedy action, the one with the 
highest Q-value, it could get stuck in suboptimal strategies. 

To avoid this problem, epsilon-greedy is used as the 
exploratory strategy. A random action is chosen with a small 
probability 𝜀, picking the greedy one otherwise. 



 
 

     

 

3.6 Deep Neural Network Training 

Since 𝑄(𝑠, 𝑎) are real values, the neural network can be trained 
like in a regression problem. 

The Bellman optimality equation is used to come up with an 
appropriate loss function: 

𝑄 𝑠, 𝑎 = 	𝔼AV 𝑟 + 	𝛾𝑀𝑎𝑥=V∈𝒜𝑄 𝑠F, 𝑎F s, 𝑎] (4) 
The Loss function was calculated by using (4): 

𝐿 = 	 R
)
	 𝑟 + 	𝛾𝑀𝑎𝑥=V∈𝒜𝑄 𝑠F, 𝑎F − 𝑄(𝑠, 𝑎)  (5) 

However, applying it naively has several problems, including: 

• Learning from consecutive samples is inefficient, due 
to the strong correlations between them.  

• Since learning the current parameters determines the 
next data sample, the process could be unstable. 

To solve these problems, we use a technique called Experience 
Replay (Lin, 1993). The last N agent´s transitions are stored in 
a dataset called Replay Memory and, at each time step, 
samples of transitions are drawn at random from the Replay 
Memory to train the network. This solution stabilizes the 
whole training process. 

3.7 How the Approach Solves the Problem 

Scalability. A different agent instance is in charge of each 
UAV. 

Optimality. RL is about software agents learning how to 
behave optimally. Optimality is defined by a reward strategy, 
and the agent learns how to behave optimally with training. 

Portability. Thanks to the rich state space our agent generalizes 
to any time-varying formation without any additional process. 
Because of the use of a deep neural network to approximate Q-
values, our agent works with different sensory inputs just with 
additional training. 

 

4. SYSTEM SPECIFICATION 

The same neural network architecture and hyperparameters 
were used across all scenarios, needed for portability. 

4.1 Neural Network Architecture 

In addition to the input layer, which depends on the state 
representation, the model has three fully-connected hidden 
layers, with 128, 64 and 32 rectified linear units (ReLU) 
respectively. The output layer is a fully-connected one with a 
single output, the approximation of 𝑄(𝑠, 𝑎). 

We used Keras (Chollet, 2015) on top of Theano (Team et al., 
2016) to build and train the deep neural network. We selected 
these platforms because of Keras' focus on fast 
experimentation, Theano's ability to run on GPU and the 
availability of a Python API, our development language. 

We chose RMSProp as the optimizer and “Uniform” as the 
weight initialization strategy. Specific details are presented 
below. 

4.2 Hyperparameters 

Epsilon-greedy module: 𝜀 was equal to 0.5 during training. 

Replay Memory Size: It stores the 10] most recent transitions. 

Replay Memory Start Size: The agent followed a random 
policy for 10^ transitions to populate the replay memory 
before learning starts. 

RMSProp Parameters: 5 ∙ 10J] was used as a learning 
rate,	10Ja as epsilon (Small value added for numerical 
stability) and 0.9 as rho (Gradient moving average decay 
factor). 

Discount Factor: 𝛾 was set to 0.95. 

Minibatch Size: We used 16 training samples to compute each 
SGD update. 

4.3. Reward Clipping and Normalization 

The reward function (1) offered by the simulation environment 
lacks a lower limit. Two normalization steps have been applied 
to avoid large errors: 

1. The reward has been increased by 1. After this 
operation, the new upper limit is 1. 

2. The reward has been clipped to [-1, +1] 

 

5. MAIN EVALUATION 

5.1 Generalization to Different Non-High-Dimensional 
Sensory Inputs 

The agent was trained using both sensory inputs provided by 
the simulation environment: precise localization system and 
distance to three landmarks. The total clipped reward collected 
per episode was used as the primary metric to evaluate the 
progress of the agent. This metric tends to be very noisy, 
especially when 𝜀 is set to a relatively high value, 0.5. A 
Savitzky-Golay filter has been used in (Fig. 2) and (Fig 3.) to 
smooth the data and mitigate this problem. 

The upper limit of the metric in (Fig. 2) and (Fig. 3) is 400 
because the maximum normalized reward is 1.0 per time step 
and the simulation environment resets every four hundred time 
steps. However, the following points make it impossible to 
reach the upper limit during training: 

• 𝜀 has been set to 0.5, a relatively high value. It means 
that, during training, a random action, instead of the 
greedy one, is chosen with a probability of 0.5 at 
every time step. 

• The actions are chosen from a discrete set 𝒜	 = 	 {→
,←, ↑, ↓, □}, instead of using a continuous action 
space. 

• A small neural network has been used to avoid 
complexity and computational needs, so the capacity 
of the model is relatively small. 



 
 

     

 

However, despite all these limitations, (Fig 2.) and (Fig. 3) 
show steady learning processes in both scenarios. 

The same neural network, architecture, hyperparameters and 
algorithm have been used in both situations, including the 
learning rate and the epsilon-greedy values. (Fig. 2) and (Fig. 
3) display similar results, with the exception that the second 
scenario, distance to three landmarks, requires more training 
to get to similar cumulative rewards, 1500 episodes instead of 
1000. 

 

Fig. 2. Total clipped reward collected per episode using a 
precise localization system as sensory input. 

These results support the idea that deep reinforcement learning 
can be used to build agents able to generalize to different 
sensory inputs with just additional training. 

 

Fig. 3. Total reward collected per episode using the distance 
to four landmarks as sensory input. 

5.2. Generalization to Different Time-Varying Formations 

The agent was trained with formations drawn at random from 
ℱ;<=>?>?'. In this section we want to find out how the agent 
behaves with formations from ℱ;@A;, formations it has not seen 
before. 

To be more specific, (Fig. 4) shows the trajectories of five 
UAVs following an eight-figure pattern while keeping a phase 

separation of 2𝜋/5 for 400 time steps, the episode length. This 
formation is similar to the one used in (Dong et al., 2015). Each 
simulated UAV was controlled by an instance of the trained 
agent. 

 

Fig. 4. Trajectories of five UAVs trying to follow an eight-
figure pattern while keeping a phase separation of 2𝜋/5. 

Despite the fact that all formations included in ℱ;@A; are not 
feasible because of the discrete action space, (Fig. 5) shows 
how the system handles a more obvious non-feasible 
formation. It would be unfeasible even with a continuous 
action space because of the acute angles of the pattern. Again, 
each simulated UAV was controlled by an instance of the 
trained agent. 

 

Fig. 5. Trajectories of five UAVs trying to reach a non-
feasible time-varying formation while keeping a phase 
separation of 2𝜋/5. 

 

6. RELATED WORK 

The related work is analyzed from two different perspectives: 
UAV formation control and Deep Reinforcement Learning. 

6.1 UAV Formation Control 

Centralized vs. Decentralized Architecture: The decentralized 
approach was highly influenced by (Zhang and Mehrjerdi, 
2013). This survey reported that centralized systems do not 
scale well as formation size increases because of 
communication bottlenecks and the lack of use of the 
computational resources available on each vehicle. This was 



 
 

     

 

stated to be true even when the most advanced optimization 
solvers are used. 

Time-Varying Formations: Most decentralized approaches to 
UAV formation control study fixed formations. Few 
successful approaches have been reported for time-varying 
formations, the most general case. These good results were 
achieved using consensus theory, like (Dong et al., 2015) or 
(Rui et al., 2015). Consensus theory can be used to analyze 
stability but is not evident, at least, how it can be used to 
guarantee optimality in the way we have defined it. Another 
problem with this approach is that complex design processes 
may be necessary when changing sensory inputs or the 
required formation. 

6.2 Deep Reinforcement Learning 

Combining RL algorithms with nonlinear function 
approximators, like neural networks, could cause the training 
process to diverge, so the vast amount of work in RL used to 
focus on linear function approximators (Tsitsiklis and Van 
Roy, 1997). 

The main problem when using RL with neural networks is that 
RL agents incrementally update their parameters while they 
observe a stream of experience, breaking the independent and 
identically distributed assumption of many stochastic gradient-
based algorithms. 

However, in 2013, Mnih et al. presented a deep learning model 
able to learn control policies directly from sensory input (Mnih 
et al., 2013, Mnih at al., 2015). They did it using experience 
replay (Lin, 1993), which addresses the stability problem by 
mixing more and less recent experience when updating the 
neural network weights. 

Thanks to this work, it seems clear that this approach can be 
used to meet portability because hand-crafted features are not 
needed anymore. Even more, according to (Krizhevsky et al., 
2012), deep neural networks can, usually, learn better 
representations than hand-crafted features if enough data is 
provided. 

 

7. CONCLUSIONS 

This paper confirmed the feasibility of using deep 
reinforcement learning to develop scalable, optimal and 
portable time-varying formation controllers for UAVs. 

Scalability requirement was met because an agent was trained 
to control individual UAVs and different instances were 
installed on each vehicle. 

Optimality was also considered. The reward strategy was used 
to define what we meant by optimal, and the agent learned how 
to behave optimally with training. 

Besides, we showed that our system generalizes to different 
time-varying formations and confirmed that is able to work 
with different non-high-dimensional sensory inputs just with 
additional training, thanks to a deep neural network to 
approximate 𝑄(𝑠, 𝑎). 

We did not consider important aspects of UAV formation 
controllers, including obstacle avoidance, complex UAV 
models and high-dimensional sensory inputs. These topics will 
be part of future research. 
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