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Monocular Visual Odometry for an Unmanned Sea-Surface Vehicle

George Terzakis1, Riccardo Polvara2, Sanjay Sharma2, Phil Culverhouse2 and Robert Sutton2

Abstract— We tackle the problem of localizing an au-
tonomous sea-surface vehicle in river estuarine areas using
monocular camera and angular velocity input from an inertial
sensor. Our method is challenged by two prominent drawbacks
associated with the environment, which are typically not present
in standard visual simultaneous localization and mapping
(SLAM) applications on land (or air): a) Scene depth varies
significantly (from a few meters to several kilometers) and, b) In
conjunction to the latter, there exists no ground plane to provide
features with enough disparity based on which to reliably detect
motion. To that end, we use the IMU orientation feedback
in order to re-cast the problem of visual localization without
the mapping component, although the map can be implicitly
obtained from the camera pose estimates. We find that our
method produces reliable odometry estimates for trajectories
several hundred meters long in the water. To compare the
visual odometry estimates with GPS based ground truth, we
interpolate the trajectory with splines on a common parameter
and obtain position error in meters recovering an optimal affine
transformation between the two splines.

I. INTRODUCTION

Outdoor visual SLAM is a problem under constant

scrutiny in the robotics research community [1], [2], [3],

[4]. However, to the best of our knowledge, there have

been not many cases in which the SLAM algorithm targets

sequences of estuarine and possibly, natural scenes from the

vantage point of a surface vehicle. Perhaps the only known

recorded case is the work of [5] on lakeshore monitoring

which makes use of visual SLAM to localize the vehicle on

the surface of the lake. The approach of Griffith et al. relies

on the same tools as the method described in this paper.

The idea is to detect a sparse set of Harris corners [6] in

an image and thereafter compute camera pose by tracking

these features using the pyramidal Lucas Kanade tracker

[7], [8]. Of course, the primary objective of Griffiths work

is the registration of shore images and vehicle localization is

simply a subsidiary operation used to confine the search for

an image within a subset of images taken in a region close

to the estimated position of the boat. It follows that multiple

poses can be refined without time limitations in large-scale

bundle adjustment runs.

The work in this paper is motivated by the scenario of a

surface vehicle [9] cruising autonomously on GPS feedback

which may be interrupted; therefore visual odometry on

lakeshore images is used as an auxiliary localization system

for the vehicle during periods in which GPS reception is
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disabled. Thus, in contrast with Griffith et al., this is an ex-

clusively real-time visual SLAM problem and the exact same

approach cannot be employed due to the inherent limitations

in computational resources. There are however time-efficient

alternatives which employ non-linear optimization over only

a small pool of poses and images in a sliding time-window,

such as local bundle adjustment [10] and generally provide

satisfactory pose estimates on demand.

One other significant limitation in our application has

to do with extreme depth variations in the shore sequence

(1). Although there are ways to assess the nature of the

photogrammetric degeneracies in the geometry of two views

[11], [12], [13], [14], these methods require Monte-Carlo

based model selection and would impose a significant over-

head if applied on a regular basis. One remedy would be to

include ground-plane features in the field of view [3], [15],

[16] and allow motion estimation to be affected primarily

by these features. Unfortunately, this is generally not an

option when the camera is on-board a surface vehicle due to

the presence of the water-surface instead of the ground. It

therefore becomes necessary to infer camera motion solely

based on the features in the background beyond the sea-

surface.

Fig. 1: Extreme opposites in estuarine sequences. On the left,

only very distant features over the horizon can be tracked,

while on the right, scene depth is very small. In the first

case, disparity is very small and only a few carefully selected

correspondences can determine motion; in the second case,

the disparity is sufficient to determine motion from the

majority of features.

Another significant problem that arises from extreme depth

variation is the fact that the map can be potentially harmful

for pose prediction, due to tracking noise induction with large

depth. The problem of reconstructing points with very small

disparity is that tracking noise is augmented proportionally

to depth as shown in Figure 2. And since having exclusively

distant points in the map is a very likely case as illustrated
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on the left of Figure 1, it will be difficult to assess the quality

of the position estimates in order to choose inliers for pose

estimation with a Perspective-n-Pose (PnP) algorithm. In

short, the map points obtained from scenes with large scene

depth can jeopardize SLAM if used for pose prediction.

Fig. 2: Uncertainty induction with depth. The size of the

blue shaded rhombic region surrounding the triangulated map

point is representative of its uncertainty. A similar sketch can

be found in Multiple View Geometry in Computer Vision

(Hartley and Zisserman 2003).

II. PROBLEM SETUP

A. Overview

The method proposed herein aims at estimating the pose of

a sea-surface vehicle in the context of GPS-denied scenario

using an on-board camera with view of the shore. In particu-

lar, in the case of GPS signal loss, the vehicle should be able

to continue cruising autonomously based solely on visual

feedback until GPS becomes available again. We focus on

river estuarine environments where the primary assumption

of shore visibility is met. The camera is mounted on the side

of the vehicle as shown in Figure 3.

Fig. 3: The unmanned surface vehicle. The camera (circled

in red) is mounted on the left hull, pointing sideways.

B. Apparatus

All video sequences were obtained using a Pointgrey Flea3

USB3 camera, typically at a resolution of 800600 pixels.

We addressed camera calibration with Zhangs chessboard

method [17], [18] as implemented in OpenCV computer

vision library [19]. For the rest of this paper, it is assumed

that the camera is calibrated and all formulas involving

projections are given in normalized Euclidean coordinates.

Fig. 4: Flea3 and SiIMU02 (right). The SiIMU02 coordinate

frame (left) is shown with the 3 axes labelled 1+, 2+ and

3+ and M denotes the transformation which transforms the

sampled angular velocity vectors with the camera frame

(shown in red).

Inertial data were sampled using a Goodrich SiIMU02

(Figure 4) at a rate of 150 Hz. It should be noted that

the SiIMU02 coordinate frame does not represent a right

handed coordinate system and therefore it is necessary to

apply a transformation M to the samples in order to obtain

the angular velocities x, y, z about the axes x, y, z of the

local camera frame. Thus, the rotation matrix representing

the change in IMU orientation is:

R = I3 +
sin‖ω‖

‖ω‖
[ω ]×+

1− cos‖ω‖

‖ω‖2
[ω ]2× (1)

where ω =
[

ωx ωy ωz

]T
is the sampled angular velocity

vector. We addressed the problem of minor misalignments

between the camera the IMU using the recovered camera

calibration extrinsic parameters as described in camera-aided

robot calibration [20].

III. METHOD

Our method loosely follows the standard SLAM pipeline

of pose prediction and refinement with measurements over

a sliding window of no more than 5 frames. The idea is to

detect new features in each frame and track them for up to 5

frames in the sequence. However, pose is estimated directly

on the pairs of corresponding Euclidean projections instead

of using the reconstructed map-points. In effect, this is a

version of SLAM in which the map can only be inferred

from camera pose in conjunction with the measurements and

is not directly involved in pose prediction. Figure 5 illustrates

our adaptation of the SLAM paradigm in the form of a Bayes

network. The pose at time instance-t (time is discrete) is a

vector xt =
[

st ψt

]T
containing the position of the camera st

and its orientation parameter vector ψt . We also denote the

IMU angular velocity sample with ωt and the normalized

Euclidean projections of the tracked features with mt .

In the SLAM adaptation of Figure 5, each tracked feature

location at time t is regarded as a function of its projected

location and camera pose in the view in which it was



Fig. 5: A Bayes network depiction of the SLAM paradigm

adaptation of our method. The dashed-line rectangle indi-

cates a 3-frame sliding window from time t to time t + 2.

originally detected; and since we are using a sliding window

of length 3, it follows that it can only be associated with

times t −1 or t −2, hence the factor between mt , xt−1, xt−2,

mt−1, mt−2 in the network. The measurement model is simply

the pinhole projective relationship between the ith feature

measurement m
(i)
t at time t and its corresponding image in

the view of original detection (henceforth called the home

view) at time h:

m
(i)
t =

Rhi
RT

t

(

Zhi
m
(i)
hi
−Rh

(

st − shi

)

)

1T
z Rhi

RT
t

(

Zhi
m
(i)
hi
−Rhi

(

st − Shi

)

) (2)

where Rt is the rotation matrix corresponding to the camera

frame orientation at time t (direction vectors are stored

column-wise), st is the position of the camera at time t in

world coordinates, hi is the time index of the home view

(i.e., original detection) if the ith feature, Zt is the depth of the

map-point at time t and 1z =
[

0 0 1
]T

. As will be shown,

provided that orientation is known, it is possible to eliminate

Zh from eq. 2 and replace it with an expression that contains

st , sh, Rt , Rh and the measurements. Thus, the corresponding

conditional distribution of mt depends only on previous

measurements and poses and it can be loosely regarded as the

marginal of the standard visual SLAM measurement model

over the map.

A. Predicting camera pose

Our method makes use of a technique that loosely draws

inspiration from the work of Kneip et al. [21]. In particular,

knowing the rotation matrix between two key-frames, we

are able to do camera resectioning directly from image

correspondences, thereby circumventing the potentially noisy

distant map-points. To lighten notation in the derivations

that follow, we isolate two views from the sequence in

both of which a feature is measured and assume, without

constraining generality, that the first camera is at the origin

and its orientation is the identity. The relationship of eq. 3

can now be re-written as follows:

m2 =
RT (Z1m1 − b)

1T
Z RT (Z1m1 − b)

(3)

where m2 and m1 are the measured normalized Euclidean

coordinates of the feature in the current and previous (home)

view, Z1 is the depth of the feature in the previous (home)

view, b is the baseline vector in the coordinate frame of

the previous camera and R is the relative orientation ma-

trix (containing the current camera frame in column-wise

arrangement).

Fig. 6: Removing rotational effect from the projections in the

second view. The rotation matrix R transforms the first cam-

era frame triad (x1,y1,z1) at O1 into the second, (x2,y2,z2)
attached to the camera center O2. The homography H = R is

applied to the normalized Euclidean projection m2 in order to

obtain its ”unrotated” version, m′
2 in the virtual view (shown

with dashed outline).

Now, provided reliable prior information on relative orien-

tation between two camera frames, it is possible to remove

the effects of rotational motion from the image projections

in the current view by creating a new, virtual view in which

all projections are, the result of pure translational motion.

This way, motion equations become linear in the translation

components and standard least squares optimization can

be applied. Figure 6 illustrates this concept of unrotating

projections in order to produce a virtual view that shares the

same baseline with the original, but without the rotational

portion of projective distortion. Specifically, if a pure rotation

RT is applied to the second camera frame, then it will align

with the first. It follows that the normalized projections in

the unrotated view will simply transform by a homography

H = R:

m′
2 =

Rm2

1T
z Rm2

(4)

where ∝ denotes equality up-to-scale. Eq. 3 can now be

re-written without the rotation matrix using the unrotated

projection m′
2:

m′
2 =

Z1m1 − b

1T
z (Z1m1 − b)

(5)

Equation 5 decomposes in the following two equations



corresponding to the projections in x and y axes:

(x′2 − x1)Z1 = x′2bz − bx (6)

(y′2 − y1)Z1 = y′2bz − by (7)

where m′
2 =

[

x′2 y′2 1
]T

, m1 =
[

x1 y1 1
]T

and b =
[

bx by bz

]T
. The depth can be eliminated if we simply

multiply eq. 6 by (y′2 − y1) and eq. 7 by (x′2 − x1) and then,

subtract eq. 7 from eq. 6:

−
(

y′2 − y1

)

bx+
(

x′2 − x1

)

by+
((

y′2 − y1

)

x′2 −
(

x′2 − x1

)

y′2
)

bz = 0
(8)

We therefore obtain a linear equation in the components of

b which can be used to formulate an overdetermined linear

system that can be solved in ordinary least squares fashion.

It should be stressed here that eq. 8 is tolerant to points with

very low disparity as it is quite evident that, if both terms

(x′2 − x1) and (y′2 − y1) vanish, then the equation becomes

trivial (0b = 0) and subsequently has little or no effect on the

least squares estimate. We may now formally ”repackage”

eq. 8 for the ith feature in a new camera view at time t using

a determinant:

det
[

Rhi

(

st − shi

)

(

m
(i)
t

)′
−m

(i)
hi

(

m
(i)
t

)′]

= 0 (9)

where hi is the time index of the camera view in which

the ith feature was originally detected, st and shi
are the

position of the camera at times t and hi in world coordinates,

Rhi
is the orientation matrix of the camera at time hi, m

(i)
hi

is the normalized Euclidean projection of the feature in its

home camera view and
(

m
(i)
t

)′

is the unrotated normalized

Euclidean projection in the camera view captured at time t.

In the initializing pair of views (i.e., for hi = 0 and

t = 1), the overdetermined linear system will obviously be

homogeneous and therefore the solution will be the direction

of the baseline between the respective camera frames. In this

case, of multiple camera views, the solution will be sign-

ambiguous and therefore it will be necessary to reconstruct

the scene and vote for the best reconstruction (i.e., the one

with fewer negative/vanishing depths). However, in the case

of more than two camera views, the system becomes a

standard least squares formulation with a unique scale-aware

solution in which scale is infused by the known positions of

previous camera frames.

B. Outlier rejection

To eliminate outliers we employ a robust random sample

consensus [22] scheme called MLESAC proposed by Torr

and Zisserman [23]. For each new camera view, we compute

the baseline using eq. 9 over randomly picked minimal

subsets of at least 3 points. Then, for the recovered camera

position we obtain a robust epipolar score on the misalign-

ment of epipolar planes between camera views. Unlike the

case of Sampson error [24], our epipolar misalignment error

works directly on the relative pose without the need to use

an essential matrix and it is generally easy to compute.

Consider the two corresponding normalized Euclidean

projections m1 and m2 (again, superscripts are dropped for

Fig. 7: Measuring misalignment of epipolar planes ε1 and ε2

on a plane π , orthogonal to the baseline b.The misalignment

angle cosine will be the inner-product of the normalized

projections of m1 and Rm2 on the plane π .

simplicity) in two camera views indexed by 1 and 2. Then,

if the correspondences are noisy, the two epipolar planes

defined by m1, m2 and the baseline will not coincide as

shown in Figure 7 and will subsequently form an angle

between them. Since the baseline vector b is common for

both planes, one way of obtaining the angle between the two

misaligned planes is to project the two correspondences onto

the orthogonal space of the baseline, which is essentially a

plane π through the origin O1 and to which normal is the

baseline. The (projector) matrix P that projects a vector onto

the space orthogonal to b is:

P = I3 − bbT (10)

Thus, the projection of m1 would be:

p1 = Pm1 = (I3 − bbT )m1 (11)

The projection of m2, accounting for the difference in the

orientation of camera frames, is:

p2 = PRm2 = (I3 − bbT )Rm2 (12)

where R is the relative orientation matrix. The cosine of the

angle between the two planes ε1 =< m1,b > and ε2 =<

Rm2,b > will be the following inner-product:

cosφ =
pT

1 p2

‖p1‖‖p2‖

=
mT

2 RT
(

I3 − bbT
)

m1
√

‖m1‖
2 −

(

mT
1 b

)2
√

‖m2‖2 −
(

mT
2 RT b

)2

(13)

Clearly, the measure of eq. 13 is a score that increases with

the accuracy of the correspondence and therefore we seek to

maximize it. Nominal values used for the MLESAC cutoff

bound were in the range of cos7◦ to cos3◦. It should be

stressed here that the score of eq. 13 penalizes angles above

90◦ (i.e., correspondences with negative depth in exactly one

view), whereas the classic epipolar constraint does not (due

to the minimization requirement). Most importantly, it is a

score that is independent of the type of camera motion and

fitted model (homography or essential matrix), including the



case of pure rotational camera motion, in which case the

two projection directions should be collinear and the formula

reduces to a simple inner-product which yields the cosine of

the angle between m1 and Rm2.

C. Iterative refinement

Pose estimates are iteratively refined with the Gauss-

Newton method over a few (usually 3) recent views. Instead

of the traditional reprojection error [24], we employ an

epipolar alignment score, similar to the one of eq. 13. In par-

ticular, instead of considering the misalignment of epipolar

planes, this time, we focus the angle between the direction of

the second correspondence and the normal of the first plane.

This way, a minimization problem is obtained, suitable to

apply the Gauss-Newton method. Suppose a sliding window

of n camera views is used. We construct the following cost

function C over this window:

C =
t+n−1

∑
k=t

∑
i∈Vt

(

mtR
T
t

[

st − shi

]

×
Rhi

mhi

)2

(14)

where Vt is the set of visible points in the window com-

mencing at time t, hi is the time index of the ”home” view

(i.e., first detection) of the ith feature, m
(i)
t is the normalized

Euclidean projection of the ith feature in the camera view

at time t and Rk, sk are the orientation matrix and position

vector (in world coordinates) of the camera at time t = k.

The cost function of eq. 14 is a sum of epipolar constraints

over the camera poses in the sliding window. The latter

suggests that the Gauss-Newton normal equations scale only

with camera poses, as opposed to the larger system sizes

we typically obtain with sparse bundle adjustment. For a

window of size n= 2, the cost function is scale unaware and

becomes theessential matrix least squares formulation [25].

For n > 2, at least one camera pose is taken as constant and

the optimization problem becomes scale aware owed to the

presence of measurements in more than two camera views.

IV. EXPERIMENTS

We executed our method on video sequences of the river

shore recorded on a cruising vehicle averaging 5-7 knots

speed. Each sequence is accompanied by IMU samples at

150 Hz and GPS readings at approximately 1Hz (standard

refresh rate of USB dongle). Both IMU and GPS data are

time-stamped with a video frame index. The GPS readings

are used as our main measure of ”ground truth”.

A. Ground truth

Due to the limitations imposed primarily by the environ-

ment, GPS was the only reliable means of a ground truth

estimate. Although the GPS position reading is known to

have approximately 1.5 meters variance, it however is highly

reliable in long routes, simply because it does not accumulate

error. The routes corresponding to the recorded sequences are

longer than 30 meters and therefore, in this context, the GPS

routes are accurate representations of ground truth.

The scale of the vision-based estimated trajectory is de-

fined by the last reading of speed over ground from the

GPS, before the visual odometer takes over. Since this is

a fairly noisy estimate and scale errors accumulate during

SLAM, direct comparisons between the GPS trajectory and

the respective SLAM-generated estimate would be biased,

regardless of whether this estimate is adequate to safely

localize the vehicle while cruising. Thus, in order to perform

unbiased comparisons, both trajectories are interpolated with

a Catmull Rom spline [26] and parametrized relative to

their length; using the common parameter, we estimate the

optimal (in the least squares sense) affine transformation that

minimizes the distances between the two splines for common

parameter values. The choice of interpolating spline can be

arbitrary, but Catmull-Rom curves are more convenient to

construct locally with only four points at a time. It should

be stressed that in order to obtain corresponding parameters

values between the GPS and vision based trajectories, it

is necessary to re-parametrize the curves by means of arc

length. The general concept is illustrated in Figure 8.

Fig. 8: Parameter correspondence between the GPS (blue)

and visual odometry (red) interpolated curves irrespectively

of scale. Synchronization is achieved using the GPS-frame

index log.

Suppose we fit two splines g(tg) and v(tv) where tg, tv ∈
[0,1] to both GPS and vision based odometry points using

a common parameter u ∈ [0,1]. It is necessary for this

parameter to reflect percentage of overall arc-length in either

curve. Thus, the warping functions for tg (u) and tv (u) can

be computed from the following differential equations:

sg (u) =

∫ tg(u)

0
g(t) dt (15)

sv (u) =
∫ tv(u)

0
v(t) dt (16)

where sg and sv are the arc-lengths of g and h respectively.

Having obtained the reparametrized splines in terms of u,

it is now a matter of ordinary least squares to fit a 2D

affine transformation A that minimizes the distance between

a number of sampled points in g and v for common values



of u:

Â = argmin
A

{

n−1

∑
k=0

∥

∥

∥

∥

∥

Av

(

tv

(

k

n− 1

))

− g

(

tg

(

k

n− 1

))

∥

∥

∥

∥

∥

2}

(17)

where n is the number of uniform samples in [0,1].

B. Odometry estimates

Figures 9 and 10 illustrate odometry estimates and GPS

ground truth superimposed on satellite imagery for two

indicative sequences. Overall data was recorded in the Tamar

river, Devon, UK. The trajectories are generally long (several

hundred meters); unfortunately, the vehicle had to follow

specific routes in order to avoid shallow waters and this many

times resulted in trajectories without many twists. It should

be noted however that transient rotational and linear motion

is generally rich as shown in the actual footage, yet it is not

reflected in the GPS based trajectory for obvious reasons.

Fig. 9: GPS ground truth spline (blue) and estimated visual

odometry spline (red) overlaid in satellite imagery. Approx-

imate distances along the x and y axes are given to indicate

scale.

Fig. 10: GPS ground truth spline (blue) and estimated

visual odometry spline (red) overlaid in satellite imagery.

Approximate distances along the x and y axes are given to

indicate scale.

We evaluated the quality of localization in a total of 8

trajectories, averaging approximately 350m total distance
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Fig. 11: Position error distribution obtained from 8 routes in

the river.

covered on the water. The position error was evaluated in

meters using the method described in Section IV-A. On

average, the maximum position error is typically in the range

of 8-10m with the exception of occasional occurrences in

the 20m range, such as in the 400m long trajectory of

Figure 15. The position error distribution obtained from all

8 sequences is depicted in Figure 11. Interestingly, the plot

is very reminiscent of the χ2 distribution, which empirically

indicates consistency with normally distributed relative pose

squared error.

Figures 12, 13, 15, 14 illustrate plots generated from 4

selected sequences, illustrating comparison of visual odom-

etry with ground truth, position error distribution and its

progression with distance traveled by the vehicle.

V. CONCLUSION

We have presented a method to obtain reliable visual

odometry estimates for an unmanned sea-surface vehicle

using imagery of the shore, in order to accommodate au-

tonomous cruise when GPS feedback becomes unavailable.

To the best of our knowledge, this is the first time that

a sea-surface vehicle location is obtained exclusively with

standard Visual SLAM techniques. Except for the typical

shortcomings of outdoor visual SLAM (brightness, shading,

motion blur, environmental conditions, etc.), the application

at hand presents us with additional challenges associated

with the absence of a ground plane and extreme scene-depth

variation. Typically, the ground plane endows the imagery

with features that correspond to near-by world points based

on which, camera motion can be reliably estimated. In

contrast, for imagery obtained on a cruising boat, there is no

ground plane and motion must be estimated from features

in the background which may or may not be near, as depth

varies significantly.

To cope with depth variation in the useful portion of the

background, we advocate the use of structure-less visual

SLAM with the aid of orientation priors from an IMU.

With this information, we are able to cast the relative pose
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Fig. 12: An approximately 340m long route along the Tamar river, near Halton Quay, Devon, UK.
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(a) Visual odometry vs GPS trajectory.

0 50 100 150 200 250 300 350

Distance travelled (m)

0

1

2

3

4

5

6

7

8

9

10
E

rr
or

 (
m

)
Error vs distance

(b) Position error vs Distance travelled.
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(c) Error distribution.

Fig. 13: An approximately 285m long route along the Tamar river, in Bohetherick, Devon, UK.
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Fig. 14: An approximately 400m long route along the Tamar river, in Calstock, Devon, UK.
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Fig. 15: An approx6imately 450m long route along the Tamar river, near Cotehele, Devon, UK.



problem directly in terms of image projections, thereby

circumventing the map which may contain a number of

noisy reconstructions. Our relative pose equations do not

discard distant points, but they simple ignore them when

their disparity is not large enough to provide additional mo-

tion information. However, regardless of depth, a point can

always be an outlier, so in order to combine our model with

RANSAC, we propose a robust error reflecting epipoplar

plane misalignment. The error is valid for any type of

degenerate configuration, including pure rotational motion.

To avoid having to use the map during error (reprojection)

refinement, we employ a cost function which is formed by

the sum of standard epipolar constraints.

The specifics of the application described herein, naturally

do not exactly match the conditions in available datasets.

We therefore recorded our own sequences and timestamped

inertial data and GPS readings with frame indexes in each

sequence. To obtain unbiased comparisons with ground truth,

it was necessary to compare the GPS-generated trajectory

with visual odometry using a common parameter that reflects

equal proportions of arc-length with respect to the origin in

both curves. To do so, we interpolate both curves using a

spline and thereafter, reparametrize resulting curves in terms

of their arc-length in the interval [0,1]. The use of a common

arc-length parameter allows for actual-scale comparisons

with the GPS trajectory.
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