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Abstract—In this paper, we extend state of the art Model
Predictive Control (MPC) approaches to generate safe bipedal
walking on slippery surfaces. In this setting, we formulate
walking as a trade off between realizing a desired walking velocity
and preserving robust foot-ground contact. Exploiting this for-
mulation inside MPC, we show that safe walking on various flat
terrains can be achieved by compromising three main attributes,
i. e. walking velocity tracking, the Zero Moment Point (ZMP)
modulation, and the Required Coefficient of Friction (RCoF)
regulation. Simulation results show that increasing the walking
velocity increases the possibility of slippage, while reducing the
slippage possibility conflicts with reducing the tip-over possibility
of the contact and vice versa.

Keywords— Biped robots; Walking pattern generation; Gait
adjustment;Walking on slippery surfaces

I. INTRODUCTION

In order to take part in our daily life, humanoid robots
should be able to perform various tasks reliably on challenging
terrains. Since slip-related falls with very fast dynamics can
cause severe damages, special care should be taken to prevent
slippage during walking on surfaces with low available Co-
efficient of Friction (CoF). However, most walking planners
based on abstract models for bipedal robots assume infinite
available CoF and generate walking patterns without taking
care of slippage avoidance constraints.

Trajectory optimization has become the prevailing approach
for real-time gait generation of biped robots [1]–[8]. Among
various approaches, Model Predictive Control (MPC) has been
shown to be a very effective tool. In this approach, the current
measurement of states can be used to adapt gait variables to be
robust against disturbances. It is shown that different walking
pattern generation approaches based on analytical methods
[9]–[11] and optimization techniques [4]–[6] can be seen as
different variants of the same MPC problem [12].

Pioneered by the preview control of the Zero Moment
Point (ZMP) [1], several modifications have been proposed
to make this approach more versatile and robust [2]–[4]. In
these works and most of other approaches [5]–[11], feasibility
of the walking pattern is guaranteed by enforcing the ZMP to
be inside the support polygon, while friction is assumed to be
enough. Although this assumption usually results in feasible
walking patterns on normal surfaces, it could be violated on
challenging slippery terrains.

Studies carried out on human motion analysis show that sub-
jects adapt their gait variables when they anticipate a reduction

on the available CoF [13]–[15]. For bipedal walking, Kajita et
al. [16] showed that by increasing the weight of the Center of
Mass (CoM) acceleration in the preview control scheme, they
could decrease the Required Coefficient of Friction (RCoF).
[17] proposed an offline optimization procedure to generate
walking patterns requiring low RCoF. [18] suggested a simple
adaptation of the generated CoM trajectory to avoid slippage of
the stance foot. In [19], the authors trained an infinite mixture
of linear experts to fit a model between the gait variables
as inputs, and the RCoF, the work done by the CoM and a
function of constraints as outputs. They used a large number
of simulations to train this model, and employed it to control
walking on slippery terrains in a simulation environment.

As demonstrated by previous work, taking into account
friction is important to ensure safe walking in various envi-
ronments. However, to the best of our knowledge, state of
the art walking pattern generators based on preview of the
ZMP are not yet able to take this into account. In this paper,
we propose an online walking pattern generator based on the
MPC approach from [4] which explicitly takes into account
friction constraints. In this setting, we formulate walking as
a trade-off among walking velocity tracking, robustness to
foot slippage, and robustness to foot tip-over. We consider
feasibility constraints of the ZMP, RCoF, and step locations.
Doing so, our gait planner automatically adapts the step
locations and CoM trajectory for walking on various surfaces.
We briefly present the MPC formulation from [4] in Section II,
and extend the approach to friction constraints in Section III.
In Section IV, we present simulation experiments and discuss
the properties of our algorithm. We conclude in Section V.

II. ORIGINAL MPC [4]

In this section, we briefly outline the MPC approach pro-
posed in [4] which is an extension of [1]–[3]. In this approach,
a preview (NT ) of piecewise constant CoM jerk over time
intervals (

...
Xk,

...
Y k), as well as the future m footstep locations

(Xf
k , Y

f
k ) are considered as decision variables to minimize

the CoM jerk as well as velocity tracking error and deviations
from a desired ZMP:
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‖Ẏk+1 − Ẏ ref
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where:

uk =


...
Xk

Xf
k...

Y k

Xf
k

 ,
...
Xk =


...
xk

......
xk+N−1

 , Xf
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 xfk
...

xfk+m−1



Xk+1 =

xk+1

...
xk+N

 , Ẋk+1 =

 ẋk+1

...
ẋk+N

 , Zx
k+1 =

 zxk+1
...

zxk+N


(2)

In these equations, Z encodes the ZMP preview and the
superscript ref stands for the reference trajectory. α, β and
γ are positive numbers. (xk, yk) is the CoM position in kth
time interval, and (xfk , y

f
k ) represents the next footstep location

in the series of m future steps. For the lateral direction Y ,
the same formulation as (2) can be obtained. Using (2), the
position and velocity of the CoM as well as the ZMP position
on the preview horizon can be written as a function of the
current state of the CoM (x̂k, ŷk) and the jerk vector:

Xk+1 = Ppsx̂k + Ppu

...
Xk

Ẋk+1 = Pvsx̂k + Pvu

...
Xk (3)

Zk+1 = Pzsx̂k + Pzu

...
Xk

where the matrices Pps, Pvs, Pzs ∈ <N×3, and
Ppu, Pvu, Pzu ∈ <N×N represent discrete integration over
time and can be computed recursively [4]. Furthermore, the
ZMP at each time interval (zxk , z

y
k) is computed using the

Linear Inverted Pendulum Model (LIPM) dynamics [20]:

zxk =
(
1 0 −h/g

)
x̂k

zyk =
(
1 0 −h/g

)
ŷk (4)

In this equation, h specifies the pendulum height and g is the
gravity constant. The reference ZMP trajectory in (1) can be
formulated as a function of the current stance foot location
(xfck , y

fc
k ) and the following foot locations in the horizon

(Xf
k , Y

f
k ):

Z
xref

k+1 = U c
k+1x

fc
k + Uk+1X

f
k

Z
yref

k+1 = U c
k+1y

fc
k + Uk+1Y

f
k (5)

where U c
k+1 ∈ <N and Uk+1 ∈ <N×m correspond respec-

tively to the current and future step locations (m steps) [4].
Finally, the problem of finding CoM jerk and footstep locations
can be canonically written as a Quadratic Program (QP) as
follows:

min.
uk

1

2
uTkQkuk + pTk uk (6)

where

Qk =

(
Q′k 0
0 Q′k

)
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(
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(7)

and
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(8)

This QP is solved under linear inequality constraints on the
ZMP and step locations [4] to automatically generate the CoM
trajectory and footstep locations in real-time.

III. PROPOSED FORMULATION

The method presented in the last section does not take into
account frictional constraints. As a result, it is possible that
the generated walking pattern becomes unfeasible, because the
robot would start slipping. In this section, we generalize this
approach by taking into account friction. First, we use the
LIPM equations and relate the RCoF as a linear function of
the gait variables. Then, we add to the cost function a term
that minimizes friction forces. Finally, we impose the friction
cone constraints to guarantee slippage avoidance for walking
on various terrains.

A. RCoF

The LIPM linearizes the biped dynamics by assuming fixed
CoM height and zero angular momentum rate around the CoM
[20]. We used (4) to compute the ZMP in terms of the CoM
position and acceleration. Using the LIPM dynamics, we can
also relate the horizontal and vertical forces in terms of the
CoM and ZMP positions at time interval k:

fxk =
xk − zxk

h
fzk

fyk =
yk − zyk

h
fzk (9)

This equation is obtained by taking the moment about the
CoM (Fig. 1). We define µxreq

k and µyreq

k as the RCoF in the
sagittal and lateral directions:

µ
xreq

k :=
fxk
fzk

=
xk − zxk

h

µ
yreq

k :=
fyk
fzk

=
yk − zyk

h
(10)

This equation yields interesting information on the relation
between the RCoF and the ZMP. It implies that to reduce the
RCoF for a walking pattern, the distance between the CoM and
the ZMP should be reduced. The distance between the CoM
and the ZMP can be interpreted as a measure of how dynamic
the motion is. As a result, if the walking pattern is static and
the CoM and the ZMP coincide during motion, no friction
is needed to realize walking. However, the more dynamic the
motion is, the more RCoF is needed to realize the motion. As
a result for walking with high velocity and large steps where
motions are more dynamic, the distance between the CoM and
the ZMP increases and as a result the RCoF is increased. It
should be noted that these analyses are valid for the LIPM
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Fig. 1: The LIPM and corresponding friction cone

abstraction of a biped, and change of the CoM height and rate
of angular momentum around the CoM affect the RCoF as
well.

For a walking pattern to be feasible, the friction cone
constraint should hold:

(µ
xreq

k )2 + (µ
yreq

k )2 ≤ µav
k (11)

where µav
k is the available CoF between the feet and the

ground surface. When the robot traverses surfaces with differ-
ent slipperiness characteristics, µav

k changes and the walking
pattern should be adapted to realize a feasible motion.

To keep the MPC structure linear, we use a conservative
polyhedral approximation (µap

k ) of (11) which boils down to
two sets of independent linear constraints (Fig. 2):

|µxreq

k | ≤ µap
k =

√
2

2
µav
k

|µyreq

k | ≤ µap
k =

√
2

2
µav
k (12)

B. Proposed cost function

We define a cost function which is a trade-off among three
main features, i. e. velocity tracking, tip-over avoidance, and
slippage avoidance. Our main goal is to generate walking
patterns consistent with the desired velocity, while minimizing
the possibility of contact instability. Hence, the proposed cost
function is:

Jf =
β

2
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γ

2
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δ

2
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(13)

where δ is the weight of the RCoF. Moreover, Mreq
k+1 is the

RCoF vector in the receding horizon and can be computed
using (10) for sagittal and lateral directions:

M
xreq

k+1 =

µ
xreq

k+1
...

µ
xreq

k+N
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M
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Fig. 2: Polyhedral approximation of frictional constraints

The first term in the cost function of (13) enforces the CoM
velocity to be as close as possible to the desired walking
velocity. The second term tries to keep the ZMP close to
the center of the stance foot and can be interpreted as a
tip-over stability margin. The third term keeps the resultant
interaction force away from boundaries of the friction cone.
The last three terms have the same meaning for the lateral
direction. It seems necessary to note that as it is mentioned
in [12], minimizing any derivative of the CoM position can
be considered as a sufficient condition of viablity. Hence, the
velocity tracking terms in the cost function not only enforce
the velocity tracking task, but also guarantee viability of the
motion.

The weights in (13) are chosen depending on the terrain
that the robot is traversing. For instance, walking on slippery
terrains needs maximum robustness against slippage. As a
result, δ should be increased to alleviate the possibility of slip-
related falls. This may be achieved at the cost of degrading
the walking velocity tracking and increasing the risk of foot
tip-over. On the other hand, for the cases that the robot
should traverse surfaces with partial footholds and uncertain
supporting area, γ should be increased. Hence, safe walking on
such surfaces is obtained at the cost of more velocity tracking
error (decreasing the walking velocity and increasing the fluc-
tuations on the CoM velocity), and less slippage robustness. As
a result, compromising these three factors adapts the generated
motion consistent with the situation, while tuning the weights
can be seen as an interesting learning problem.

Using (3) and (14), the vector Mreq
k+1 can be written down

in matrix form in terms of current state of the CoM and the
future jerks:

M
xreq

k+1 =
1

h
((Pps − Pzs)x̂k + (Ppu − Pzu)

...
Xk)

M
yreq

k+1 =
1

h
((Pps − Pzs)ŷk + (Ppu − Pzu)

...
Y k) (15)

As a result the Hessian in (7) and gradient in (8) can be
modified as:

Q′k(1, 1) = βPT
vuPvu + γPT

zuPzu + δ(Ppu − Pzu)
T (Ppu − Pzu)

pk(1) = βPT
vu(Pvsx̂− Ẋref

k+1) + γPT
zu(Pzsx̂− U c

k+1X
fc
k )

+ δ(Ppu − Pzu)
T (Pps − Pzs)x̂

pk(3) = βPT
vu(Pvsŷ − Ẏ ref

k+1) + γPT
zu(Pzsŷ − U c

k+1Y
fc
k )

+ δ(Ppu − Pzu)
T (Pps − Pzs)ŷ (16)



(a) Desired and actual walking velocity

(b) Required Coefficient of Friction (RCoF)

(c) Footstep locations and ZMP trajectory
Fig. 3: The first simulation scenario with β = 1 and γ = δ = 0.

It should be noted that we eliminated 1/h2 which is a
constant and multiplies to the weight δ in the Hessian and
gradient.

C. Frictional constraints

We use the pyramid approximation of the friction cone (12)
to construct linear constraints which allows us to solve a QP
to generate the motion. These constraints can be formulated
as: (

Ppu − Pzu 0N×m 0N×N 0N×m
0N×N 0N×m Ppu − Pzu 0N×m

)
uk ≤(

Maph− (Pps − Pzs)x̂
Maph− (Pps − Pzs)ŷ

)
(17)

and(
Pzu − Ppu 0N×m 0N×N 0N×m
0N×N 0N×m Pzu − Ppu 0N×m

)
uk ≤(

Maph+ (Pps − Pzs)x̂
Maph+ (Pps − Pzs)ŷ

)
(18)

where Map ∈ <N is the vector of polyhedral approximation
of the available friction coefficient in the horizon (see Fig. 2).

IV. SIMULATION RESULTS

In this section, we present two simulation scenarios based on
the LIPM abstraction of a biped robot. The physical properties
of the model and the robot constraints as well as the gait
parameters are given in TABLE I. The preview horizon of the
MPC for all simulations is two steps.

(a) Desired and actual walking velocity

(b) Required Coefficient of Friction (RCoF)

(c) Footstep locations and ZMP trajectory
Fig. 4: The first simulation scenario with β = 1, γ = 100 and δ = 0.

In the first simulation scenario, we demonstrate walking
with different weights of the cost function in (13). In this
scenario, the robot starts stepping in place, then a desired
forward walking velocity command vdes = 1m/s is given.
Finally, by commanding zero walking velocity, the robot
resumes stepping in place again.

TABLE I: Physical properties of the model and the gait parameters
parameter description value

T Length of time interval 0.1 (sec)
h LIPM height 80 (cm)
Tss single support duration 0.5 (sec)
Tds double support duration 0.1 (sec)
a Foot length 20 (cm)
b Foot width 10 (cm)

Lmax maximum step length 60 (cm)
Wmax maximum step width 40 (cm)

We start with just considering the velocity tracking in the
cost function, which means β = 1, γ = δ = 0. In this case,
hard constraints on the ZMP and RCoF guarantee the motion
feasibility. The available CoF is considered to be µav = 0.7
(µap = 0.5) and the foot length and width for the ZMP
constraints are given in TABLE I. A summary of illustrations
for this case is presented in Fig. 3. As it can be observed
in Fig. 3 (a), the walking velocity is tracked well. Since the
ZMP and RCoF are not considered in the cost function in
this case, the optimizer does not trade off slippage and tip-
over robustness, and just keeps the RCoF less than µap = 0.5.
That is why we can see significant changes in the RCoF in
Fig. 3 (b), especially when the desired walking velocity is



(a) Desired and actual walking velocity

(b) Required Coefficient of Friction (RCoF)
Fig. 5: The first simulation scenario with β = 1, γ = 100 and δ
changes from zero to 200

changed. Furthermore, as it can be seen in Fig. 3 (c), the
ZMP moves most of the time on the boundaries of the support
polygon which substantially increases the possibility of the
stance foot tip-over. In fact, moving the ZMP on the edges of
the support polygon decreases the walking velocity tracking
error, but increases the possibility of fall due to foot slippage
and tip-over.

Since falling down prevention is more important than de-
sired walking velocity tracking, we need to make the walking
patterns more robust against contact instability. We start with
increasing the weight γ to bring the ZMP closer to the center
of the support polygon and reduce the possibility of foot tip-
over. In Fig. 4, the results for the case γ = 100 are shown.
As we can see in Fig. 4 (a), although the fluctuations on the
actual velocity is increased compare to Fig. 3 (a), the mean
walking velocity tracks the desired velocity well. Since in this
case we give higher weight to the ZMP tracking compared to
the walking velocity tracking, the actual walking velocity in
this case is smoother which causes the RCoF to be smoother
as well. We cannot see drastic changes in the RCoF when
the desired walking velocity changes, however the maximum
RCoF during steady walking with v = 1m/s is increased from
about 0.2 to 0.35. As a result, enforcing the ZMP trajectory to
be close to the center of the support polygon during walking
(Fig. 4 (c)) is achieved at the cost of a negligible increase in
the instantaneous walking velocity tracking error, but a con-
siderable increase in the RCoF during steady forward walking.
This experiment illustrates how minimizing deviations of the
ZMP leads to higher friction forces.

In order to explore the effects of adding the RCoF term
in the cost function (13), we start to increase its weight
δ while keeping the other weights fixed. Fig. 5 shows the
obtained results for changing δ from 0 to 200. We can see

Fig. 6: Foot locations, CoM and ZMP trajectory for β = 1, γ = 100
and δ = 100

in Fig. 5 (a) that by increasing the RCoF weight, the quality
of walking velocity tracking is degraded considerably. This
observation suggests that in order to increase the robustness
against slippage, the walking velocity (step length for constant
step duration) should be alleviated. In other words, increasing
the walking velocity needs a more aggressive gait with more
possibility of slippage. We can see in Fig. 5 (b) that for
decreasing the RCoF from 0.35 to less than 0.1, we need to
decrease the walking velocity from 1m/s to around 0.4m/s.
Besides, as it can be deduced from (10), not only the velocity
tracking is degraded, but the ZMP needs also to approach the
CoM to decrease the RCoF (see Fig. 6). This means that we
can only decrease the RCoF at the cost of either degrading
walking velocity tracking or reducing tip-over robustness, or
potentially a combination of both.

The analyses we carried out up to now suggest that as
long as the velocity term exists in the cost function and the
viability is guaranteed, we can find cost function weights that
significantly change the gait properties. For instance, if the
surface that the robot tends to traverse seems slippery based
on the visual feedback, the robot could increase the weight δ
to increase the robustness against slippage. On the other hand,
in the situation where the footholds are limited or uncertain,
γ should be increased. Since changing these weights does not
affect the viability of the motion, changing the weights can
be done without any concern about falling. As a result, the
approach allows to explore different surfaces properties. This
could be useful, for example, to adapt the weights based on
online measurements of the surface properties.

In the second scenario, we investigate a case where the
surface CoF is known in advance. In this scenario, by set-
ting Map (consistent with µav) appropriately in the preview
horizon, we can ask the optimizer to automatically adapt the
gait variables to traverse slippery surfaces. We assume that the
robot starts stepping on a surface with µav = 0.56 (µap = 0.4)
and after taking seven steps, it suddenly enters a surface with
µav = 0.23 (µap = 0.16). The cost function weights in this
scenario are β = 1, γ = 100 and δ = 1. As it is shown in Fig.
7, once the robot enters the slippery terrain, the actual walking
velocity is reduced (Fig 7 (a)) to bring the RCoF below 0.16
(Fig 7 (b)). This is achieved by decreasing the step length and
letting the ZMP move from heel to toe such that the distance
between the ZMP and CoM is reduced (Fig 7 (c)).

V. CONCLUSION

In this paper, we proposed a walking pattern generator based
on MPC which takes into account foot slippage avoidance.



(a) Desired and actual walking velocity

(b) Required Coefficient of Friction (RCoF)

(c) Footstep locations and ZMP trajectory
Fig. 7: Second simulation scenario (β = 1, γ = 100 and δ = 1): The
robot starts stepping on a terrain with µap = 0.4. After seven steps,
the robot enters a slippery surface, while µap = 0.16 and is known
in advance. The optimizer automatically adapts the gait variables to
bring the RCoF below 0.16 to make the walking pattern feasible.

In this setting, walking is realized by compromising walking
velocity tracking against contact stability robustness in the
cost function, while friction cone constraints are applied using
polyhedral approximation of the friction cone. By taking
into account the frictional constraints, the walking pattern is
adapted for the case when the robot enters a terrain with low
available CoF. Simulation results show that walking velocity
tracking conflicts with robustness against contact instability.
In other words, to achieve walking with high velocities, we
need to make the walking gaits more aggressive by increasing
the RCoF and letting the ZMP approach the boundaries of the
support polygon. Furthermore, decreasing the RCoF to gain
more robustness against slippage is obtained at the cost of
decreasing the robustness against foot tip-over.
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