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Abstract—This paper presents existence and uniqueness
results for a propagative model of simultaneous impacts that
is guaranteed to conserve energy and momentum in the case
of elastic impacts with extensions to perfectly plastic and
inelastic impacts. A corresponding time-stepping algorithm
that guarantees conservation of continuous energy and discrete
momentum is developed, also with extensions to plastic and
inelastic impacts. The model is illustrated in simulation using
billiard balls and a two-dimensional legged robot as examples;
the latter is optimized over geometry and gait parameters to
achieve unique simultaneous impacts.

Note to Practitioners—Simultaneous impacts are a common oc-
currence in manufacturing and robotic applications. Simulation-
based techniques predicting the motion of a mechanical system
subject to simultaneous impacts often use numerical routines
that make algorithmic assumptions about impact in order to
make the simulation more tractable. Such assumptions have
the potential to significantly influence the simulation outcome
and may even invalidate results. This paper provides tools for
simulating simultaneous impacts, verifying a simulation that
deals with simultaneous impacts, and designing a system so that
the simulation will be less dynamically sensitive to indeterminacy
in simultaneous impact.

Index Terms—Dynamics, Legged Robots, Animation and Sim-
ulation, Impact Modeling

I. INTRODUCTION

N this paper we investigate a propagative impact model

for rigid body systems [1f], [2] and the conditions under
which it provides a deterministic prediction for the outcome
of simultaneous impacts. Our motivating system is pictured in
Fig.[1|and represents a simplified model based on the geometry
of numerous legged robots [3]-[7] While contact modeling
has received significant attention in relation to plastic impacts
and established contacts [8], [9], little work has been done to
address the issue of simultaneous non-plastic impacts. Such
interactions naturally occur in the system of Fig. [Tbetween
a foot and the floor while the tail is still in contact—but also
in the gait of robots such as RHex [7] or IMPASS [5]. As
simulation has proven a strategic tool in the design of mobile
robots [10], we present theoretical results that can be used
both as building blocks for physical simulations as well as a
validation tool for existing simulation methods.

When simulating impacts in physical systems two main
approaches have been widespread. The most popular method
is to solve unilateral contact problems implicitly—usually by
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solving a linear complementarity problem (LCP) associated
with every time step of the simulation [11]-[18]]. The defining
feature of this implicit approach is that all the collisions
detected over a time step are processed together with the
dynamics for that time step, which eases implementation
and scalability. In addition, implicit LCP methods potentially
have very fast execution times and are parallelizable [19]-
[21]. This makes such methods ideal in most real-time phys-
ical simulations—e.g. interactive graphics applications, video
games, etc. However, the implicit nature of such algorithms
is double-edged: at the cost of a high-performing low-hassle
implementation they can allow for unrealistic behavior—
especially noticeable when dealing with non-plastic impacts.
To illustrate such behavior, we simulated the three sphere
system shown in Fig. 24 using the popular Bullet physics
engine [21]. We let spheres B and C be in contact initially
and had sphere A impact B with varying velocities. Figure [2b]
shows the amount of energy lost through this impact for
three different values of the coefficient of restitution. For
perfectly elastic collisions the system energy increased by
as much as 30% due to the impact. Furthermore, this error
does not scale with the time step; while varying the time step
frequency between 60 Hz and 6 kHz the error did not change,
indicating we cannot expect this algorithm to converge to a
“true” solution as the step size goes to zero. Aditionally, even
at velocities for which the energy was conserved, the solution
did not come close to the experimental results [22]]. It is worth
noting here that while most LCP methods are implicit, work
has been done that incorporates the LCP approach to impacts
into event-driven integration schemes [23]], [24] as discussed
below.

An alternative method to modeling rigid body collisions is
to treat impacts as impulsive events where a jump in velocity
occurs at the moment of impact. At each impact a reset map
determines the post-impact state of the system. The main
benefit of this approach is the explicit nature of the reset map
which allows one control of the simulation’s physical accuracy
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Fig. 1: The running robot model (TREX) that we used in order to illustrate the
results of this paper. The arrow depicts the intended direction of movement
which results from a counter-clockwise torque applied to the legs at the hips.




Newton’s Cradle

(a) Three spheres restricted to move on a line. The configuration
space is three dimensional, with x4, xp and z¢ as the config-
uration variables. This system is a simplification of the Newton’s
cradle toy.
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(b) Energy loss versus initial velocity for the simplified Newton’s
cradle simulated in Bullet (dots) and using our method (dotted
lines). Each band of points and dotted line represents one of three
coefficients of restitution (COR) tested: 1, 0.7 and 0.

Fig. 2: Simplified Newton’s cradle showing unrealistic behavior in the Bullet physics engine. Notice the inconsistencies in energy behavior present in the

Bullet data points.

and compliance with energy conservation and restitution laws
at the time of impact. Using an explicit method also gives
us the freedom to employ a propagative model for handling
simultaneous impacts, a model which has better agreement
with experimental data [22] than the implicit methods used
in obtaining the results of Fig. Propagative collision
models solve simultaneous impacts sequentially, splitting one
simultaneous impact into as many two body impacts as needed
to reach a solution. The method is based on assuming an
infinitesimal gap between all contacts and solving for two-
body impacts in an order of one’s choice. While there is
experimental evidence that better qualitative results can be
achieved by using soft-body models [25], [26] and similar
approaches [27]|-[29], the errors incurred by using a rigid
body propagative model are slight at best [22]] and certainly
not to the degree of the errors presented in Fig. The rigid
body approach we undertake allows us to model more complex
systems, like the legged robot model shown in Sec. Un-
fortunately, the main drawback in using rigid body propagative
approaches, as discussed in [1] and [28], is the inadequate
modeling of continuum mechanics phenomena. In particular,
the coupling effects between simultaneous impacts cannot be
generally addressed. In the rigid body limit such coupling
effects manifest themselves as a lack of unique solutions
to the equations governing simultaneous impact. However,
rather than proposing to solve the general simultaneous impact
problem, we focus instead on identifying cases in which
coupling effects do not generate non-uniqueness in the rigid
body limit for simultaneous impacts. Such cases, therefore,
can be modeled under the rigid body assumption provided
mechanism and gait design goals are set appropriately.
As major contributions the present paper provides the fol-
lowing:
1) sufficient conditions for solution existence for the prop-
agative model of elastic impact, assuming two simulta-

Note that the results presented in [22] reflect the behavior of the system
when the initial velocities have relatively high values compared to the stiffness
of the bodies involved in the collisions.

neous impacts

2) sufficient conditions for solution uniqueness for the
propagative model of elastic impact, assuming n simul-
taneous impacts; when uniqueness is satisfied, existence
is guaranteed for arbitrary numbers of simultaneous
impacts.

3) a time stepping algorithm which preserves discrete mo-
mentum and continuous energy

4) extensions of 1-3 above to the cases of plastic and in-
elastic impacts, as well as automated distinction between
plastic and non-plastic impacts when using the time-
stepping method

5) application to three example systems: Newton’s cradle,
billiards, and a two dimensional legged robot model
robot which includes both external forcing and Coulomb
friction

The rest of the paper is structured around the above con-
tributions. Section [II] goes over the collision model in the
simple case of one isolated impact and introduces notation
that will be used throughout the rest of the paper. Section [II|
expands the basic collision model by extending it to the case
of simultaneous collisions and explains its use in the example
case of Newton’s cradle. In Sec. [V] we examine existence
arguments for the solutions of our algorithm, giving an upper
bound on the number of iterations needed to achieve a feasible
result for the case of two simultaneous contact points. The
existence results shown here correspond to and extend those
presented in [30], substituting a rigorous mathematical proof
in place of a geometric argument. In Sec. [V] we investigate
the uniqueness of the solutions obtained by the propagative
method, for both the case of n perfectly elastic and perfectly
plastic simultaneous impacts. For the plastic case the solution
is trivially unique. However, for the elastic case we find that,
while in certain cases, including Newton’s cradle, our approach
gives unique solutions, in general we have a non-unique, al-
though finite, number of outcomes. Similarly, standard implicit
methods do not provide uniqueness results for their solutions,
as the final solution is usually dependent on both the initial



condition and the particular solver. Our approach has the
advantage of offering a set of countably many solutions, all
of which satisfy the LCP criteria. Moreover, the non-unique
solutions that we present have been posited to correspond
to uncertainty in the elastic body physical system [2]. This
gives rise to an interesting question: could we leverage control
of the configuration at impact to always obtain predictable
collision outcomes when dealing with simultaneous impacts?
In Sec. we give an affirmative answer to this question—
an extension to our work in [31]]—and present its use on
two example systems: an extension of the simplified system
in Fig. [2a] and a two-legged and tailed robot intended for
locomotion seen in Fig. |1} All the simulation results are based
on a time stepping scheme consisting of variational integrators
which is briefly described in Sec. and the foundations of
which were discussed in more detail in [32] and [30].

II. BASIC IMPACT MODEL

The following presents well known results concerning the
equations governing impacts treated with an impulsive ap-
proach. We present this both for reference and to introduce
the reader to notation. Of particular note is our definition of
inner product and norm on the cotangent space—see (B)—
which makes use of the dual of the kinetic energy metric on
the tangent space.

Assume a simple mechanical system described by config-
uration ¢ and Lagrangian L(q,q) = K(q,q) — V(q,q). The
equations of motion for such a system can be derived by
applying a variational principle, and are the known Euler-
Lagrange equations [33]:
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For a collision at time ¢, we say that the velocity at that time
is infeasible if it points “into” the contact manifold—opposite
to the contact manifold normal:

D¢(Q*) s <0, (2)

where ¢. = ¢(t.) € @ is the configuration at time of impact
and ¢ : @ — R is the gap function describing the contact
manifold 6 C @ [16]—it takes positive values in the feasible
region of space, negative values in the infeasible region, and is
identically zero when ¢ is on the contact manifold. D¢ is the
first derivative of the gap function with respect to its argument,
and hence is a covector that belongs to the cotangent space
at q.: DP(gy) = g—‘g(q*) € T, Q, and provides the normal to
the contact manifold. Using a variational approach one finds
that the equations governing a single elastic collision at time
ts are:
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Here X\ is a Lagrange multiplier such that AD¢ can be
interpreted as the impulse imparted to the system through
impact. The two equations have a classical interpretation: (3a)

is the conservation of momentum—tangentially to the impact
manifold—and is the conservation of energy through the
impact.

From here on, we work under the assumption that we are
dealing with a non-degenerate simple mechanical system such
that potentials do not depend on the velocity ¢, and the kinetic
energy term is quadratic in ¢ . Under this assumption, we can
write the Lagrangian as L(q, ) = $¢"M(q)¢ — V(g), where
M((q) is the mass matrix M (q) = 04¢L(q,q) and is positive
definite. The system in (3) becomes

§*(t5)M - §"(t7)M = \.Dé,,
q" (L) Mq(t]) = " (t2)M(t,),
where, for ease of notation, we dropped the g-dependency of

M and ¢., implicitly assuming they are evaluated at g., the
impact configuration. We can rewrite these equations as

(4a)
(4b)

p"=p +Au,

ptM'ptT =p M 'pT,
where p*T = g7+ M is the momentum before and after the
collision and u = D¢; is the normal to the manifold of
impact (for the purposes of this paper we use bold notation
to denote covectors, which in our case are elements of the
cotangent bundle—e.g. p,u € T, Q—while regular script
denotes vectors: ¢ € Q, ¢ € T, Q, etc.) Also, for the
remainder of the paper, the norms and dot products between
covectors are assumed to be those defined under the local
kinetic energy metric [34]:
(52)
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[ully = (u,u). (5b)

Using this notation, we redefine infeasibility in terms of
momentum. We say that p~ is infeasible with respect to the
contact manifold represented by the normal u if

(p ,u>g <0. (6)
By the same token, p~ is feasible if (p—, u)g > 0.
Assuming an infeasible p~, we solve for p* using (@):
p"=p I(u), (7a)
;uTu M~'u"u
T faM-tur

(7b)

Here I'(u) is a momentum (reset) map [2]] that describes an
instantaneous change in momentum due to an impact with a
manifold normal u.

Equation is only one of the two solutions to the
system in (@), but is the only feasible one. Indeed, after
eliminating p+ we are left with a quadratic equation in \:
A\? ||u||3 +2X(p~,u), = 0. The feasible value is given by
A==2(p7,u),/ Hu||§ Note that if we write (2) using the
notation just introduced, we have that A > 0. This is consistent
with the LCP formulation of contact, as A > 0 satisfies the
classic complementarity conditions.

The mapping I'(u), as defined in , has several properties
that will be useful in Sec. Sec. and Sec. [V] First,

I'(u)* =T(u)l(u) =1, (8)



which means that resolving an impact across a manifold twice
in a row returns the original momentum. Also, I' is not
dependent on the magnitude of u, only on its direction:

I'(au) =T(u). )

III. SIMULTANEOUS COLLISIONS

Simultaneous impact can occur if two contacts are made
at the same time or if one contact is already present when
a second impact occurs. When an impact is assumed to be
plastic the equations governing the interaction are
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4l = > ADéi(g.), (10a)
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Doi(g:)g =0, A >0, VieUU, (10b)

where % is the set of indices of manifolds already in contact
while "/ is the set of indices of new contact manifolds. These
equations generate a unique solution, which corresponds to
eliminating the portion of ¢. that is orthogonal—under the
kinetic metric—to the manifolds of collision ¢ at the time of
impact. Using the notation introduced in Sec. [[I} the outcome
of a plastic impact is given by

(1)

where Pg(p) represents the projection of covector p onto a
subspace S. In essence, p* is always tangent to all contact
manifolds—or, equivalently, it is orthogonal to all contact
manifold normals at the current configuration.

The uniqueness of the result is lost when considering elastic
impacts:

P = Puunspan{pes (g licuuy) (P7)
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These equations form a fully determined system only when
there is a single term in the summation on the right hand
side of (12a)—in which case they reduce to the case treated
in Sec. Otherwise, the equations governing the impact
dynamics become underdetermined (there are more variables
than equations). This gives rise to a whole continuum of
solutions. For generating trajectories in simulation, an element
of this continuum must be chosen. An a priori relation between
lambdas could be chosen in order to solve this dilemma.
However, it is unclear what physical principle to use. Instead,
we expand on a version of the propagative method discussed
in [2]. The reason behind using a propagative model of
simultaneous impact is twofold: the method gives unique
and correct results in simple, intuitive cases in which other
methods fail—e.g. Newton’s cradle—and it also provides at
most a finite number of valid solutions in other cases, as
discussed in Sec. [Vl

We investigate the simplest case of simultaneous impacts:
that of two manifolds of contact, such that U UV = {a,b}.

Suppose that the impact occurs across two manifolds at the
exact same time, such that (12)) becomes
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which has the same number of equations as @, but one extra
variable. Instead, a propagative approach consists of applying
repeatedly until a feasible momentum is found—whether
this is even operationally valid is something we address in
Sec. Using the notation of the previous section, where p
represents momentum and u, and u, represent the contact
manifold normals, we would have a sequence of operations
such as

p1=p I'(u,) with (pl,ub>g <0,
p2 = p1l'(up) with  (p2,u4), <0,
L= with

p+ = pn—lr(ub) with <p+7ua>g 2 Oa <p+a ub>g Z 0.

The above sequence generates a solution of the form

n

“[]rwa),

i=1

pT=p

(14
where H?:l x; is short for “the product z4 - zp---x,” and
{w;} is a sequence that alternates between u, and u, as in
{w;} = {uy,up,u,, uy,...}. The solution offered by is
certainly not unique since either the sequence or the number
of terms might vary. For example, a solution where {w;} =
{up, uy, up, ug, . .. } might be equally valid, provided that p™
is feasible. Similarly, since I'?(u) = I, prepending the first
element an even number of times is equivalent to applying the
original sequence. Thus, the previous alternating sequence is
equivalent to {w;} = {up, up, up, ug, up, u,, ... }. Note that
we are working with infinite sequences, as we do not want
to assume a priori that a feasible momentum can be found
in a finite number of steps. The question of existence (and
thus finiteness of the length of the sequence) is, contrary to
intuition, non-trivial. For a discussion and proof of termination
for two surfaces, see sec.

In general, for a set of more than two contact manifold

normals
S = e A
{“ 1D6:(a)I,

we will have several choices of w; € S and a number of
terms such that (p™,u), > 0 for all u € S. With the above
in mind we propose a minimality condition which will reduce
the possible mapping sequences and, in certain cases such as
discussed in Sec. [V} will provide uniqueness.

Definition 1 (Minimality Condition): We say that a sequence
W = {w;} of contact manifold normals is minimal with
respect to an infeasible momentum p and Lagrangian L if
the following hold

¢i(g+) = 0,(p",u), < 0}



1) the application of the corresponding sequence of reset
maps {I'(w;)} generates a feasible momentum:

<PHF(Wi),W> >0, YweS
i=1 g

2) no proper subsequence of W can generate a feasible
momentum.

We proceed to only consider minimal sequences of reset maps,
with two direct consequences which help us make stronger
statements in regards to existence and uniqueness of feasible
solutions to (T3). The first, and most important, is that we do
not consider solutions obtained when continuing to apply reset
maps to an already feasible solution. The second consequence
is that none of the mapping sequences we consider will have
consequent members that are identical, which is guaranteed
by the following lemma:

Lemma 1: Given a sequence {w;} which is minimal with
respect to some momentum p~, we must have that w; #*
w1 for all j
An important consequence of Lemma [I] is that, in the case
of two contact manifolds, described by u and v, any minimal
sequence of normals has the form of an alternating sequence
of u and v. This fact will be central to later results.

Example 1 (Newton’s cradle): Consider the system shown
in Fig. 2al We can define manifolds of contact by

¢1(q9) =ap — w4 — 21,
$2(q) = zc —xp — 2,
u = D¢:(q) = [-1,1,0],
v =D¢(q) = [0,-1,1].
The configuration space is three dimensional and the contact

manifolds are two planes. Under the assumption that all masses
are equal M = ml, we have that

01 0 1.0 0
Tw=[100], T(v=[0 0 1
00 1 01 0

It takes three iterations to find a feasible solution, making
{u,v,u} and {v,u,v} the only minimal sequences with
respect to an infeasible momentum p~:

p* = p D(WI(v)I(u) = p- T(V)D(w)(v)

I IO (1)
=p 01 0
1 00
Note that we obtained the same final result regardless of the
order of impacts, which is not expected to hold for general
systems. For example, if we were to choose unequal masses
for the balls, the solution would not be, in general, unique.
This indicates that the uniqueness of the solution is related
to an interplay between both the geometry of the system and
its inertia tensor at the time of impact. We will present and
discuss sufficient conditions for uniqueness in Sec. [V|and use
the results of that section to develop the main contribution of

the paper, the impact design approach in Sec.

2For clarity, the proof of this and all following lemmas can be found in the
appendix.

A. Extension to Inelastic Collisions

In general, collisions models include a coefficient of resti-
tution, to account for energy loss during impact. While the
coefficient of restitution is usually defined as a ratio of
collinear impulses [35]], it cannot be used with a propagative
model since propagative models deal with multiple impulse
exchanges. However, the restitution coefficient can be defined
using the energy loss through the impact:

AFE

R:
E,’

1— (16)
where F, is the energy that would have been lost during the
collision through a perfectly plastic impact and AF is the
energy lost when considering the coefficient of restitution R. A
coefficient of restitution of zero will determine a plastic impact
while a value of one will generate a perfectly elastic impact.
For all other inelastic impacts we represent the solution as a
convex combination between the plastic and elastic outcomes,
parametrized by o:

p"=ap/ +(1-a)p,, acl01], (17)

where p} is the momentum outcome for a perfectly elastic
collision and pl‘f is the momentum outcome of a perfectly
plastic collision. Using in the right hand side of (I6),

along with the observation that F,, = % ||p;r| , We obtain:
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The values of pf and p} are given by (14) and (TI),
respectively. Since pl‘f is an orthogonal projection of p—, and
pj is conserved in the direction of p;," , we have that
2
s 1l = (py ), - (18)
We solve for a and use to obtain

a=+v1-R?, Re[0,1].

IV. EXISTENCE

While the previous section presents an overview of the
propagative method for solving simultaneous impacts, it also
raises two important questions regarding the same method:
do solutions always exist and, if they do, are they unique?
The current section addresses a special case of existence
by proving that, for a simultaneous impact involving two
contact manifolds a minimal sequence of mappings exists and
it is finite. The uniqueness of the corresponding momentum
outcome is investigated in Sec. [V}

In what follows we assume that we are dealing with a
simultaneous elastic impact involving two contact manifolds.
A representation of the contact manifolds at the impact con-
figuration is given by their normals u and v, which, without
any loss of generality, can be assumed as being of unit length
and not collinear:

(19a)
(19b)
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Let T be the intersection of the two hyperplanes orthogonal
to u and v, defined by

T = null {u,v} = {p € 7,.Ql (p,u), = (p.v), = 0}.

Additionally, let N be the plane defined by the two covectors

N = span{u,v} = {p €T,.Q[(p,w), =0, Vw € ']1‘}.

Notice that, by definition, T and N are orthogonal and
complementary. We will make use of these properties in the
following lemmas. We start out by presenting two lemmas
which allow us to equate—through the use of an orthogonal
projection—solutions p € T7.() to the lower dimensional
p"' € N. The lemmas provide the link between solving
the problem of existence in the lower dimensional space N
and the problem of existence in 7. Q: the former becomes
sufficient in order to prove the latter. Thus, the substantial
part of the proof for Theorem [l consists of showing existence
when dim(N) = 2. We do so by using a geometric argument
involving the angle between successive reflection mappings
of a covector r = (u+v)/[lu+ v/, and a momentum po,
which is related to the pre-impact momentum p~ through
an orthogonal projection. Figure [3] illustrates the geometric
argument used in Theorem [T}

For the rest of the this section we will use the following
notation to denote the orthogonal projection of a covector onto
aset S:

Ps(p) = argmin [|p — p*|[, .
p*eS

This notation, along with standard properties of orthogonal
projections, will be heavily used in the following lemmas.
First we show that the feasibility of p is equivalent to the
feasibility of its component that can be represented as a linear
combination of u and v.

Lemma 2: Let p,u,v € Tp.Q) with u,v satisfying the

restrictions in (T9). Then, p is feasible iff p = Pn(p) is
feasible.
Next, we show that any sequence of reflection transformations
will only affect the component of momentum that is in the span
of u and v, leaving the component orthogonal to that plane
unchanged.

Lemma 3: Given p € T;.Q and a sequence of trans-
formations I'(w;) with w; € {u,v} that map p to p; =
pI[, T'(w;), we always have that

ps = P1(p) + Pn(p) H I(w,),

Next, we present a lemma that equates feasibility in N to a
trigonometric condition on the inner product between p and
a covector r: p is feasible iff the angle between p and r is
smaller than half the angle between u and v.
Lemma 4: Let p,u,v,r € N such that r =

u+v
lutvll,

u # +v. Let v = arcsin (r,u),. Given the above we have
that p is feasible iff

and

(p,r), = [Ipll, cos. (20)

Note that for the backwards implication we did not use the
fact that p € N, which means that this implication can

be easily generalized to more than two contact manifolds.
The same cannot be said about the forward implication, as
counterexamples can be easily found when p ¢ N: consider
the case where (p,u), = (p,v), = 0 but ||p[|, # 0.

We use the result of Lemma [2] to simplify the problem
of existence of solutions in the higher dimensional cotangent
space to an equivalent problem in a two-dimensional subspace.
In particular, since reflection transformations can only affect
the Pn(p) component of the momentum, it is enough to
show that, given a finite number of transformations I'(w;),
we can transform Py(p) into a valid momentum py € N
such that (py,u), > 0 < (pn,v),. We can then find
the corresponding transformation of the original momentum
through the same sequence of mappings, which, according
to Lemma [3] is guaranteed to be feasible as well. Lemma []
gives us a way to rewrite the feasibility conditions into a form
dependent on the inner product between the momentum and
a unit covector r in the cotangent space. Before we show the
main result, we present one last lemma which gives shows that
the mapping I' is conformal under the kinetic metric:

Lemma 5: Given a momentum map I'(w) and two momenta
Pa;Pb € T~ Q we have that

(Pal'(W), PT'(W)), = (Pa> Pb), - @21

In words, I'(w) is guaranteed to be a conformal (angle
preserving) mapping under the kinetic metric.
This enables us to formulate and prove the main result:
Theorem 1: Given a momentum py € 7,.() and two man-
ifolds of impact with linearly independent normals u # +v
at the point of simultaneous contact, there exists a minimal
sequence {w;}, as per Def. [I} of length n < [7/~] such that
n
p;=[]T(w)
i=1
is feasible, where v is the angle defined in Lemma E}
Proof: We start by considering a momentum p}} € N. The
subspaces T and N are both orthogonal and complementary,
which makes it possible for us to write

Po = Z1(Po) + Pn(Po)-

We focus our attention on py = %y(pg), since Lemma
guarantees that any feasibility results on pIJ\} extend to py.
This allows us to work in a two dimensional vector space
isomorphic to R?. Furthermore, Lemma [3| gives us that we
can find py by applying the same sequence of mappings to
Po as that used when obtaining pl;\} from p}.

In what follows we make use of two properties of the

momentum map defined in (7). The first is invertibility. In fact,
a mapping I'(w) is its own inverse, since I'(w)['(w) = I. In
addition, Lemma|[5|shows that I'(w) is a conformal momentum
map under the Kinetic energy metric: it preserves angles—
inner products—according to this metric.
Now let ry = ﬁ Using the fact that I'(w;) are
invertible and taking into consideration the result of Lemma [4}
it is sufficient to find a sequence of mappings I'(w;) that maps
r to

I‘f =Ty HF(WZ),
=0



such that

(r.p0), > ||r>oH

Applying the sequence of mappings to pg in reverse order will
generate a feasible
n
Py =po [ [T(Wn_s).
i=0
Given the above, the following has to hold:
Lemma 6: For any minimal sequence {w;} we have that

(ri,ro), = cos(2iy),
where, as in Lemma @] v = arcsin (rg, u), = arcsin (ro, v)
and r; =rg HJ _oT(w;).

Thus, for any value of i we can calculate (r;,ro), =
cos(2iy). Knowing this angle, the fact that r; € N, and
[ril, = 1, we have only two possible r; to satisfy these
conditions. One of the two covectors is obtained by setting

wo = u while the other is obtained by setting wy = v—see
Fig. [3| If we account for both these possibilities and consider

the set
o= 2]}
Y

we have that, for any r; € Ry, the smallest angle between it
and any other r; € Ry is at most 27. Formally,

g

(22)

miin max (ri,rj), > cos(2y).
The implication of this is that for any vector p, 3i < N s.t.
(p,r;), > cos(7). This proves our theorem, since applying
the mappings used to get r; in reverse order to po guarantees
that <pf,r0> > cos(y). [ ]

The above proof shows that, in the case of two contact
manifolds with distinct normals at the point of contact, a
feasible solution can be obtained through a finite number of
successive applications of the reflection mappings defined by
I'(u) and I'(v). Generalizing to more simultaneous impacts is
complicated by the lack of an alternating structure in w; in
such cases. Considering all this, we leave the proof of such
existence an open question to further study.

V. UNIQUENESS

In this section we present several results that help us
determine uniqueness of simultaneous impacts. In particular,
Theorem [2] and Theorem [3] guarantee uniqueness of the impact
results in the cases that the inner product between the two con-
tact manifold normals takes a value of 0 or 0.5, respectively.
Also, as a consequence, if the impact involves a higher number
of contact manifolds which are all pairwise orthogonal at the
impact configuration, the result of applying the reset maps will
be unique, regardless of order of application.

We first show that orthogonality between the normals of the
contact manifolds at the simultaneous impact configurations is
both sufficient and necessary for a unique feasible solution to
be found in exactly two steps.

Lemma 7 (Orthogonality Condition): For two contact man-
ifolds described by their normals u # +v, and any infeasible
momentum p with (u, p)g < (v,p>g < 0, we have that

p;=pl' ()T (v) =pIl(v)T (u) is feasible (23)
if
(u, v>g =0. (24)

As part of the above result we have that two reset maps
commute if and only if the covectors that generate them
are orthogonal. This helps us show the following important
theorem.

Theorem 2: Given a set of n contact manifolds described
by their normals u; such that they are all pairwise orthogonal

<ui7uj>g:07 Viaj7 l#]7
and any infeasible momentum p with (u;, p) s < 0,Vi, we
then have that
n
p;=p[[T(w) (25)

is the same for any ordering of the indices ¢ and the result is
feasible.

Proof: Tt follows directly from Lemma E] that, if u;
are pairwise orthogonal then I'(u;) pairwise commute, which
gives that the order of terms in the product of is irrelevant.

It remains to show that py is feasible. We do this by
showing that the application of a given mapping I'(uy) affects
the inner product between the mapped momentum and no
other normal but u. Indeed, assume that we have a p;, and
a u; # ug. Then we will have that

<Pkr(uk)»ui>g = <pk -2 <Pk,uk>g uk,ui>g

= <pk; u’i>g -2 <pka uk>g <uk7 ui>g
= <pk)ul>g

Thus, applying all of the mappings I'(u;) only once, in any
order, we make sure the sign of the inner product (py,u;),
is positive for all normals u;. Hence, py is feasible. [ ]

The orthogonality condition in Lemma [2] was found under
the assumption that the system undergoes two impacts before a
feasible exit velocity is found. Sometimes this might not be the
case—e.g. due to design constraints—and systems where more
than two impacts are needed to find a feasible exit velocity
need to be considered. Such a system is Newton’s cradle,
where, for equal masses, the inner product is (u,v), = —0.5.
The following theorem provides sufficient conditions for a
three-stage impact to generate a unique outcome:

Theorem 3 (Three Stage Impacts): Given two contact man-
ifolds described by their normals u # +v and p that satisfies

(u,p), < (v,p), <0, we have that
pr=pl (W) (v)I'(w) =pl'(v)['(w)I(v)  (26)

is feasible iff

1
(u,v), = —5 (27)
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Fig. 3: A sketch of the subspace N when the kinetic energy metric is identical to the Euclidean metric. The figure gives an interpretation to equations and
([2). The dotted circle is the intersection of the unit sphere in T;* @ with N and the dotted lines represent the contact manifolds tangents—they are orthogonal
to u and v and represent the axis across which the reflection transformations operate. Figure (a) shows the two normals u and v, the additional variables rq
and y as well as an initial infeasible momentum pg; (b) shows the two potential applications of a momentum map to ro and the two corresponding values for
r1; a second sequence of mappings is presented in (c)—notice the 2 angle increase between ri and rg; finally, in (d), we have gone through n mappings
and obtained an r,, that is within at most v of po. Applying the mappings that generated r, to pg in reverse order we obtain py which is guaranteed to be

within « of ro, and hence feasible.

Proof: Through the use of and some algebra, the
condition in (26) can be shown equivalent to

2
(1-4v)) (o, w,u—(p,v),v) =0.
Since we assumed that u % +v, it must be that

1
(u, V>g = :I:§

In the case that (u,v), = §, we substitute back into (27) to
obtain:
pr=p-2(v-u((p.v), - (b.w),),
<pf7u>g =2 <p7u>g - <p,V>g )
<pf7v>g =2 <p,V>g - <pa u>g )

which implies that at least some of the infeasible p are mapped
to an infeasible py. So (u,v), = 1 does not work, thus
showing the forward implication.

On the other hand, if (27) holds we obtain

p;y =pl'(w)T (v)[(u)
=p—2(v—2(v),u) ((p,v), — 2(p.u), (wv),)
—p-2(v+u ((p,v), + (p,u),)
= pI' (V)T (W) T(v)

Finally, to show that p; is feasible, we calculate

(pr.u), = (pow), =2 (1= (v}, ) ((p.w), + (p.v), )
=—(p,v), >0,

(pr.v), = .v), =2 (1= (), ) ((p,w), + (B, v),)
=—(p,u), > 0.

|
To illustrate this, consider the Newton’s cradle system dis-
cussed in Sec. [ Assuming all three spheres have the same
mass m, the normals to the contact manifolds are

u=[-1,1,0]/m/2,
v =0, -1, 1]\/m/2.

The dot product between these two normalized covectors is

1
_ —1 T _
g=m u Iv' = 5
which is consistent with the result of Theorem [3] This prop-
erty of Newton’s cradle implies outcome uniqueness for any
combination of initial momenta of the spheres at the moment

of simultaneous impact.

(u,v)

VI. TIME-STEPPING METHOD FOR SIMULTANEOUS
IMPACT

In the previous sections we have only discussed impact
resolution, assuming that we are already given an impact
momentum and impact manifolds. However, we are interested
in simulating a time interval that contains an impact. Further-
more, our methods for impact resolution presented in (3) and
(T4) are formulated in terms of the momentum before and after
the impact, the result and proof of Theorem [T]is also specified
in terms of momentum. We want, therefore, an integration
scheme that works directly with momentum. The method of
variational integrators [36]—[39] is ideal in this situation, since,
by design, it will conserve a quantity known as the discrete
momentum—obtained through the discrete Legendre transform
from a pair of configurations. The discrete momentum is an
approximation of the continuous momentum at a given time,
the error between the two vanishing in the limit of the time step
going to zero. There are other advantages to using variational
integrators: they are known to preserve the symplectic form
[40] and conserve the average energy of the system over a
large number of time steps [37]. Finally, recent work has been
taking advantage of variational integrator methods in order to
generate optimal controllers for complex systems [41[]-[44].

Variational integrators are obtained by discretizing the ac-
tion sum directly:

tit1
La(qiytis qiv1stivr) N/ L(q,q,t) dt
t

i

— (ti1—t) L ¢+ qiv1 Giv1 — G i+ liga
i+1 % 2 ’ ti+1 —t; ’ 2 .




Note that the discrete Lagrangian depends only on configura-
tion variables, and not on velocity information. There are also
several quadrature rules one can apply for the discretization.
Here we have used the midpoint rule. The discrete equivalent
of the Euler-Lagrange equations is the set of Discrete Euler-
Lagrange equations [44]:

aiLd(Qk—latk—la Qe tr) + iLd(Qk, ths Qt1, thr1) = 0,
Ik Oqx,

(28)
that can be thought of as a mapping from two known config-
urations qp_1 at time t;_q and ¢ at time txto an unknown
configuration gy at time tj41.

A common interpretation of (28) is that they enforce the
conservation of discrete momentum [37], which is defined
through the use of the discrete momentum maps

0
L a7ta7 7t )
o d(asta; qb, ty)

0
IF—"_(tcutb) = aiqud(Qtzy ta7 Qb,tb)-

F~ (tcu tb) =

Using this notation, (28)) becomes

FH(tk—1,tk) + F~ (tg, trs1) = 0, (29)

which states that the forward momentum F at the end of the
(tx—1,tr) interval has to equal the backward momentum F~
at the beginning of the following interval, (¢, tx+1). Equation
(29) is a discrete equivalent of the Euler-Lagrange equations
and is known as the DEL (discrete Euler-Lagrange) set of
equations. In case of an impact at time ¢, we apply the update
map from to the discrete momentum, and we solve

N

FH(th,ta) [[T(Wi) + F (e te +1) =0, (30)
The equations in (29) and (B0) are, for all but the simplest
systems, nontrivial. We use [36]] in which the terms in these
equations are derived using a tree structure and used in a
root finding algorithm. This is the method we have used
when solving the dynamics away from impact for the running
mechanism described in the following section.

VII. IMPACT DESIGN

In this section we apply the uniqueness results of Sec. [V]
to example systems. We calculate combinations of geometries
and configurations that have unique outcomes for two mechan-
ical systems: a billiard ball break and a tailed, running biped.
These calculations are done analytically for the billiards and
numerically for the biped.

A. Billiards

Consider the general billiard break shown in Fig. @ Billiard
c acts as the cue ball in this situation, imparting momentum to
the other two billiards through a simultaneous collision. The
configuration vector for this system is

q= [xaa yaaxbayhzcvyc]Tv

and the two gap functions are

$a(q) = V(Ta — )2+ (Yo — Ye)2 — (ra + 1),
(Z)b(Q) = \/(xb - xC)Q + (yb - yc)2 - (Tb + TC)-

The two normals at a point where both these functions are
Zero are

[xc — Tay Yo — Yas 0, 0, To — T, Yo — yc]

D¢a(Q*) = - +r y
a c
[07 0, Te — Ty, Ye — Yby To — Te, Yp — yc]
D¢b(Q*) = P .

The mass matrix of this system is diagonal and since we are
assuming the impacts to be frictionless and are not expecting
any energy in the rotational modes of the objects, we ignored
the moments of inertia when calculating M. The dot product
between the manifolds is

_ (g — ) (Tp — ) + (Yo — Ye) (Yo — Ve)
(Dga, Dev)g = e (ra + 70) (ry 1 7¢)

Since ¢, = ¢p = 0, we can rewrite this expression in terms
of 6 (see Fig. |4) using the law of cosines:

<D¢a>D¢b>g
_ (xa - mb)2 + (ya - yb)2 - (Ta + TC)Q - (Tb + Tc)z
o 2me(rq +1e)(ry + 7¢)

_ cos(@). 31)

C

Thus, requiring that the impact manifolds be orthogonal under
the kinetic energy metric is, in this case, equivalent to setting
6 = /2. It is interesting to note that the result in (31)) depends
neither on the masses of the billiards, nor on their radii. While
keeping billiard c in contact with a and b, we varied the angle
# continuously from the minimum value where a and b were
also in contact—somewhere close to 7/6 in our case—up to

Fig. 4: The schematic of a planar mechanical system consisting of three
billiard balls about to experience simultaneous impact. Ball a and b are
stationary while ball ¢ has an initial velocity v, such that the contact between
a and c is simultaneous with the contact between b and c. The masses of
the billiards are proportional to the volumes of the respective spheres and all
friction effects are ignored.
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Fig. 5: The indeterminacy of the outcome of the billiard break in Fig. |4|as a
function of the angle between the billiards. As a measure of indeterminacy &
we looked at the difference in momentum between the two possible outcomes
under the kinetic energy metric and as a percentage of the total energy of the
system.

ISE

m. The only billiard with initial velocity was ¢ and v, was
chosen to point along the bisector of angle §. As a measure
of indeterminacy we looked at the difference in momentum
between the two possible outcomes under the kinetic energy
metric, relative to the total kinetic energy of the system:

¢ = lPab — pba”g
[Poll,

where pgy is the momentum covector before impact, pgp is
the momentum after impact when solving the a — ¢ impact
first and py, is the other option, where we solve for the b — ¢
impact before solving the a — ¢ impact. Figure [5] shows the
values taken by £ as we varied €. An expected minimum exists
at & = 7w, which corresponds to a grazing impact. Somewhat
less intuitive is the minimum at 7w /2, which tells us that when
the impact configuration is such that 6 = 7/2 the simulation
has no indeterminacy in its solution.

3

B. TREX

The second system we investigated is the tailed running
mechanism (TREXE]) in Fig. @ The model is inspired by the
geometry of several legged locomotors, such as the RHex
[7]l, IMPASS [5] and several others [3]], [4]], [[6]. The system
consists of a two part body, two articulated legs and a tail. The
two knee joints and the joint between the two parts of the body
are modeled as linear torsional springs and dash pots. The
actuators are located at the hips. The tail is connected rigidly
to the posterior body segment. The configuration variables for
this system are

T
q= [xv Y, 97 YL, YL, PR, VR, <)OT] )

which represent the position and the orientation of the anterior
body, the left hip and knee angles, the right hip and knee angles

3 The name was chosen due to the geometric similarity between our
mechanism and a commercially available dinosaur toy [45].

10

Fig. 6: The schematic of the two-dimensional TREX model used in simulation.
The articulations are at the hips, knees and tail. The degrees of freedom consist
of the Cartesian coordinates of the main body x and y together with all the
angles ¢, 0 and ~, as shown. The floor is assumed to be horizontal and
positioned at y = 0.

and the tail angle. We fixed the densities of the body and
limbs and the section area of the limbs to reasonable values—
the body density is that of water, 1g/cm?, the density of the
limbs is that of carbon fiber, 2¢g/ c¢m3, and the cross section
of the limbs was assumed to be 1.25¢m?—while leaving the
leg segment lengths and radii of the two bodies as design
variables. In order to enforce a tapering shape and reduce the
number of variable parameters, we chose the length of the tail
to be a function of the body radii

3, .2 12
73+ r3rg + V2+/rird + 193

2 2
rHT—rs

Lt = —(r1 +12),
which imposes that the tail length be inversely proportional
with the ratio of the two radii.

The mechanism drive was generated through external forc-
ing at the hips, implemented as described in detail in [36], [41]],
[42], [44]. The values of the forces were chosen by a standard
PD controller with gains K, = 10° and K, = 10*. Coulomb
friction was also added into the model for this system, in order
to facilitate its moving forward. Friction was implemented by
adding an external force in each independent tangent direction
at the contact point. The coefficients of these forces are found
using the maximum dissipation principle [46] which gives rise
to a constrained extremization problem that we solved using
standard derivative-free optimization methods at every time
step.

In configurations similar to the one shown in Fig. [0] the
system would undergo a simultaneous impact across two
manifolds: the tip of the tail and the tip of one of the legs.
For these configurations we can calculate the angle between
the two manifolds, and, according to Sec. E if this angle is
/2 the indeterminacy of the outcome will be zero. However,
picking a random configuration and set of parameters such that
the two contacts are established will, most likely, return a non-
orthogonal pair of manifolds. This is not hard to imagine, since
the two manifolds themselves depend on the configuration and
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Fig. 7: The running robot model (TREX) that we used in order to illustrate the
results of this paper. Both systems are presented in a stance in which double
impact is occurring. The model on the right has parameters chosen by hand
as being reasonable. Its configuration and design parameters act as an initial
condition for an optimization to generate the system and configuration on the
left. The exact parameters and configuration variables for the two systems are
also shown (see Table Ej)

their dot product is defined through the kinetic energy metric,
which also depends on the inverse of the mass matrix, and
hence on the configuration.

We assume that most of the energy lost through impact
comes from dissipation in the knee joints and that a relatively
small amount goes into permanent deformation of either the
robot or the ground. Thus we model all impacts as elastic
and expect some degree of exponentially decaying chatter-
ing. When the chattering becomes faster than the time step
frequency, we assume we have reached Zeno behavior and
consider that impact plastic, in effect taking away the rest of
the energy that would be lost through very high frequency—
and probably not modelable—motion in the dampers.

In order to test that our results presented in this paper
would have usefulness in gait and mechanism design, we
performed the following simulation. First, we chose a random
configuration of the robot at the time of simultaneous impact,
such that both the tail and the right foot were touching the
floor simultaneously. We made sure that the contact manifolds
were not orthogonal under the kinetic energy metric and
labeled the configuration along with the design parameters
to be the unoptimized system. Next, we used a classic root
finding algorithm for underconstrained systems in order to
find a nearby configuration and set of parameters for which
the dot product between the two manifolds of contact is zero:
this is the optimized system. The two systems are presented in
Fig.[7]and their parameters can be seen in Table|[[] Furthermore,
we also considered a system with parameters identical to the
optimized system but with a initial stance: both the legs were
straight at the knee and 180° out of phase at the hips.

For both the optimized gait and the initial gait we raised the
mechanism 17c¢m from the ground and used the PD controller
at the hips to keep the robot in the same configuration
until the moment of impact—at which time the controller
applied torque, spinning the legs counterclockwise in order to
create forward movement. During this first interaction several
simultaneous impacts occur, and we have a choice of which
manifold to solve for first: the leg or the tail. In the first run
through we chose the index order for the contact manifolds
based on the argmin (w;, pi),. On the second run through,
however, we reversed this order, effectively using argmax
instead of argmin for every impact. The parameters that we
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Fig. 8: A coordinate-independent measure of the indeterminacy in momentum
is plotted for two gaits of the optimized mechanism: the optimized gait, and
the initial gait, in which both legs are straight at the knee and 180° out
of phase with each other. The measure of indeterminacy was chosen in an
analogous way to that in Sec. We solved simultaneous impacts in
each copy of the mechanism by choosing a different order of reflections. The
normed distance between the momenta of the two mechanism versions at each
time point is then normalized by the kinetic energy at that time.

considered and their values for both the unoptimized and
optimized system are shown in Table [l

The difference in behavior between the optimized and the
initial case is presented in Fig. [§] which shows an indetermi-
nacy measure for each system based on the normalized uncer-
tainty of the momentum over time. The indeterminacy for the
optimized gait is more than five orders of magnitude smaller
than that of the initial gait, suggestive of an improvement in
the modelability of the simultaneous impact.

VIII. CONCLUSION

We have shown how the geometry and configuration of a
rigid body system at the time of simultaneous impact affects its
sensitivity to initial conditions, when a propagative rigid body
impact model is used. The measure of sensitivity is obtained
from the inner product between the contact manifold normals
at the impact configuration, and is related to the uniqueness of
solutions under the propagative model—existence of solutions
was also shown for the case of two simultaneous impacts. We
optimized two example systems—one analytically, the other
numerically—to minimize the sensitivity during a simultane-
ous impact. Both optimized and non-optimized versions of the
numerical model were simulated using a time stepping scheme
based on variational integrators, and significant sensitivity
improvement was shown between the two cases.
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TABLE I: Design parameters, configuration variables, and their values for both the optimized and unoptimized TREX systems. The largest change occurs in
@R, which is the right hip angle.

[1]

[2

—

[5]

[6]

[7

—

[8

—

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21

Configuration variables + Rest angles for torsional springs

Design parameters
System x Yy 0 oL YR YL TR oT r1 ro lu I (u,v),
(em)  (cm)  (rad) (rad) (rad) (rad) (rad) (rad) || (cm) (cm) (cm)  (cm)
Initial 0 1238 578 5.13 1.99 5.24 5.24 0 4 8 10 1.65 x 1073
Optimized 0 13.69 592 4.79 2.85 5.71 5.67  -0.19 6.69 422 781 9.86 —2.28 x 1077
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APPENDIX

Lemma 1: Given a sequence {w;} which is minimal with
respect to some momentum p~, we must have that w; #*
w1 for all 5.

Proof: We prove this by reductio ad absurdum: suppose
there exists a j such that w; = w,, ;. We have then that
I'(w;)[(wji1) = I'*(w;) = I. This means that we can write:

pt=p [[T(w:)=p" Hsz H D(wy),
i=1

k=j+2
which implies that the subsequence {wj} of {w;} with
elements w; and w;;; removed also generates a feasible
momentum. Thus, the sequence {w;} cannot be minimal. W
Lemma 2: Given p € T;.Q and a sequence of trans-
formations I'(w;) with w; € {u,v} that map p to ps
p[[, T'(w;), we always have that

)+ Pn(p

HF W),

Proof: Tt follows from their definitions that T and N are
complementary, such that T x N = T.%. Q. Thus, we can write

pr=%2r(p

pr =2r(pr) + Pn(py)-

Let us look at the first term

Pr(pf) =Pr [pHF(Wi)]
:@T{[@T +9})N ]HF Wl } (32)

From the definition of T and we have that all transfor-
mations that reflect across either the u or the v plane leave
vectors in T unchanged. Thus, we can say that

HF w;) = Pr(p) € T. (33)
Similarly, we have that
N(P) HF(Wi) =Py PHF(Wz‘) eN. (34)
i i

Substituting (33) and (34) into the right hand side of (32) and
using the orthogonality of T and N, we obtain

Pr(ps) = Pr(p) (35)
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An identical argument gives the following result for y(py):
p) [[T(w)).

The statement of the lemma follows directly from and

(39). [

Lemma 3: Let p,u,v,r € N such that r = and

Pn(py) = (36)

u+v
lutvll,

Given the above we have

u # +v. Let v = arcsin(r,u),.
that p is feasible iff ‘

(p,1), = [pll, cos. (37)

Proof: We start by noting that when ~ # 0—this is true
since we assume u and v are not collinear—several useful
relations hold:

(u,v)_ = —cos2y,

g
[u+v|, =2siny,

and
(o, w), + (P, v)y

2sin7y

(p,r), =

We first prove the forward implication. Note that the
feasibility conditions together with already give us a
lower bound by guaranteeing that (p,r), > 0. Since p €
span{u, v} we can write

(38)

p=au+bv, abeR.

The norm of p can be expressed as

Ipll, = Va2 — 2abcos 2y + b2,
and the feasibility conditions become

a—bcos2y >0,
b—acos2y >0,

which, in turn, imply
absin® 2y — 2 (a2 + b2) cos 2y > 0.

Several trigonometric manipulations show that the previous is
equivalent to

(a+ b)2 sin® v > cos? v (a2 — 2abcos 2y + b2) .
The right hand side can be written in terms of the norm of p:
(a+b)?sin?y > cos? |Ip]2
We can also write
<pau>g + <p7v>g -

which, after squaring, gives

(p.w, + (p.v),)”

2(a + b) sin? 4,

4sin? 5 = (a+b)° sin* .
Putting it together, we have
2 2
(p,1); > cos®v|pll,

which proves the forward implication in our lemma.
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Now, for the reverse implication, we assume and want
to show that p is feasible. Following the last few step of the
forward proof, we can show that is equivalent to

(p,u), +(p,v), = [Ip|,sin27.

We want to show that both (p,u), and (p,v), are positive.
Let u; = u— (u,v), v be the projection of u onto the plane
normal to v. Using this notation, we write

(P, V) + (Pyw)y + (P, V), (u,v), = Pl [Juell
which, after some algebra, becomes

o lIpllg lhaelly = {p,ue),

>0

- )

(p.v),

where the last inequality holds due to the fact that an inner
product is always less than the product of the vector norms.
Using an identical argument we show that (p,u), > 0. The
two statements together are equivalent to feasibility. [ |
Lemma 4: For any minimal sequence {w;} we have that

2sin?

(ri,ro), = cos(2iy),
where, as in Lemma [4] v = arcsin (ro, u), = arcsin (ro, v)
i
and r; = 1o [[;_, I'(w;).
Proof: We show this using mathematical induction and
proving that, when wg = u

g

_ [ sin[(2k +1)~] CWE_1 =V
(re, ), = { —sin[(2k — 1)y] :wip_1=1u (392)
_f —sin[(2k—1)y] twi_1=vV
{rh, v)y = { sin[(2k + 1)7] CWp_1=1u (396)
(r, r0>g = cos(2k~) (39¢)

for Vk > 0. A symmetric result holds when wy = v, such that
remains unchanged. For & = 0, before any reflections
are applied, we have that

(ro, 11>g = sin(y),
(ro,v), =sin(),
<I‘0,I‘0>g = ||r0||g =1

For k = 1, we make use of the consequence of Lemma |1| by
observing that {w; } must consist of alternating elements. This
means that w; = u and r1 = roI'(u). We calculate
2
(r1,w), = (rol'(w),u), = (ro,w), — 2 (ro, u), [lully
= sin(y) — 2sin(7)
= - Sin(fY)’

(r1,v), = (rol'(u),v), = (ro,v), — 2(ro,u), (u,v),
= sin(vy) + 2sin(7y) cos(27)
= sin(3v),

(r1,ro), = (rol'(u), ro), = [roll, — 2 (ro, w), (u,ro),
=1 —2sin?(y)
— cos(24),

thus showing the first step of the induction proof when wy =
u. The argument is symmetrical for the case when wy = v.

14

Next, we assume that holds for k and show that it also
holds for k£ + 1 under the assumption that w;_; = u . We
start with

(e ), = (1, ), —2 {1, ), [, = —sinf(2k+1)7]
—sin{[2(k + 1) — 1]y}

We then show that

<rk+1vv>g = <rk’v>g — 2(ry, u>g <u7v>g
= —sin[(2k — 1)) + 2sin[(2k + 1)7] cos(27)
=sin{[2(k + 1) + 1]y}.

Finally, we have

(Trt1,10), = (rk; o), — 2 (rx, w), (u,ro),
= cos(2ky) — 2sin[(2k + 1)7] sin(y)
= cos[2(k + 1)7].

A symmetric argument holds under the complementary as-
sumption that wy_; = v. Thus, our inductive proof is finished,
and we have showed that

(rm, r0>g = cos(2n7). (40)

|

Lemma 5: For two contact manifolds described by their

normals u # =4v, and any infeasible momentum p with
(u,p), < ({v,p), <0, we have that

pr=pl' ()T (v) =pI(v)I (u) is feasible 41)
iff
(u.v), = 0. @)

Proof: Suppose that holds. We then have that

(pow), (u,v),v = (p,v), (W V), u, VpeThQ.

Since we assume that u # v, the only way in which (A)
will hold for any p is if

=0.

(u, V>g

Conversely, assuming (@2)), we can write
ps =pl(wIl(v)
=pl(w) —2(pl'(u),v),v
—p—2(p,w), u—2(p,v),v+4(pu), (uv),v
=p— 2 (<pau>gu+ <p,V>g V)
= pl(v)['(w).
The symmetry of the result in u and v assures us of the
commutativity of the I'(u) and I'(v). The feasibility of py
is given by the following:
<pf7u>g = <pau>g -2 <p7u>g = <pau>
(ps,v), =P v), —2(p,v), = —(P,V)

920,
0

vV 1V

g - 3

g

Thus, the statement has been proven.
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