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Hilbert’s Space-filling Curve for Regions with Holes

Siddharth H. Nair!, Arpita Sinha? and Leena Vachhani®

Abstract— The paper presents a systematic strategy for
implementing Hilbert’s space filling curve for use in online
exploration tasks and addresses its application in scenarios
wherein the space to be searched obstacles (or holes) whose
locations are not known a priori. Using the self-similarity and
locality preserving properties of Hilbert’s space filling curve,
a set of evasive maneuvers are prescribed and characterized
for online implementation. Application of these maneuvers in
the case of non-uniform coverage of spaces and for obstacles of
varying sizes is also presented. The results are validated with
representative simulations demonstrating the deployment of the
approach.

I. INTRODUCTION

Investigations on space filling curves began when
George Cantor proved that there exists a bijective map
between any two finite-dimensional manifolds. The
continuity of such maps, however, was a mystery until
E. Netto demonstrated that a bijective map between two
finite-dimensional manifolds of different dimensions is
necessarily discontinuous. All was not lost though- in
1890, Peano relaxed the bijectivity condition of such maps
and discovered a continuous surjective mapping from the
unit interval I = [0,1] to the unit square Q = [0,1]%
This paved the way to designing continuous maps to fill a
higher dimensional space from a lower dimensional space[1].

Space filling curves are primarily used in applications
that require visiting various regions in a space. Numerous
works pertaining to use of various space filling curves for
optimization exist in literature ([2], [3], [4]). The advantage
of using Hilbert curve lies within the very nature of the map.
The images of points in the domain of the map neighbour
each other thereby lending a sense of “anticipation” during
implementation. This inspires the use of the curve for robotic
applications. In [5], a robot motion planning problem is
introduced and uses the Hilbert space-filling curve to
uniformly cover a space with a single agent or multiple
agents coordinating with each other. In [6], space filling
curves are used to decompose an arbitrary shape using
space filling curves and thus use the technique for planning
a path for a tool to machine the desired shape. In [7], the
strategy presented in [5] is implemented using an aerial
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robot for search operations and also uses Moore’s space
filling curve (a modification of the Hilbert curve). In [8], a
tree is used to arrange nodes for uniformly covering the unit
square. The nodes are numbered according to that of the
Hilbert curve. In [9], a new approach is proposed to search
this coverage tree to explore a space non-uniformly via an
aerial agent by using the self-similarity of the Hilbert curve
(which is a fractal curve) to define various levels for the tree.

Literature pertaining to exploration for robots using space
filling curves in spaces with holes/obstacles is sparse. A
rigorous solution to search a space with holes is offered in
[10] with applications in sensor networks by mapping any
search domain canonically to a torus and design space-filling
trajectories on this torus. However, the method requires
knowledge of the structure of the search domain beforehand
and involves complex computations. An investigation
of a technique that uses feedback and traces Hilbert’s
curve would support sensor based autonomous strategies.
Therefore, this paper addresses tracing the Hilbert curve
when holes of fixed size in the space are present, but their
locations are sensed online. A modification of the map of
the Hilbert’s curve is also presented for robotic exploration
applications. It shall be seen that a simplified approach can
be derived by examining the properties of the Hilbert curve
and its map. Furthermore, this is extended to the case of
non-uniform coverage of spaces along the lines of [9] and
for obstacles of varying sizes.

The rest of the paper is divided into five sections. Section
introduces the map that defines the Hilbert curve. Section
highlights the underlying properties of the Hilbert curve
and addresses the obstacle avoidance problem while Section
extends the formulation for non-uniform coverage of
spaces. Section [V] presents an algorithm for online imple-
mentation of the prescribed strategy with simulation results
followed by concluding remarks in Section

II. PRELIMINARY ON HILBERT’S SPACE-FILLING CURVE

Hilbert [1] was the first to propose a geometric generation
principle for the construction of a space filling curve which
can be encapsulated by the following procedure:

e The unit interval I is mapped continuously onto
the unit-square Q. I is partitioned into four equal
sub-intervals and Q is partitioned into four congruent
sub-squares, so as to map the same continuously onto
one of the sub-squares. This is repeated for the all the
sub-intervals and sub-squares.



o When repeating this procedure ad infinitum, the sub-
squares are arranged in such a way that adjacent sub-
squares correspond to adjacent sub-intervals hence pre-
serving the overall continuity of the mapping.

Hence, the nth order Hilbert curve divides the space Q
and interval I into 4™ subsets. Now, the map f : I — Q
is defined such that every ¢t € I corresponds to a unique
sequence of nested closed squares that shrink into a point
of Q, the image f5(t). Let us represent ¢ € I in quaternary
form as t = 0.4¢1¢2¢3q4-... = L + B + % + ... where
gi = {0,1,2,3}. The map fr, : I — Q is called the
Hilbert space-filling curve and is defined as a composition
of transformations as f5,(t) = lim,,_ oo Ty, Ty, -1y, Q Where
the transformations 7}, acting on Q are defined as
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For example, the image of the point ¢ = 0.,203 lies in the
(3 4+ 1)th sub-square, of the (0 + 1)th sub-square, of the
(2 4 1)th sub-square of Q (see Figure [1).
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Fig. 1: t = 0.4,203 mapped into the unit square via Hilbert’s
map

Also note that any finite quaternary represents the starting
of an interval and so,

f(0.4q192-.qn) = Ty Ty, (ph_}go TS’(Q))

~ Ty, || 0

Defining eg; = No. of times Ty occurs before Ty, (mod2)

and e3; = No. of times T3 occurs before T, (mod2),
Equation (1) simplifies (see [1]) to

f(0.4q192-.qn) =
j=1

1oy res,
57 o™ 3 hy,

The implementation of a Hilbert curve is done via its
approximating polygon which is obtained by mapping 4"
nodes of the form 0, 7+, 2, ...4L to Q and joining the
images using straight lines. Details of this analysis can be
found in [1]. An implementation of a second order Hilbert

curve is shown in Figure [2a]

(a) (b)
Fig. 2: Figures |2al and |2b| are Hilbert’s curves obtained using

and (2) respectively.

For our application, we shift the nodes to the centres of
the sub-squares and thus modify the map slightly as follows.

n—1
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where Fj = [‘1‘], P = [%}, Fy = [%} and Fs = [%}
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An implementation of the modified map is shown in
Figure 2b] This modification is motivated for exploration
tasks where it would make sense to identify each node
(sub-square) in the search space by its centre and not by its

edges which could be shared with other nodes.

This implementation of the Hilbert’s curve is restricted
to all euclidean spaces that are homeomorphic to a unit
square (polygons, circles etc.). The nodes obtained for the
unit square can be mapped back into the actual space via the
homeomorphism ([11]).

III. EXTENSION OF HILBERT’S SPACE-FILLING CURVE
TO DOMAINS WITH BLOCKED NODES

Consider a problem wherein a searching agent traverses
the space Q along the nodes of the nth order Hilbert curve
and there is a single “obstacle” node of the same resolution.
The presence of the obstacle leaves that particular node
unaccessible or blocked. The space is “unknown” in the sense
that the searching agent starts from a corner of the search
space and only the boundary of the search space is known. It
is also assumed that information about the occupancy of the
neighbouring nodes (the sub-squares touching the sub-square
occupied by the agent) is available to the agent. Before
introducing the obstacle avoidance strategy, some definitions
and properties of the Hilbert curve are presented.

Definition 1: The nodes that enter or leave one of the (n—
1)th order Hilbert curves in the nth order Hilbert curve are
defined as corner nodes of the nth order Hilbert curve.
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Fig. 3: Corner points for a third order Hilbert curve

Lemma 1: The corner points of a Hilbert curve of order
n are given by t = 0.4q; 00...0 or ¢t = 0.4q; 33...3.
n—1 0s n—1 3s

Proof By definition, intervals of the form [4-, 2-F] map

into one of the four (n — 1)th order Hilbert curves in the
nth order Hilbert curve. Therefore, the corner node that
enters the (n — 1)th order Hilbert curve is simply the first
of the 4"~ ! nodes within the same. Hence, it is given by
Similarly, the corner node that leaves the (n — 1)th order
Hilbert curve is the last node of the same and is given by
t= 0.4(]133...3. [ |

Note that each lower order Hilbert curve within the
nth order Hilbert curve also contains corner nodes defined
in a similar fashion. In general, each corner node (of every
order) is given by t = 0.491¢2..gn, Where ¢, = 0 or 3.
Hence, all nodes that enter or leave the first order Hilbert
curve are the corner nodes. Every other node lies between
two corner nodes and due to the locality preserving property
of the Hilbert curve, lie adjacent to each other. This is an
important consequence which helps in devising a simple
strategy to avoid an obstacle that is placed on a non-corner
node as shown in Figure fa] which depicts a first order
Hilbert curve. In essence, the locality preserving property
([12]) of the Hilbert curve helps us to skip the blocked node.
However if the blocked node is a corner node, it may not be
possible to simply skip it because the sub-square containing
the next node may not intersect the sub-square containing
the node preceding the obstacle node. Figure [4b] illustrates
the point in the case of a second order Hilbert curve where
simply skipping the blocked node is not possible without
disturbing the sequence of nodes dictated by map for the
Hilbert curve.

Now, we characterize the factors that come into play when
deciding on a maneuver to avoid an obstacle node when
placed on a corner node for a Hilbert curve of any order.
Additionally, we also assume that the first node and the last

Corresponding subsquares

J do not intersect |

(a) Evasive maneuver for
when the obstacle lies on a
non-corner node

(b) A case where skipping
the blocked node is not pos-
sible.

Fig. 4

node of the nth order Hilbert curve are unblocked.

Theorem 1: For the nth order Hilbert curve, let
en = n (mod 2) and the entering and exiting corner nodes
be given by t = 0.4(¢q1 + 1)00...0 and ¢ = 0.4¢133...3
respectively where ¢q; = 0,1, 2. Then, the required evasive
maneuver to avoid an obstacle on a corner node depends
solely on the type of corner node (i.e, entering node or
exiting node).

Proof Consider the corner node which leaves the (¢; + 1)th
sub-square of the nth order Hilbert curve. It is denoted by
t = 0.4q133...3. The succeeding and preceding nodes are
t1 = 0.4(g1 + 1)00...0 and t5 = 0.4¢133...2. These points
are mapped into Q as follows.
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Since hg = [8] and F = [%] we have
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The evasive maneuver to be chosen depends on the
distance between the nodes preceding and succeeding the
obstacle node. Hence, we find f5(t1) — frn(t2).

1 1
Ja(t1)—fr(t2) = F(HquFo + Hg, F2) + §(hq1+l — hgy)
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Defining e4, = ¢1 (mod2),
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Noting the fact that term QL is merely a scaling factor, the
distant between the nodes, || f(t1) — fu(t2)||2, is primarily
dependent on ¢; and e,. A similar analysis for the second
type of corner node(entering a Hilbert curve of the same
order) yields a similar result. |

The same result can be obtained for lower order
curves within the given Hilbert curve because of its
self-similarity property. Consider a general corner node
t = 0.4q1q2..gymmm..m where m is either 0 or 3. This
node enters or exits an (n — p)th order Hilbert curve
and so, the “effective” order of the Hilbert curve is
Nefr = n—p-+ 1. So, to decide on an evasive maneuver, we
obtain ey, ,,, qp, and m (which is known to the agent due
to position feedback). Table [I| depicts the various evasive
maneuvers that can be employed for various scenarios to
avoid an obstacle placed on a corner node. By identifying
the dependancy of the maneuver on e,, ¢, and m, the
various scenarios can be identified canonically and hence,
presents the possibility of designing strategies for evasion
that can be used online. Considering the assumption that the
first node and the last node of the nth order Hilbert curve
are unblocked, the number of combinations of (e, g,, m)
is given by

2 x 4 x 2 — 4 =12
~— ~—
€n qp m Start and end points

The various combinations are categorized together based
on the distance between the current node and the node

succeeding the obstacle. The evasive strategies are presented
in two forms :

« in a discrete setting wherein the strategy prescribes the
sequence of nodes to be traversed to evade the obstacle
and not disturb the sequence of nodes as prescribed by
Hilbert’s map.

« in a continuous setting wherein the piecewise linear map
that defines the approximating polygon for the Hilbert
curve is modified.

For example, for a third order Hilbert curve if the position
of the obstacle is ¢ = 0.4110, then p = 2 and n.sy =
3 —2+1 = 2. Therefore, e, ,, =0, ¢ =1, m=0 and
the prescribed maneuver is the last maneuver of the table.
The paths described in Table |lj can be implemented using
mobile robots by fitting splines along the nodes as is shown
in [13]

Theorem 2: Using the evasion strategies enlisted in Table
a mobile agent traverses every available node of a Hilbert
curve of any order in the space Q if an obstacle is placed
on any node (barring the first and last node of the curve) of
the same.

Proof We proceed to prove the above statement using
induction on the order of the Hilbert curve.

Consider the first order Hilbert curve. Since the obstacle
can’t be placed on the starting or ending node, it has to lie
on a non-corner node as shown in figure [@ Hence, the
map is modified to just skip the blocked node and the rest
of the nodes are visited. Hence, the proposed hypothesis
holds true for n = 1.

Suppose that the hypothesis holds true for n = k.
Now, the Hilbert curve of order n = k + 1 is composed of
4 units of kth order Hilbert curves. There are two possible
cases for the position of the obstacle node:

Case 1: The obstacle node occupies a node which is neither
the first nor the last node of one of the four kth order
Hilbert curves.

From definition [} this would imply that obstacle doesn’t
lie on the corner nodes of (k + 1)th order Hilbert curve
and the solution for n = k is used for which the hypothesis
holds true.

Case 2: The obstacle node occupies a corner node of
the (k + 1)th order Hilbert curve that isn’t the starting or
ending node of the same.

In this case, (e,,p,m) are obtained and the corresponding
maneuver is performed. Note that the evasive maneuvers
preserve the sequence of nodes everywhere except the first
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TABLE I: Evasive maneuvers for obstacle avoidance.



order Hilbert curve within which the obstacle node lies.
However, every node in this first order Hilbert curve is
visited prior to resorting back to the correct sequence of
nodes and thus every available node in the (k + 1)th order
Hilbert curve is visited.

Since the hypothesis holds true for n = k£ + 1 as well,
we conclude using the principle of mathematical induction
that using the evasion strategies enlisted above, a mobile
agent traverses every available node of a Hilbert curve of
any order in the space Q if an obstacle is placed on any
node (barring the first and last node of the curve) of the
same. |

Corollary 1: The evasive strategies proposed in Table
can accommodate multiple obstacles nodes provided that no
two obstacles share an edge of their respective sub-squares.

This modification of Hilbert’s curve can be used online for
exploration tasks by robotic agents. A specific example that
could draw benefits from this algorithm is using ground bots
for demining abandoned mine fields. After locating a search
space, an array of ground bots can be left to explore the area
and detonate the mines. Due to the modification of the map of
the Hilbert’s curve to accommodate for obstacles, detonated
bots act as blocked nodes and are accordingly avoided by
the remaining bots.

IV. NON-UNIFORM COVERAGE

Non-uniform coverage using a Hilbert’s space filling curve
has been studied in [9]. The region to be searched is divided
into regions of varying “interest”. The “interesting” regions
are to be searched with a higher resolution (more finely, using
a higher order Hilbert’s curve). This is done by searching
the space using coverage trees ([14]) where the root node is
the centre of the square space and the subsequent levels are
the nodes of Hilbert’s curves of increasing order. Such a tree
structure requires the use of a self-similar, locality preserving
curve because when zooming in or out, the successive nodes
need to be close to each other([12]). This neccesitates the use
of a space-filling fractal like the Hilbert’s curve. Moreover, it
is shown in [9] that using the Hilbert’s curve for ordering of
nodes in the coverage tree leads to more efficient coverage
solutions. We extend their algorithm to accommodate for
spaces with obstacles using the evasion strategy presented
earlier (Table [[) via a simple modification. For the Shortcut
Heuristic proposed in [14], when the next node belongs to a
Hilbert’s curve of different order, the we first go to the parent
or child node of the current node to match the order of the
next node. Then, we proceed to the next node unless if it

is an obstacle node; in which case, the proposed obstacle
avoidance strategy can be used because the current node
(after ascending or descending accordingly) and the obstacle
node are of the same order. This modified strategy can also
be used to avoid multiple obstacle nodes of orders different
from that of the nodes dictated by required search resolution.
The implicit assumption is that the obstacles are nodes of
Hilbert’s space-filling curve and it is also assumed that no
two obstacles are adjacent.
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Fig. 5: Using Hilbert’s curves for ordering of nodes in the
Coverage Tree for non-uniform coverage

V. IMPLEMENTATION AND SIMULATIONS

The algorithm presented in the earlier sections can be used
for online implementation because no apriori information
about the location of the obstacle nodes is required. For
non-uniform coverage, the resolutions with which particular
sections of the space are to be searched can be relayed to
a ground agent by an aerial agent working in tandem in
real time. The prescribed strategies are deployed in various
situations to demonstrate its effectiveness in figure [6] The
various cases are tested for n = 2(e,, = 0) and n = 3(e,, =
1) for both types of corner nodes for the cases p = 0, 1.
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Algorithm 1 Implementation of prescribed algorithm.

Repeat for every node
Input n, node_is_obstacle, obstacle_size

Memory ¢

t=1t+ g

Node(:) = 8 ; %% Initializing vector of nodes
q(1 :m) =[00..0]; %% Vector to store digits
Jj=mn

%% Extracting digits

While{j > 1}{

q(4) = 4(4771t — floor(47=1t)) — 49t + floor(47t)
i=j—-L}

%% Mapping node via the Modified Hilbert Map

k =n;

While{k > 1}{

if {k=n}{

Node(:) = F(q(n)):}

else{
Node(:) = T}(x)Node(:);}
k=k-1;}

% %Obstacle Avoidance

if node_is_obstacle{

if Node(:) is a corner node{

n = obstacle_size;

Calculate Node(:) at t — 2, ¢, t+ 2, t+ 2, t+ 2, t+ 1
Obtain (ey,,,,p,m) at ¢t and perform evasion maneuver;}
else{

Not a corner node, so just skip the node;}}

else{

Make the robot go to the node;}
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(a) Employing enlisted
strategies in a case with
multiple obstacles.

(b) Non-uniform coverage
in a space with obstacles.

Fig. 7

If the obstacles are far enough, the prescribed evasive

strategies yield good results as shown in Figure [7a] Cases
like this could appear in real life situations like demining
of mine fields as mentioned earlier. Furthermore, application
of the algorithm for non-uniform coverage of a space with
obstacles of varying sizes is presented in Figure [7b]

VI. CONCLUSION

The paper suggested a change in the map for plotting
Hilbert’s curve via its approximating polygon for use in
exploration tasks. In the following sections, the problem
of using the Hilbert’s curve for exploring a space with an
obstacle/a hole was considered and an inductive solution to
the same was obtained using the locality preserving and self-
similarity property of the Hilbert curve. The prescribed strat-
egy is suitable for online implementation because location of
the obstacle is not required apriori. The algorithm can be also
used during non-uniform coverage operations. Future work
entails consideration of arbitrary obstacles occupying a space
to develop strategies for path planning and searching.
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