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Unsupervised Contact Learning for Humanoid Estimation and Control

Nicholas Rotella1, Stefan Schaal1,2 and Ludovic Righetti2,3

Abstract— This work presents a method for contact state
estimation using fuzzy clustering to learn contact probability
for full, six-dimensional humanoid contacts. The data required
for training is solely from proprioceptive sensors - endeffector
contact wrench sensors and inertial measurement units (IMUs)
- and the method is completely unsupervised. The resulting
cluster means are used to efficiently compute the probability
of contact in each of the six endeffector degrees of freedom
(DoFs) independently. This clustering-based contact probability
estimator is validated in a kinematics-based base state estimator
in a simulation environment with realistic added sensor noise
for locomotion over rough, low-friction terrain on which the
robot is subject to foot slip and rotation. The proposed base
state estimator which utilizes these six DoF contact probability
estimates is shown to perform considerably better than that
which determines kinematic contact constraints purely based
on measured normal force.

I. INTRODUCTION

Control and estimation approaches for legged robots rely on

assumptions about the contact state of the feet. Floating-

base inverse dynamics resolves underactuation by projecting

the dynamics into the contact constraints, forcing the end-

effector acceleration to be zero [1]. Locomotion on rough

terrain focuses on stabilization through footstep adaptation

but ignores the difficulties presented by contact constraint

violations [2]. Similarly, legged odometry for base state

estimation assumes the pose of an endeffector in contact

is constant [3]. Methods have been introduced to robustify

kinematics-based base state estimation, including computing

a contact point with minimal instantaneous velocity [4] and

outlier detection to discard measurements during slip [5],

however few consider relaxing the contact assumptions by

estimating contact quality in parallel.

Contact estimation is a broad topic which has been inves-

tigated in various contexts. Petrovskaya et al.[6] were among

the first to consider multi-contact force control scenarios

in which a manipulator interacts with the environment at

points other than its endeffector. Del Prete et al. investigated

the effect of contact point estimation error on force control

for a humanoid with a capacitive skin [7]. Similar work

was done by Manuelli et al. [8] to estimate contact points
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without a tactile skin by fusing proprioceptive sensing with

the dynamic model.

While estimation of contact points has been thoroughly

studied, the problem of determining the quality of contacts

is less well-defined. One aspect of contact quality is the

determination of contact constraint directions for a given

task. Ortenzi et al. [9] computed endeffector constraints for a

manipulator in contact with a surface using only kinematics,

and Nozawa et al. [10] recently presented a similar method

for estimating environment constraints in humanoid control

tasks.

For humanoids, the quality of a contact is largely de-

termined by friction. Hoepflinger et al. [11] investigated

foothold quality using unsupervised learning. Terrain eleva-

tion map samples were clustered to find a set of primitives

which were evaluated for foothold robustness by computing

the friction coefficient through exploratory force control.

This allowed for prediction of contact quality from visual

features for planning. While Focchi et al. [12] employed

offline friction estimation through for a quadruped walking

on steep slopes, Ridgewell et al. [13] introduced methods for

online friction estimation and control adaptation. While the

friction coefficient determines linear slip, the center of pres-

sure (CoP) boundaries determine rotational slip/roll. Most

controllers assume that the support polygon is the same shape

as the foot, however this is invalid on rough terrain where

line and even point contacts are encountered. Wiedebach et

al. [14] presented one of the only approaches for online CoP

boundary estimation during terrain exploration.

In contrast to approaches which indirectly compute contact

quality by computing friction and CoP bounds, we wish to

avoid contact models by directly estimating the probabil-

ity of an endeffector being constrained in each of its six

DoFs independently. In this direction, Hwangbo et al. [15]

developed a Hidden Markov Model which uses kinematic

and dynamic models to predict contact transitions without

force sensing. This one-dimensional approach requires little

sensing, however it does not estimate contact quality of the

contact nor does it evaluate the classifier in an estimator.

Camurri et al. [16] recently developed a method for contact

probability estimation using logistic regression. This one-

dimensional classifier learns the normal force threshold at

which the contact state transitions, ignoring lateral forces

under the assumption that sufficient friction exists to pre-

vent slip. The resulting probability per endeffector is used

to weight the corresponding measurement in a base state

estimator, and a heuristic for modulating the measurement

variance to filter out the effect of impacts is introduced. Al-

though this estimator performs better than one using a fixed

threshold, the classifier requires significant effort to train -
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ground truth is obtained manually as the contact sequence

which minimizes estimation error. Further, all results shown

are for walking on flat ground where slipping does not occur.

Finally, only one dimension (normal force) is considered.

In contrast, we develop a contact estimator which:

• is completely unsupervised and model-free

• uses only common, proprioceptive sensors (endeffector

force/torque and IMU)

• estimates the probability of contact in all six endeffector

DoFs independently

We test this contact estimator for use in base state estima-

tion by modulating the measurement uncertainty associated

with each endeffector DoF using the corresponding estimated

probability of contact. The following section details the

motivation and setup for this approach.

II. BACKGROUND

A. Motivation

A difficult question arises when designing an estimator for

contact state: what does it mean for an endeffector to be

in contact? Most approaches treat the endeffector as fixed

to contact surface if the normal force exceeds a chosen

threshold, however contact truly occurs when the assumed

endeffector constraints are satisfied - these statements are

not always the same. The six DoF endeffector constraints are

equivalent to enforcing that the feet cannot slip or rotate. An

endeffector will not slip if the static friction constraint

√

F 2
x + F 2

y ≤ µx,yFz (1)

is satisfied, where F is the contact force and µx,y is the

translational coefficient of friction. Likewise, the endeffector

will not rotate if the CoP and rotational friction constraints
[

−τy/Fz

τx/Fz

]

≤
[

CoPx

CoPy

]

(2)

|τz| ≤ µzFz (3)

are satisfied, where τ is the contact torque, µz is the

rotational coefficient of friction and CoPx, CoPy denote

the contact support polygon bounds which are functions of

contact surface geometry.

Since a sufficiently-high normal force Fz would guarantee

that inequalities (1-3) are satisfied regardless of the other

contact wrench dimensions, most estimation approaches sim-

ply threshold Fz [3], [17], [18]. However, this is restrictive

especially on rough terrain where low friction and difficult

surface geometry make slip and rotation likely even at high

normal force values. It also results in a one-dimensional

contact state estimate as in [15], [16], whereas the contact

constraint is truly six-dimensional.

B. Sensing for Clustering

As discussed in the previous section, contact constraints are

invalid when an endeffector slips and/or rotates, which is

caused by a violation of friction and/or CoP constraints; these

constraints depend on the contact wrench and surface proper-

ties (friction coefficients and geometry). Rather than estimate

these properties, we seek to cluster measured contact wrench

data to directly learn constraint probabilities.

All experiments in this work are performed in the SL

simulation environment [19]; we add simulated random-

walk biases bF and bτ , along with simulated Gaussian noise

processes wF and wτ , to the true force F and torque τ
measurements:

F = F̄ + bF + wF (4)

τ = τ̄ + bτ + wτ (5)

As low-cost IMUs become available, humanoids are being

augmented with additional sensing to improve estimation

[20], [21]; in order to give structure to the clustering problem,

we add a simulated IMU to each endeffector. We model the

sensor outputs subject to simulated random-walk biases and

thermal noise processes [22] as

aIMU = RIMU
W (aW + g) + ba + wa (6)

ωIMU = RIMU
W ωW + bω + wω (7)

where a ∈ R3 and ω ∈ R3 are the linear acceleration and

angular velocity, respectively. RIMU
W ∈ SO(3) is the rotation

from world to IMU frame and g is gravity. Sensors are

assumed to be aligned with the endeffector frame, however

their positions relative to this frame origin are not required.

TABLE I: Simulated sensor noise standard deviations. Cor-

responding values for 1kHz sampling rate are shown.

Continuous Discrete (1kHz)

σθ 0.00000316rad/
√
Hz 0.0001rad

σF 0.06325N/
√
Hz 2N

σbF 0.0001N/s/
√
Hz 0.00316N/s

στ 0.00316Nm/
√
Hz 0.1Nm

σbτ 0.0001Nm/s/
√
Hz 0.00316Nm/s

σa 0.00078m/s2/
√
Hz 0.02467m/s2

σba 0.0001m/s3/
√
Hz 0.00316m/s3

σω 0.000523rad/s/
√
Hz 0.01653rad/s

σbω 0.000618rad/s2/
√
Hz 0.01954rad/s2

III. CLUSTERING SETUP

Because we seek a continuous measure of contact quality

rather than a classifier, we employ Fuzzy C-means (FCM)

clustering which results in the soft partitioning of a dataset by

allowing each data point to belong to more than one cluster

[23]. This is accomplished by minimizing the cost

Np
∑

i=1

Nc
∑

j=1

wm
i,j ||xi − cj ||2, m > 1 (8)

where Np is the number of data points xi, Nc is the chosen

number of clusters, wi,j is the membership weight of point

i belonging to cluster j and m is a constant which can be

used to tune the amount of cluster overlap.

This cost is minimized in a manner similar to k-means

clustering; first, initial membership weights are randomly

assigned. Then, cluster means are computed as



cj =

∑Np

i=1
wm

i,jxi

∑Np

i=1
wm

i,j

(9)

after which new membership weights are computed with

wi,j =
1

∑Nc

k=1

(

||xi−cj||
||xi−ck||

)
2

m−1

(10)

Eq. (9-10) are iterated until the membership weights con-

verge. Since
∑Nc

j=1
wi,j = 1, we treat wi,j as the probability

of point i belonging to cluster j.

We use an FCM implementation from the Python library

Scikit-learn [24] with NC = 2 clusters (corresponding to

contact and no contact states) and default stopping param-

eters. The “fuzziness” constant is set to m = 1.2 which is

the default value in most libraries. Increasing this factor can

amplify the effect of slip on contact probability, however it

also reduces the probability of contact when no slip occurs.

Each data point xk ∈ R7T is a time series of the past

T = 20 samples (at our control rate, 0.020s). We include

a short time-history to improve estimation response time;

optimization of this time window is left to future work.

Clustering is performed independently for the six DoF

{x, y, z, α, β, γ} of each endeffector, using the full con-

tact wrench and the corresponding IMU dimension from

{aIMU
x , aIMU

y , aIMU
z , ωIMU

x , ωIMU
y , ωIMU

z }. The constraint

in the local endeffector frame y direction uses, for example,

data points of the form

xk = (11)

{{Fxk−T
, · · · , Fxk

}, {Fyk−T
, · · · , Fyk

}, {Fzk−T
, · · · , Fzk},

{τxk−T
, · · · , τxk

}, {τyk−T
, · · · , τyk

}, {τzk−T
, · · · , τzk},

{aIMU
yk−T

, · · · , aIMU
yk

}}

Data from sensors with noise added as in Sec. II-B is

collected and used unfiltered for clustering. Preprocessing

entails dimension-wise normalization of all xk (to ensure that

the scale of dimensions such as Fz do not dominate) followed

by taking the absolute value (since slip is bi-directional).

IV. BASE STATE ESTIMATION

In order to evaluate the utility of the proposed contact

estimator, we incorporate it into a base state estimation

framework which relies on stationary contact assumptions.

In previous work [25] we have implemented a kinematics-

based estimator which fuses IMU data and relative base

pose measurements to estimate the floating base state of a

humanoid. The estimator measurements take the form

sp,i = R(q)(pi − r) + np (12)

sz,i = exp(nz)⊗ q ⊗ z−1

i (13)

where R(q) denotes the rotation matrix corresponding to the

estimated base quaternion q, pi and zi are the estimated foot

i position and quaternion respectively, and np and nz are

position and orientation measurement noise vectors (see [25]

for more details). In most approaches for legged robots, the

variances of np and nz are set to constant, tuned values

and the measurements are dropped from the filter when the

endeffector loses contact, determined based on a fixed normal

force threshold.

In contrast, in this work we set the contact state (which

determines active measurements) and measurement noise

variance using the output of the probability estimator. When

the probability of contact vector Pcontact ∈ R6 exceeds

Pi = 0.5 in every dimension i, we consider the endeffector

in contact and use the corresponding measurements. Further,

we set the measurement noise covariance matrix as

Σ = E[nnT ] = r2I + α(I − diag(Pcontact)) (14)

where r is the nominal measurement noise standard deviation

(sometimes tuned separately for position and orientation) and

α is a scaling factor for the probability-dependent term (we

choose α = 1 for simplicity). The covariance thus converges

to its constant value as in [25] when Pcontact → 1. This is

conceptually similar to the approach of [16] but requires less

tuning and considers all six contact dimensions.

Since clustering is performed in the endeffector frame, the

covariance must be transformed into the base frame where

the base state estimator measurement is expressed. This is

accomplished with

Σ̂ = RΣRT , R = blockdiag(RBase
Endeff , R

Base
Endeff ) ∈ R6×6

where RBase
Endeff ∈ R3×3 is the rotation from endeffector to

base frame (a function of kinematics and joint angles only).

V. EXPERIMENTS AND RESULTS

We perform a number of experiments to evaluate the perfor-

mance of the proposed estimator and analyze its properties.

All experiments are performed in the SL simulator [19]

during a 60 second rough terrain walking task with simulated

joint angle, IMU and contact wrench sensor noise as in

Table I; noisy data is used for clustering, contact estimation

and base state estimation. Control is computed using non-

noisy sensor data and ideal base state estimation, however

we investigate using the proposed contact estimator for

closed-loop control in Sec. V-F. Walking velocity commands

were recorded from user input and played back, producing

repeatable trajectories across experiments. The rough terrain

consists of raised patches with a friction coefficient of 0.4
(half the normal friction in SL). To account for the effect

of noise and slight contact differences, Root-Mean-Squared

Error (RMSE) for experiments in this section was computed

by averaging performance across ten trials.

A. Contact Clustering Results

Sensor data was recorded from the rough terrain walking task

and clustered offline as detailed in Sec. III (clustering takes

on the order of a few seconds). The cluster means were then

used to compute contact probability during a similar walking

task; the results are shown in Fig. 1.

We focus on one contact cycle in the lower portion of Fig.

1 to investigate the clustering results more closely. Slip first
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Fig. 1: The top portion shows the six-dimensional contact probability resulting from a rough terrain walking task (top) along

with the measured IMU linear acceleration and angular velocity (middle) and measured contact force and torque (bottom).

The portions in gray denote contact according to the probability estimator (all Pi > 0.5). The lower portion of the plot

shows a zoomed view of one contact cycle with several distinctive contact events highlighted for discussion in Sec. V-A.

occurs in the y direction at (1), causing the corresponding

contact probability to lag behind the other dimensions. Ro-

tational slip in α is also present during loading, however on

a smaller scale. Slip then occurs in x because the foot is

not sufficiently loaded while the robot tries to create force

in −x to decelerate the center of mass; once Fz increases,

there is sufficient friction to stop slipping and a negative Fx

is sustained from (2) on. A drop in Fz during single support

at (3) again causes slip, leading to a decrease in contact

probability in all dimensions. Finally, slip in x again occurs

at (4) as the foot is being unloaded. These are only a few

highlights of the complex contact interaction shown, however

they aid in understanding where/why slip can occur.

B. Base State Estimation Threshold

Since we evaluate the proposed contact probability estimator

against a typical humanoid base state estimator with a fixed

normal force threshold for contact [25], we first perform

experiments to optimize the chosen threshold. Performance is

evaluated by computing the RMSE for the base position and



yaw angle as these four states are always unobservable with-

out adding exteroceptive sensing. The normal force thresh-

olds {10N, 40N, 100N, 200N, 400N} were tested, with per-

formance averaged across ten trials each; the results are

shown in Fig. 2. The RMSE mostly decreased for increasing

thresholds, with 200N resulting in the best performance. A

threshold of 400N removes the double support period from

estimation entirely, resulting in more error. We use a fixed

threshold of 200N for the baseline estimator in experiments

in the remainder of this work.
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Fig. 2: Root Mean Squared Error (RMSE) for estimation of the

unobservable base position (top) and yaw (bottom) for different

normal force thresholds.

C. Clustering-Based State Estimation

We evaluate the base state estimator detailed in our previous

work using both a fixed normal force threshold (as is

commonly done) and using the proposed clustering-based

contact probability estimator for the same rough terrain

walking task. The base state estimators are identical other

than the measurement noise covariance matrix modulation

of Eq. (14). As shown in Fig. 3, using the contact clustering

for base state estimation considerably reduces the RMSE.
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Fig. 3: Root Mean Squared Error (RMSE) for estimation of

the unobservable base position (top) and yaw (bottom) for the

contact probability-based base state estimator and the fixed

normal force threshold base state estimator.

D. Clustering Training Data

In order to test how well the clustering-based estimator gen-

eralizes to different types of terrain, we performed clustering

using data from two different tasks: one which walks over

rough terrain (as in all other experiments) and one which

walks in place on flat ground. We then tested both contact

estimators with separate base state estimators on the same

rough terrain walking task; the resulting estimation errors

are shown in Fig. 4.
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Fig. 4: Root Mean Squared Error (RMSE) for estimation of the

unobservable base position (top) and yaw (bottom) for different

training datasets.

Surprisingly, the estimator trained on flat ground walking

data performs roughly equally-well, despite having been

trained on a much different dataset than was used for testing.

This is a desirable characteristic because obtaining data from

rough terrain walking on a real robot is difficult, especially

without accurate state estimation already in place.

We also wish to test how well the clustering-based esti-

mator generalizes to different gaits. We perform clustering

using data from flat ground walking in varying directions

using three different gaits. The default gait used for walking

in this work has a single support period of 0.5s and a double

support period of 0.05s; we denote this the fast gait. We also

perform clustering on slow gait data (single support period

of 1.0s, double support period of 0.5s). Finally, we cluster

using data from a mixed gait which varies throughout the

task between fast and slow. We then test the clustering-based

estimators for these gaits for a mixed gait walk-in-place task

on a pacth of rough terrain (varying the gait during a normal

walking task over rough terrain is too unstable). The results

are shown in Fig. 5.

The main conclusion which can be drawn from this study

is that the best performance is obtained using the clustering

trained on the mixed gait, as expected. However, the slow

gait clustering generalizes much better than the fast gait

clustering. The fixed-threshold base state estimator (denoted

BSE) also performs quite well for this task, however because

this was a walk-in-place there was mainly foot rotation and

minimal slip; as seen from other tests, the clustering-based

base state estimator performs much better when slip occurs.

Further investigation into the effect of training data gait is

left to future work.

E. IMUs for Clustering Versus Estimation

As motivated in Sec. II-B, the use of endeffector IMU data

in addition to contact wrench data essentially supervises the

clustering problem, since the accelerometer and gyroscope

capture linear and rotational slip. We expect this sensor
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Fig. 5: Root Mean Squared Error (RMSE) for estimation of the

unobservable base position (top) and yaw (bottom) for walking

in place on a patch of rough terrain with a varying gait using

clustering trained on three different gait types as well as for

the fixed-threshold base state estimator (BSE).

data to embed structure in the resulting clusters, meaning

that IMUs should not be required when running the contact

estimator afterwards. To test this, we cluster using data points

as in Eq. (11) but perform clustering-based state estimation

with both a) the full data points including IMUs and b)

without IMUs (dropping the last portion of Eq. (11)). The

resulting estimation errors are shown in Fig. 6.
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Fig. 6: Root Mean Squared Error (RMSE) for estimation of

the unobservable base position (top) and yaw (bottom) with

and without using IMU data for online contact estimation.

Although the RMSE is slightly lower in all dimensions

when using the IMU data, performance is not considerably

changed when it is removed. This is a very useful prop-

erty because it means that the endeffector IMUs can be

removed after initially collecting data for clustering. While

some robots are designed with endeffector IMUs, most are

not; using this clustering method would involve temporarily

attaching IMUs as in [20], [21]. This is reasonable for train-

ing, however attaching these sensors permamently involves

designing rigid mounts, routing cables and protecting them

from collisions with the environment. The ability to remove

IMUs after training the estimator is highly advantageous

when working with real hardware.

F. Clustering-Based Contact Estimation for Control

While the primary focus of this work has been on the

development and evaluation of a contact probability estimator

for use in base state estimation, the proposed method has

applications in humanoid control as well. The most direct

application is the use of an improved base state estimator in

a walking controller such as the one used to generate data

in this work.

This walking controller uses a simplified model in a

model predictive control framework to plan center of mass

and endeffector trajectories, which are tracked using an

optimization-based inverse dynamics controller similar to

[26]. The estimated base pose is crucial in computing both

dynamic model parameters and feedback control for endef-

fector tracking. In the attached video, we demonstrate that

the use of our contact probability estimator in this context

improves control considerably, allowing the robot to walk on

the rough terrain for a longer time before falling due to an

accumulation of base state estimation error.

VI. CONCLUSIONS

The clustering-based contact probability estimator presented

in this work estimates the quality of contact using only

proprioceptive sensor data in a completely unsupervised

approach. Unlike previous works, this estimator provides the

probability of satisfying endeffector contact constraints in all

six dimensions independently. Use of this method in a base

state estimation framework was shown to considerably lower

estimation error as compared to a base state estimator which

uses a fixed normal force threshold and noise parameters.

The proposed method also exhibits favorable properties

which allow it to be used without endeffector IMUs after

training and generalize to new terrain. Finally, it was shown

that use of this improved base state estimator for closed-

loop inverse dynamics control allows the robot to remain

stable during rough terrain walking for longer. Future work

will include further analysis of the properties of this contact

estimator as well as a more low-level control application

in which endeffector constraints in inverse dynamics are

smoothly varied according to the contact probability.
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