
ar
X

iv
:1

70
9.

08
12

6v
1 

 [
cs

.R
O

] 
 2

3 
Se

p 
20

17

Self-supervised learning: When is fusion of the primary and

secondary sensor cue useful?

G.C.H.E. de Croon

June 6, 2021

Abstract

Self-supervised learning (SSL) is a reliable learning mechanism in which a robot enhances
its perceptual capabilities. Typically, in SSL a trusted, primary sensor cue provides supervised
training data to a secondary sensor cue. In this article, a theoretical analysis is performed on
the fusion of the primary and secondary cue in a minimal model of SSL. A proof is provided
that determines the specific conditions under which it is favorable to perform fusion. In short,
it is favorable when (i) the prior on the target value is strong or (ii) the secondary cue is
sufficiently accurate. The theoretical findings are validated with computational experiments.
Subsequently, a real-world case study is performed to investigate if fusion in SSL is also
beneficial when assumptions of the minimal model are not met. In particular, a flying robot
learns to map pressure measurements to sonar height measurements and then fuses the two,
resulting in better height estimation. Fusion is also beneficial in the opposite case, when
pressure is the primary cue. The analysis and results are encouraging to study SSL fusion
also for other robots and sensors.

1 Introduction

As robots move more and more into dynamic real-world environments, learning mechanisms are
getting increasingly important. However, learning robots are held back by multiple issues, includ-
ing: potential unreliability of the learning process, long learning times, and the requirement of
intensive human supervision. In light of these issues, an interesting learning mechanism is Self-
Supervised Learning (SSL). It focuses on the augmentation of a robot’s perception capabilities.
Typically, in SSL the robot uses a trusted, primary sensor cue to train a secondary sensor cue
with supervised learning. If learning is successful, the secondary sensor will give similar outputs to
the primary sensor cue. For example, the car that won the grand DARPA challenge, Stanley [13]
used a laser scanner as the primary sensor to classify areas ahead as being part of the road or not.
It used a color camera as the secondary sensor, and learned a mapping from colors to the class
labels “road” or “not road”. Since the camera could evaluate the terrain much further into the
distance than the (range-limited) laser scanner, Stanley could drive faster. This was important
for winning the race.

SSL has the following beneficial properties: (i) the robot always keeps access to the trusted
primary cue, which can be used to ensure the safety of the system during and after learning,
(ii) learning is supervised, which means that it is relatively fast and can build on an enormous
amount of research in machine learning, (iii) since the supervised targets are provided by a robotic
sensor, no human supervision is required and an ample amount of training data is available for
the machine learning algorithms such as deep neural networks (e.g., [9, 7]).

The main reason to perform SSL is that the two sensor cues have complementary properties.
The example of Stanley showed that the secondary cue may have a longer range than the primary
cue (see also [10, 11, 4, 12, 8]). In the literature, other types of complementarities have been
studied as well. For instance, in [1] a robot first judges terrain traversability by means of haptic
interaction, and uses SSL to learn this same capability with the camera. Another interesting

1

http://arxiv.org/abs/1709.08126v1


Figure 1: Illustration of fusion in self-supervised learning, using the case study from this article.
The robot uses a trusted primary sensor cue (sonar height measurements in this case) to train a
secondary sensor cue (pressure measurements). After training, the robot has learned to transform
the raw pressure measurements to height estimates expressed in meters. These height measure-
ments are then fused in order to get more accurate estimates than with sonar alone. In the article
it is investigated under which conditions fusion is indeed beneficial compared to using only the
primary sensor cue.

example is given in [6], in which a flying robot selects a landing site by making use of optical
flow from an onboard camera as the primary cue. The secondary sensor cue consists of image
appearance features, which after learning allows the robot to select a landing site without moving.

Until now, studies on SSL have kept the two sensor cues separated. For example, Stanley
did not fuse close-by vision-based road classifications with the laser-based classifications. Fusion
in SSL raises several questions. For example, given that the secondary cue is learned on the
primary cue’s outputs, will its estimates not always be (much) worse? Will the estimates of the
secondary cue not be statistically (too) dependent on the primary cue? Given that a ground truth
is not available, can the robot determine the uncertainty of the secondary cue reliably enough for
successful fusion? The answers to these questions cannot only come from empirical studies on SSL
fusion. To answer them in a more generic way, a theoretical investigation is required.

The main contribution of this article lies in a theoretical analysis of the fusion of the primary
and secondary cue in SSL. Employing a minimal model of SSL, a theoretical proof is provided
that (1) shows that fusion in SSL can indeed lead to better results, and (2) for the given model
determines the conditions on the estimation accuracy of the two cues under which fusion is indeed
beneficial (Section 2). An additional contribution is the verification of the proposed SSL fusion
scheme on robotic data (Section 3). In particular, SSL is applied to a scenario in which a drone
has to estimate its height based on a barometer and a sonar sensor (see Figure 1).

2 Fusion in self-supervised learning

2.1 A minimal model for fusion in self-supervised learning

Figure 2-(a) shows the graphical probabilistic model used in the proof. The robot has two obser-
vations, xg and xf . From these observations, it will have to infer t, which is not observed and
therefore shaded in gray. The graphical model shows that xg and xf are independent from each
other given t. Not shown in the figure is the type of distributions from which the variables are
drawn. For our minimal model, we will have: t ∼ N{0, σ2

t }, xg ∼ N{t, σ2
g}, and xf ∼ N{t, σ2

f}.
Figure 2-(a) is a standard graphical model as can be found in the machine learning literature
(e.g., [2]). Typically, it represents the assumptions that the designer and hence the robot has
on the structure of the observation task. For the given ground-truth model, the optimal fusion

estimate would be t̂ = argmaxt P (t|xg, xf ) =
σ2

gxf+σ2

fxg

σ2
g+σ2

f
+σ2

t

, but this supposes that the robot knows

all parameters.
In self-supervised learning, the robot does not have any prior idea of the distribution of the

complementary sensory cue. And often, it may not have any idea on the distribution of variable

2



t

xg

xf yf

t

xg

xf

t

xg

xf

(a) (b) (c)

Figure 2: Graphical representation of the studied probabilistic self-supervised learning model. (a)
The model assumed in the proof. (b) The model from the robot’s viewpoint, showing its lack of
knowledge. The dashed lines indicate that the robot does not know how t and xf are distributed.
(c) The model showing the knowledge and assumptions on the part of the robot when performing
self-supervised learning. In particular, t and xf are still unknown, but the robot does make an
assumption about the distribution of yf = f(xf ), the secondary cue learned with self-supervised
learning.

to be estimated either. The reason is that both distributions will likely depend on the unknown
environment in which the robot will operate. We represent variables for which the robot does not
know the distribution by means of dashed lines in the graphical model. Figure 2-(b) shows that
in our minimal model, the robot does not know the distributions of t and xf . It does know that
xg ∼ N{t, σ2

g}.
Self-supervised learning has the robot learn a mapping f from the complementary cue xf to

the trusted cue xg. This leads to a new variable yf = f(xf ). For this proof, we will have the robot
fuse this variable with xg by making an assumption on the distribution of yf . Hence, in Figure
2-(c), yf is shown with a solid line. The dependency of yf on xf passes through the function f ,
which in our minimal model is linear with a single parameter a: f(xf ) = a xf . In our case, the
robot will assume that yf ∼ N (t, σ2

yf
). The assumption that yf is centered on t is, as we will see

further below, incorrect, given the ground-truth model. For fusion, the robot needs to know the
variance σ2

yf
. Since it does not know the distributions of t and xf , it will estimate σ2

yf
on the basis

of the data encountered. The main difficulty here is that the robot evidently does not know what
t is for each sample, so the robot will have to use a proxy for the real σ2

yf
. In our minimal model,

the robot will use σ2
yf |xg

as a proxy for σ2
yf
. Finally, please note that the fact that f is learned

with the help of xg does not mean that yf is conditionally dependent on xg. Obviously, given xf

or t, yf is independent of xg.

2.2 Proof under which conditions fusion of yf and xg leads to better

estimates than xg alone

Here we will give a closed form solution to the conditions under which a fused estimate t̂fuse leads
to a lower expected squared error than the estimate relying only on xg, denoted by t̂g. We first
determine what the estimates are for the two different cases. Please note that in both cases, the
robot does not know the distribution of t. So, when only using xg, t is estimated by optimizing
the likelihood:

t̂g = argmax
t

{p(xg | t)} = xg, (1)

where we made use of the fact that the robot knows that xg ∼ N{t, σ2
g}. When fusing both cues,

t is estimated by optimizing the likelihood of both yf and xg:

t̂fuse = argmax
t

{p(yf , xg | t)} =
σ2
gyf + σ2

yf |xg
xg

σ2
g + σ2

yf |xg

. (2)

In the next subsections, we will use our knowledge of the ground-truth model to determine the
associated expected estimation errors. The crux is that this knowledge allows us to predict what
function f and what estimate of σ2

yf |xg
the robot will converge to given sufficient data.

3



2.2.1 Expected squared error when using xg

Here, we determine the expected error when the robot only uses xg:

E[(t̂g − t)2] = E[x2
g − 2xgt+ t2], (3)

which we can split in the following three parts. First:

E[t2] =

∫

t

p(t)t2dt = σ2
t , (4)

where
∫

t
is a shorthand for

∫∞

t=−∞. Second:

E[x2
g ] =

∫

t

∫

xg

p(xg, t)x
2
gdxgdt =

∫

t

p(t)

∫

xg

p(xg|t)x
2
gdxgdt = σ2

g + σ2
t , (5)

where we made use of p(xg|t) being Gaussian,
∫

xg
p(xg|t)x2

gdxg = t2 + σ2
g . Third:

E[−2xgt] = −2

∫

t

∫

xg

p(xg, t)xgtdxgdt = −2

∫

t

p(t)t

∫

xg

p(xg|t)xgdxgdt = −2

∫

t

p(t)t2dt = −2σ2
t .

(6)
The three parts together lead to the expected squared error:

E[(t̂g − t)2] = σ2
t + σ2

g + σ2
t − 2σ2

t = σ2
g . (7)

2.2.2 Expected squared error when fusing xg and yf

Here we determine the expected error if the robot fuses yf with xg. The procedure is as follows.
First we express yf as a function of xf . Then we can retrieve the expression of the fused estimate
t̂fuse and finally calculate the corresponding expected error E[(t̂fuse − t)2].

The function f maps xf to xg. In the case of our ground-truth model, Figure 2-(a), what
would the parameter a converge to in f(xf ) = a xf if the robot has enough data? Well, we know
that xg ∼ N{t, σ2

g}, so E[xg |t] = t. So after many samples, we would expect the function to try
and map xf to t. The answer to the question then lies in the calculation of E[t|xf ]. Following [2]
(p. 93), given the distributions p(t) = N{0, σ2

t } and p(xf |t) = N{t, σ2
f}:

p(t|xf ) = N

{

σ2
t xf

σ2
f + σ2

t

,
σ2
fσ

2
t

σ2
f + σ2

t

}

, (8)

implying that E[t|xf ] =
σ2

t

σ2

f
+σ2

t

xf and hence:

a =
σ2
t

σ2
f + σ2

t

. (9)

We have discussed before that for fusion, the robot will assume that yf is normally distributed
and centered on t. This is actually incorrect, as yf = axf , with a ∈ 〈0, 1〉. This mapping leads to
yf ∼ N{at, a2σ2

f}, which is not centered on t. Please remark that this actually makes yf a better
estimate of t than xf itself, as yf implicitly takes into account the prior distribution of t.

Next we express the variable σ2
yf |xg

in terms of σt, σf , and σg. From [2] (p. 89) follows:

σ2
yf |xg

= var(yf )−
cov(yf , xg)

2

var(xg)
. (10)

The variance of xg is:
var(xg) = E[(xg − E[xg ])

2], (11)

4



E[xg ] =

∫

xg

p(xg)xgdxg =

∫

t

p(t)

∫

xg

p(xg |t)xgdxgdt =

∫

t

p(t)tdt = 0, (12)

because t ∼ N{0, σ2
t }. Hence, var(xg) = E[x2

g] = σ2
g + σ2

t (Eq. 5). The variance of yf is:

var(yf ) = E[(yf − E[yf ])
2], (13)

E[yf ] =

∫

yf

p(yf )yfdyf =

∫

t

p(t)

∫

yf

p(yf |t)yfdyfdt =

∫

t

p(t)atdt = 0, (14)

with a from Eq. 9. Therefore, the variance of yf simplifies to:

var(yf ) = E[y2f ] =

∫

yf

p(yf)y
2
fdyf =

∫

t

p(t)

∫

yf

p(yf |t)y
2
fdyfdt (15)

=

∫

t

p(t)(σ2
y + a2t2)dt = σ2

y +

∫

t

p(t)a2t2dt = a2σ2
f + a2σ2

t =
σ4
t

σ2
f + σ2

t

. (16)

Finally, the covariance between yf and xg is:

cov(yf , xg) = E[(yf − E[yf ])(xg − E[xg])] = E[yfxg] =

∫

yf

∫

xg

p(yf , xg)yfxgdxgdyf (17)

=

∫

t

p(t)

(

∫

yf

p(yf |t)yfdyf

)(

∫

xg

p(xg|t)xgdxg

)

dt =

∫

t

p(t) (at) (t) dt = aσ2
t =

σ4
t

σ2
f + σ2

t

. (18)

Putting all of this together, we have:

σ2
yf |xg

=
σ4
t

σ2
f + σ2

t

−
(σ8

t )

(σ2
t + σ2

f )
2(σ2

t + σ2
g)
. (19)

The formula for the robot’s expected square error is:

E[(t̂fuse − t)2] = E[t̂2fuse − 2t̂fuset+ t2], (20)

where we will write t̂fuse as αyf + βxg , with α and β the factors from Eq. 2. The expectation in
Eq. 20 can be split up in three parts. First:

E[t̂2fuse] = E[α2y2f + 2αβyfxg + β2x2
g] = α2(a2σ2

y + a2σ2
t ) + 2αβ(aσ2

t ) + β2(σ2
g + σ2

t ), (21)

where we made use of Eqs. 15, 17, and 5. Second:

E[−2t̂fuset] = −2

∫

t

∫

yf

∫

xg

p(yf , xg, t)(αyf + βxg)tdxgdyfdt (22)

= −2

∫

t

p(t)t

(

∫

yf

p(yf |t)αyfdyf +

∫

xg

p(xg|t)βxgdxg

)

dt = −2

∫

t

p(t)t (αat+ βt) dt = −2(αa+β)σ2
t

(23)
And third: E[t2] = σ2

t , since t ∼ N{0, σ2
t }.

Putting these formulas together into Eq 20 and simplifying, gives:

E[(t̂fuse − t)2] =
σ2
gσ

2
t (σ

2
gσ

4
f + σ2

gσ
2
fσ

2
t + σ6

t + σ2
gσ

4
t )

(σ4
t + σ2

gσ
2
t + σ2

fσ
2
g)

2
. (24)

5



Table 1: Computational results verifying the theoretical proof.
σ2
t σ2

g σ2
f Error primary (theory) Fusion error (theory)

6.25 1 1 0.98 (1.00) 0.47 (0.49)
6.25 1 16 1.02 (1.00) 1.11 (1.15)
0.25 1 1 1.00 (1.00) 0.18 (0.18)
0.25 1 100 1.00 (1.00) 0.25 (0.25)

2.2.3 When fusion is better than just using xg:

In order to prove that a robot employing self-supervised learning can obtain better estimates of t
than when using only xg, we only need to show that there are conditions in which the expected
error of Eq. 24 is smaller than that of Eq 7. Given σ2

t , σ
2
g , σ

2
f > 0, the expected fused error is

smaller if:
σ2
t ≤ σ2

g , (25)

or else (σ2
t > σ2

g) if:

σ2
f < −

1

2

2σ4
gσ

2
t + 3σ4

t σ
2
g + σ6

t +
√

17σ4
gσ

8
t + 18σ2

gσ
10
t + σ12

t

σ4
g − σ4

t

(26)

Intuitively, these conditions correspond to (i) t having a strong prior (Eq. 25) or (ii) xf being
sufficiently informative on t (Eq. 26). The first case of the strong prior may not be easy to
understand. It helps to think of the fact that the learned secondary cue yf takes the prior into
account, while xg does not (as we assume that the robot does not know anything about the prior
distribution of t). Therefore, fusion with yf is more advantageous if the prior is stronger.

To summarize, while the robot wrongly assumes yf to be centered on t and does not know the
real σ2

y, it can outperform just using xg under the conditions in equations 25 and 26.

2.2.4 Computational Verification

The theoretical findings above were verified with computational experiments, in which a data set
D = {(t1, xg1, xf1), . . . , (tN , xgN , xfN )} was generated according to the ground truth model from
Figure 2-(a). Then, the program first learned the parameter a of function f with least-squares
regression. Subsequently, it estimated σ2

yf |xg
by determining the variance of yf when xg is in the

interval of [−0.05, 0.05]. Finally, it fused the observations xg and yf according to Eq. 2.
The error is compared to that of using xg alone. Given a large enough N the results converge

to the values predicted in the theoretical analysis. For instance, with σ2
t = 6.25, σ2

g = 1, σ2
f = 1,

and N = 10, 000, we get a fused squared error of 0.47 (theoretical prediction 0.49). With xg alone
the error is 0.98 (theoretical prediction 1.00). The theoretical threshold on fusion not being useful
anymore is σ2

f > 11.57. Please note that this is a rather benign condition, as σ2
f can be more than

11 times as large as σ2
g in this case. Table 1 shows results for four different instances. The bottom

case illustrates that fusion helps if the prior is strong enough, even if σ2
f is high. The MATLAB

code is part of the supplementary material.

3 Case study: Height estimation with a barometer and

sonar.

In this section, we apply SSL fusion to a case study, in which a flying robot uses a barometer and
sonar to estimate the height. As human designers we know how these sensors relate to the height,
but in the case study we will assume that the robot only knows how to relate one of the sensors
to the height (assumed to be xg), and will regard the other sensor as the “unknown” xf . The
main goal of the case study is to see if fusion in an SSL setup can be beneficial in a real-world

6



case, which may not comply with the assumptions of the theoretical analysis. A scenario with two
scalar measurements was chosen in order to allow a direct comparison with the theoretical model.

3.1 Experimental setup

A Parrot AR drone 2.0 is used for gathering the experimental data. The drone is flown inside
of a motion tracking arena. It uses the open source autopilot Paparazzi ([5]) to log the relevant
sensor data, consisting of the pressure, the sonar readings, and the height provided by the motion
tracking system. The height from the Optitrack motion tracking system is considered the most
reliable of the three sensors and hence is used in this case as the ‘ground-truth’ value (t).

The sonar measurements can be directly used as primary cue. If the pressure measurements
are used as primary cue, they are mapped to a height estimate h′

P in meters with the following
formula:

h′
P =

RTs

Mg
log(

Ps

P
), (27)

where R = 8.31446 is the gas constant, Ts = 288.15 is the sea level temperature, M = 0.0289644
is the molar mass of the Earth’s air, g = 9.80665 the gravity, Ps = 101325.0 the sea level pressure,
and P the measured pressure. After this conversion to height, there is still an offset and scaling
factor due to the fact that the drone has not been flying in the exact circumstances represented by
the constants (at sea level for instance). Typically, this offset is taken into account by calibrating
the pressure measurement at take-off. Here, h′

P is mapped with a linear function to the Optitrack
height (on the training set). The resulting heights hP are then used as the target values in the
self-supervised learning, i.e., as the xg in the theoretical analysis.

Figure 3 gives insight into the data. The left plot shows the Optitrack ground truth height
(thick black line), the sonar (purple line), and the corrected barometer measurements when used
as primary cue, hP (dark yellow line). The right plot shows the untransformed pressure measure-
ments P . These ‘raw’ measurement values are used when the barometer represents the secondary
cue. The magnitude of these measurements already shows that the distribution of pressure mea-
surements is not centered at t, as assumed in the theoretical analysis.

0 50 100 150 200 250 300 350 400 450

Time

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

G
ro

u
n

d
 t

ru
th

 / 
so

n
ar

 / 
h

P
 (

m
)

Optitrack
Sonar
Pressure

0 50 100 150 200 250 300 350 400 450

Time

1.0239

1.024

1.0241

1.0242

1.0243

1.0244

1.0245

1.0246

1.0247

P
 (

P
a)

×105

Figure 3: Drone data. Left plot: height estimations from the Optitrack motion tracking system,
sonar, and barometer. Right plot: distribution of raw pressure measurements from the barometer.

The secondary cue is mapped to the primary cue with a machine learning method, which
performs regression on the training set. Here we use a k nearest neighbor approach, with k = 3,
so that possible non-linear relations can be captured (for instance from the raw pressure mea-
surements to the sonar height). Furthermore, in the experiment the standard deviation of xg is
assumed to be known - and is here determined with the help of the ground truth t from Optitrack
on the training set. The conditional standard deviation σyf |xg

is determined on the validation set,
only using the variables observed by the robot, yf (the secondary cue obtained with regression
function) and xg (the primary cue). For each condition, we perform N = 100 experiments on

7



Table 2: Main results of the SSL fusion experiment.
Mean Absolute Error (m)

Primary Primary (xg) Secondary (xf ) Fusion Successful fusion
Sonar 0.22 0.20 0.17 100%
Barometer 0.15 0.19 0.14 98%

the data. In each experiment, 80% of the data set is used for training, 10% of the set is used for
validation (determining the conditional standard deviation σyf |xg

), and 10% is used for testing.
For each experiment, we determine the mean absolute error of the primary cue xg, that of yf , and
their fusion.

3.2 Experimental results

There are two different experimental conditions: (i) the sonar is the primary cue and the barometer
the secondary cue, and (ii) vice versa. Table 2 shows the main results from the experiments. In
both conditions, the SSL fusion consistently gives (slightly) better results than just using the
primary cue.

Let us analyze the case where the sonar is the primary cue in order to see how well the
distributions of the involved variables correspond to the assumptions in our minimal model. Figure
4 (top row) shows the distributions of the Optitrack height (t), the error of the sonar height (xg−t),
and the error of the pressure-based height estimate learned with SSL (yf − t). The corresponding
means and standard deviations are: µt = 1.48, σt = 0.64, µg = −0.001, σg = 0.29, µyf

= 0.01, and
σyf

= 0.25. These numbers show that both the primary and secondary cue are centered on t, and
that the accuracy of the secondary cue is actually better than that of the primary cue (σy < σg).
We compared each distribution against a normal distribution that has the same mean and standard
deviation. The Chi-square values are 0.78, 0.35, and 0.03 for t, xg − t and yf − t, respectively,
confirming that the secondary cue indeed resembles its corresponding normal distribution most.
However, a randomized statistical test ([3]) shows that even the histogram of yf − t is unlikely to
come from the corresponding normal distribution (with a p-value of 8−4).

An analysis of pressure as the primary cue paints a similar picture. Two things are interesting
to observe though. The first observation is that in this condition, the secondary cue is less accurate
than the primary cue; σg = 0.19 and σy = 0.25. The second observation follows from the bottom
row of Figure 4, which shows the distributions when pressure is the primary cue. The right plot
shows the distribution of sonar as a secondary cue. The distribution, yf in this condition, seems
much more normally distributed than when sonar is the primary cue (top row). Indeed, the Chi-
square value is 0.002 for both the primary and secondary cue in this condition (still with a low
p-value of 10−5).

To summarize the findings of the analysis, the variables in the real-world experiment deviate
from the model’s assumptions of how they are distributed. Despite this, fusion still leads to better
results. It may be though that the threshold value differs from the theoretical one. This is akin to
using a Kalman filter when the involved distributions are not normal; The filter will most of the
time still give a reasonable result, but estimation optimality is no longer guaranteed. Interestingly,
this case study shows that the threshold expressed in Eq. 26 often cannot be validated. It would
for instance not be very useful to look at σf when pressure is the secondary cue, as it has wildly
different values from t. It may be better to express the threshold in Eq. 26 in terms of σyf

.
This can be done by using the relation σ2

yf
= a2σ2

f , with a defined in Eq. 9. If the terms on the

right-hand side of Eq. 26 are represented by the variable C, this leads to the threshold: σ2
yf

< a2C.

4 Conclusions

In this article, a theoretical analysis was performed under which conditions it is favorable to fuse
the primary and secondary cue in self-supervised learning. This analysis shows that fusion of the

8



0 0.5 1 1.5 2 2.5

Ground truth

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
O

cc
u

rr
en

ce

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Primary cue - ground truth

0

0.02

0.04

0.06

0.08

0.1

0.12

O
cc

u
rr

en
ce

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Secondary cue - ground truth

0

0.02

0.04

0.06

0.08

0.1

0.12

O
cc

u
rr

en
ce

-1 -0.5 0 0.5

Primary cue - ground truth

0

0.02

0.04

0.06

0.08

0.1

0.12

O
cc

u
rr

en
ce

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Secondary cue - ground truth

0

0.02

0.04

0.06

0.08

0.1

0.12

O
cc

u
rr

en
ce

Figure 4: Distributions of the relevant variables. Top row: Sonar is the primary cue. From left
to right: Distribution of the Optitrack groundtruth height t, distribution of the error of the sonar
primary sensor cue xg − t, and distribution of the error of the pressure-based height learned with
SSL, yf − t. Bottom row: Pressure is the primary cue. Left: Distribution of xg − t. Right:
Distribution of yf − t.

cues with the robot’s knowledge is favorable when (i) the prior on the target value is strong, or
(ii) the secondary cue is sufficiently accurate. When the assumptions of the analysis are valid,
the conditions for the usefulness of fusion are rather benign. In the studied model, the standard
deviation of the secondary cue can be more than ten times that of the primary cue, while still
giving better fusion results. Although the employed model is rather minimal, the result that fusion
can lead to better estimates extends to more complex cases, as is confirmed by the real-world case
study. However, violations of the assumptions will likely change the threshold on the secondary
cue’s accuracy.

Given that normal distributions approximate quite well various real-world phenomena, the
theoretical analysis may be applicable to a wide range of cases. Still, the generalization of the
main finding - that SSL fusion can give better results than the primary cue alone - to more complex
cases should be further investigated. To this end, future work could employ the current proof as a
template. Moreover, it would be interesting to apply SSL fusion to a more complex, relevant case
study than the one studied here. For instance, it would be highly interesting if SSL fusion could
improve the performance of complex senses such as robotic vision.

References

[1] José Baleia, Pedro Santana, and José Barata. On exploiting haptic cues for self-supervised
learning of depth-based robot navigation affordances. Journal of Intelligent & Robotic Sys-
tems, 80(3-4):455–474, 2015.

[2] C.M. Bishop. Pattern recognition and machine learning. Springer Science and Business Media,
LLC, New York, NY, 2006.

[3] P. Cohen. Empirical methods for artificial intelligence. MIT Press, Cambridge, MA, 1995.

[4] Raia Hadsell, Pierre Sermanet, Jan Ben, Ayse Erkan, Marco Scoffier, Koray Kavukcuoglu,
Urs Muller, and Yann LeCun. Learning long-range vision for autonomous off-road driving.
Journal of Field Robotics, 26(2):120–144, 2009.

9



[5] G. Hattenberger, M. Bronz, and M. Gorraz. Using the paparazzi uav system for scientific
research. In IMAV 2014, International Micro Air Vehicle Conference and Competition 2014,
2014.

[6] HW Ho, C De Wagter, BDW Remes, and GCHE de Croon. Optical flow for self-supervised
learning of obstacle appearance. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on, pages 3098–3104. IEEE, 2015.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[8] Kevin Lamers, Sjoerd Tijmons, Christophe De Wagter, and Guido de Croon. Self-supervised
monocular distance learning on a lightweight micro air vehicle. In Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on, pages 1779–1784. IEEE, 2016.

[9] Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[10] David Lieb, Andrew Lookingbill, and Sebastian Thrun. Adaptive road following using self-
supervised learning and reverse optical flow. In Robotics: Science and Systems, pages 273–280,
2005.

[11] Andrew Lookingbill, John Rogers, David Lieb, J Curry, and Sebastian Thrun. Reverse opti-
cal flow for self-supervised adaptive autonomous robot navigation. International Journal of
Computer Vision, 74(3):287–302, 2007.

[12] Urs A Muller, Lawrence D Jackel, Yann LeCun, and Beat Flepp. Real-time adaptive off-road
vehicle navigation and terrain classification. In SPIE Defense, Security, and Sensing, pages
87410A–87410A. International Society for Optics and Photonics, 2013.

[13] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,
M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband,
C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen,
P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney.
Stanley: The robot that won the darpa grand challenge. Journal of Field Robotics, 23(9):661–
692, 2006.

10


	1 Introduction
	2 Fusion in self-supervised learning
	2.1 A minimal model for fusion in self-supervised learning
	2.2 Proof under which conditions fusion of yf and xg leads to better estimates than xg alone
	2.2.1 Expected squared error when using xg
	2.2.2 Expected squared error when fusing xg and yf
	2.2.3 When fusion is better than just using xg:
	2.2.4 Computational Verification


	3 Case study: Height estimation with a barometer and sonar.
	3.1 Experimental setup
	3.2 Experimental results

	4 Conclusions

