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ABSTRACT 

Detecting moving vehicles and people is crucial 

for safe operation of UGVs but is challenging in 

cluttered, real world environments.  We propose a 

registration technique that enables objects to be robustly 

matched and tracked, and hence movers to be detected 

even in high clutter. Range data are acquired using a 2D 

scanning Ladar from a moving platform.  These are 

automatically clustered into objects and modeled using a 

surface density function.  A Bhattacharya similarity is 

optimized to register subsequent views of each object 

enabling good discrimination and tracking, and hence 

mover detection. 

1. INTRODUCTION 

Ladars have been used extensively for real-time 

mapping and navigation.  Stationary obstacles are 

readily detected and incorporated into a local map, 

enabling unmanned ground vehicles to plan paths and 

traverse cluttered environments, for examples see: 

(Langer et al. 1994; Lacaze et al. 2002; Thrun 2002; 

Wellington and Stentz 2004).  The focus is on detecting 

and avoiding stationary obstacles.  However the most 

important objects to avoid are other vehicles and people 

which often move.  But moving objects are much more 

difficult to detect. 

The goal of this work is to automatically detect 

movers, both vehicles and people, using a 2D scanning 

Ladar on a moving vehicle.  The two key components 

are to find objects in the scene and to analyze their 

motion.  We achieve the first with a simple region-

growing clustering of the hits.  To perform registration, 

we develop a technique that models object surfaces with 

a probability density model.  Models are registered and 

scored by optimizing a similarity measure based on 

these densities.  A discrete implementation enables fast 

convolution-based registration.  The similarity measure 

is also useful for resolving matching ambiguities and 

detecting occlusions.  

Related work in the area of mover detection 

includes that of (Biswas et al. 2002; Mertz et al. 2005).  

Biswas et al. develop a dynamic occupancy grid to 

model movers, but this is suitable primarily for slow 

movers in flat, indoor environments.  Mertz et al. can 

detect fast movers outdoors.  They group hits from laser 

line scanners into potential obstacles and track them.  

The major limitation is that 3D objects are represented 

by a single slice making both clustering and shape 

discrimination more difficult.  Our work seeks to 

leverage full 3D surfaces for better discrimination and 

tracking.  In this regard our work is related to 3D model 

matching techniques such as Iterative Closest Point 

(ICP) (Besl and McKay 1992) and its variants 

(Bernardini and Rushmeier 2000; Chen and Medioni 

1992; Huber and Hebert 2003; Rusinkewicz and Levoy 

2001).  ICP and variants suffer from being trapped by 

local minima unless started close to the correct solution.  

Also these methods are typically used to register 

overlapping regions of high-resolution depth maps using 

six degrees of freedom.  Our application is quite 

different since when movers are at large distances (near 

the limits of the Ladar), they are sampled very coarsely 

compared to their curvature and so may appear quite 

different in successive scans.  Also we wish to use 

constraints such as vehicles move horizontally on the 

ground.  Other registration methods that build a mesh 

(Bajaj et al. 1995) or assume an interpolated surface 

between points (Culess and Levoy 1996) provide poor 

approximations to coarsely sampled points as they may 

cut off corners or fill gaps between branches or fill an 

open window.  Also, a tree trunk may receive only a 

single column of hits making a mesh-like surface 

infeasible.  Another weakness of current registration 

techniques is that they only provide a relative measure 

for the goodness of a match, and so it is difficult to 

assess whether the match is valid or not. 

Our approach is to build a very general registration 

technique that does not involve a mesh-like surface 

assumption and works with very coarsely sampled data.  

Our technique avoids being trapped by local minima, a 

problem with ICP, and it provides an absolute measure 

of goodness to a match enabling discrimination between 

ambiguities and detections of occlusion or object loss. 
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2. SENSOR DATA 

Our sensor is a GDRS Generation IV 2D scanning 

Ladar with a wide field of view.  The scan rate was set 

at roughly 10Hz.  A 2D grid-based depth map is 

produced which can be projected into 3D as shown in 

Figure 1(a) and (b). An onboard INS provides UGV 

ego-motion and pan-tilt encoders give the sensor-head 

motion.  

 
(a) 

 
(b) 

 
(c) 

Figure 1. (a) Ladar depth map of open terrain 

containing two vehicles, and trees on the right, (b) 

resulting 3D projection of points, and (c) 3D points with 

ground-surface removed. 

3. APPEARANCE-CHANGE PROBLEM 

Detecting movers from a stationary scanning Ladar 

is straightforward.  Beams that are intersected by the 

mover will change in depth, while the rest remain 

constant.  However, once the Ladar is moving, it is no 

longer so simple to distinguish movers from stationary 

objects.  This is because Ladar beams sample the 

angular space with narrow beams at a relatively coarse 

resolution.  A small Ladar motion can produce quite a 

different sampling of the world space.  Figure 2 

illustrates a significant appearance change and offset 

due to small Ladar motion.  These sampling effects 

mean that both movers and stationary objects change 

appearance between frames. 

The mover detection challenge is to distinguish 

changes due to viewpoint, sampling and occlusions from 

changes due to target motion. In video, objects are often 

tracked by matching features, such as color or texture, 

between images.  However, individual Ladar beams are 

less distinctive as they do not return reflectance 

properties, and so it is difficult to find features on 

coarsely sampled objects.  Thus our approach is to use 

whole objects as features and to track these.  To achieve 

this, the following two tasks must be performed: (1) 

Separate objects must be detected, and (2) These objects 

must be tracked over time.  These are both data 

association problems. 
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(c) (d) 

Figure 2.   Ladar hits on a moving vehicle from subsequent 

frames in (a) and (b).  Images are for illustration only. Plots 

(c) and (d) show corresponding 3D points, illustrating some 

of the significant effects of sampling on objects. 

4. OBJECT DETECTION 

The first component of our algorithm is to divide 

the world into separate objects, some of which may be 

moving.  Typically, objects are connected through the 

ground surface, and so before clustering objects, the 

ground hits are removed, as illustrated in Figure 1(c).  A 

local, roughly horizontal, planar model is used to fit 

ground points, leaving hits on objects such as trees and 

vehicles. 

The main challenges in clustering hits into objects 

include the following: (1) the number of objects is 

unknown, (2) the object sizes can vary greatly, (3) the 

sampling of objects in the world falls off with the 

inverse square of distance, and (4) clustering must be 

done in real time. There are two data-spaces in which 

clustering can be done.  The first is regular x-y-z 

Euclidean space, and the second is angle-depth space, 

θ−φ−r. The advantage of Euclidean space is that it is 

simple to accumulate stationary data over time, although 

since our goal is moving-object detection, this does not 



  

help much.  Angular space has the advantages of having 

a natural adjacency between hits, as well as a uniform 

sampling.   

Our first approach to clustering was to use mean-

shift with a 3D window on the hits, in either Euclidean 

or angle-depth space.  This worked reasonably well, 

although it was slow in cluttered scenes such as forests.  

It could be sped up to real time by doing only 

incremental clustering between frames.  However, the 

main drawback is the dependency of clusters on the 

mean-shift window size.  Objects much larger than the 

window tended to break into multiple clusters.  For 

example, when person-sized windows were used, a wall 

would be broken up into roughly person-sized clusters.  

This posed problems for the next step of temporal 

association of clusters, sometimes resulting in 

ambiguous matching and false positives.  An additional 

step of clustering the close-by clusters can remediate 

this, but this adds complexity.   

 
Figure 3. Example of clustering objects at long range.  

Ladar hits are plotted on top of the image for ease of 

viewing only.  Trees are found in the background, two 

vehicles on the left, a person in the center-front and 

some brush at the right.   
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Figure 4. Top-down views of the two vehicles clustered 

in Figure 3.  The dashed rectangles show the true 

location of the vehicle.  Notice the vehicle on the right 

has two doors open and a stationary close-by person is 

clustered with it. 

The technique that worked the best was to do 

contiguous region building.  This leverages the 

adjacency information in the angle-depth space, has 

very low computational requirements, and works well 

for both large and small objects.  A depth threshold, dT, 

was defined such that adjacent points separated by less 

than dT were clustered together using region growing.  

Note that since the tangential distance between sampled 

points grows with depth, this threshold was made 

proportional to depth.   

5. OBJECT REGISTRATION 

The most difficult task, and hence the core of our 

work, is registering objects between frames.  Consider 

for now a single object being viewed in multiple 

subsequent frames.  Our goal is to determine if it is a 

mover, and if so what its velocity is.  The simplest 

approach would be to analyze the motion of the centroid 

of the points.  This has two potential pitfalls.  First, if 

different portions of the surface are sampled in different 

frames due to partial occlusions or self-occlusions, the 

centroid could move significantly leading to false 

motion estimates.  Second, without an object similarity 

measure it is possible for the incorrect object to be 

matched and again false motions obtained.   Hence we 

desire a more precise and more discriminating 

registration technique. 

In each frame, f, a set of points in world 

coordinates lying on the visible surface of the object 

surface is obtained, { }n

f xxX ,,1 K= .  The number of 

points in each frame can vary depending on viewing 

angle.  Our registration approach relies on explicitly 

modeling the object surface as a probability density 

function, ( )Xf

Sρ , given the set of 3D sampled points. 

If the sampling density is high compared to the surface 

curvature, then a mesh might be a good representation, 

however in our case the opposite is true; the sampling 

for objects at long range can be very coarse and so the 

surface between samples can vary significantly or may 

have gaps.  Hence we use a mixture of 3D Gaussians 

centered at each sampled point for our density function: 

( ) ( )∑=
i

ii

f

S nNX
2

,σρ x . (1) 

The covariances 2

iσ  are proportional to the sampling 

density, and hence to the distance from the Ladar.  This 

models a wide variety of surfaces including coarsely 

sampled natural objects such as trees.  

Now as both the object and the Ladar move, 

different points on its surface will be sampled.  Denote 

the points in the next frame as X
g , and its new surface 

density as: ( )Xg

Sρ .  Also denote the object motion 

between frames f and g as Tg

f  and its inverse as Tf

g  

such that XT gf

g  maps points in frame g to their 

corresponding positions in frame f.  If the same points 

on the object were sampled in both frames, then the 



  

transformed density: ( )XT gf

gSρ  would exactly equal 

( )Xf

Sρ .  The object motion could be estimated by 

finding the transformation, T
f

g , that achieves this.  In 

general different object points will be sampled and so 

the densities will not be exactly equal.  Hence we need a 

similarity measure between densities that can be 

optimized as a function of T
f

g .  The Bhattacharya 

similarity provides such a measure, although other 

measures can be used too: 

( ) ( ) ( )∫=
x

f

S

gf

gS

f

g XXTTB ρρ . (2) 

It has a range of 0 to 1, and reaches 1 when the two 

densities are equal.  Optimizing Equation (2) as a 

function of Tf

g  gives the best shape match, see Figure 6.  

Also the value ( )TB f

g  is a useful absolute measure of 

how well the two surfaces match.  This is an important 

advantage over other 3D registration techniques such as 

ICP which only give relative goodness of matches.  A 

low value of ( )TB f

g  can indicate an occlusion or an 

incorrect match, and so it is useful when there are 

multiple matches to choose from.  

Since some frames may contain poor views of an 

object, and since the viewpoint changes over time, we 

accumulate object surface densities over time. After 

each subsequent frame is registered to the current 

model, it is appropriately transformed and added to the 

model.  In this way a higher density surface is gradually 

created. Since errors may accumulate in registration, 

and because the most recent past is the most useful for 

future registration, we decay the weighting of old 

measurements with an appropriate half-life.   

 

 
(a) (b) 

Figure 5. (a) A surface density model represented as a 

mixture of Gaussians ( )Xf

Sρ  on the object in Figure 

2(c).  On the right a discretization of this model, 

( )Xf

DSρ , into a 29x29x7 grid. 

0
2

4

-1
0

1
2

3

0

0.2

0.4

0.6

0.8

 
Figure 6. The Bhattacharya similarity, ( )TB f

gD , of the 

discretized density surfaces as shown in Figure 5 for the 

vehicle views in Figure 2.  A parabolic fit at the peak 

gives an optimum ( )TB f

gD  of 0.88.  Here only 

translation is modeled; including rotation would add an 

extra dimension to the plot.  In this case there is a single 

maximum, but there may be multiple maxima when 

viewpoints vary more. 

 

For real-time operation we developed a discrete 

implementation.  The density functions are binned into a 

3D grid, ( )Xf

DSρ , as illustrated in Figure 5.  Then the 

discrete Bhattacharya similarity ( )TB f

gD  for a range of 

motions is found as the convolution of the square root of 

the densities:  

( ) ( ) ( )XXTTB
f

DS

gf

gDS

f

gD ρρ ∗= . (3) 

When motion is assumed to be translation in the 

horizontal plane, these 3D convolutions are simply the 

sum of the 2D horizontal-slice convolutions, see Figure 

6.  The best motion estimate, Tf

g , can be found at the 

maximum of this surface.  Sub-grid-size precision is 

obtained by local parabolic fitting around the maximum. 

A problem facing multi-object tracking algorithms 

is the high variability in computational load, especially 

when there are many objects and clutter in the scene.  A 

significant advantage of discretizing the density function 

is that it gives great flexibility in adjusting the 

computational load.  Density functions can be smoothed 

and sampled at reduced resolution to reduce 

computation when needed.  In particular, reducing 

resolution in the vertical dimension gives speed gains 

with little loss of tracking accuracy.  When computation 

was scarce, we found that reducing vertical resolution to 

three slices gave a good speedup while maintaining 



  

good robustness to partial occlusions.  Sampling only a 

single slice could reduce computation further, but we 

found it more susceptible to incorrect matches caused by 

partial occlusions.  

For many objects and motions only a horizontal 

translation model is sufficient.  This includes objects 

that are roughly rotationally invariant such as people 

that at long range appear like vertical cylinders, or 

stationary objects such as trees, and even vehicles when 

their angular motion is gradual.  The approximation 

errors are compensated for by the decaying model 

coupled with the tracker.  However, when vehicles turn 

sharply, rapid density model change can cause a loss of 

registration.  To account for these cases it is useful to 

model rotations around the vertical axis. A 

straightforward extension to achieve this is to discretize 

the latest surface density at several rotations.  Each of 

these is convolved with the accumulated model, and a 

layered convolution surface is obtained.  The maximum 

location of this can be found by fitting a parabola in 3 

dimensions around the peak.  Since rotation between 

frames is typically not great, we found it sufficient to 

sample between 3 and 5 rotations. 

6. OBJECT TRACKING 

Most of the work in moving object detection is 

achieved by clustering and registration.  However, there 

are a number of sources of clutter as well as objects 

appearing and disappearing due to occlusions.  These 

effects can lead to spurious motion estimates and hence 

false positives.  To minimize these we enforced motion 

consistency using a Kalman filter tracker.  All objects, 

including stationary objects, are tracked as long as their 

motion does not exceed an acceleration limit.  Those 

objects whose speed exceeds a minimum threshold are 

declared to be movers.  The Kalman filter gives a 

predicted location and uncertainty for each object in a 

new frame, and this is used to bound the search region 

during registration.  Since the frame rate is high there is 

typically no ambiguity in cluster association.  But 

sometimes in high clutter or after an occlusion there are 

multiple potential matches, and we select the best one 

using the density similarity function in Equation (3). 

7. RESULTS 

Figure 7 contains a short sequence illustrating 

moving vehicle detection from a moving UGV.   The 

algorithm runs in real-time on a Pentium processor. 

Our algorithm was tested on a number of ground-

truthed runs in a variety of environments including 

wooded, open and urban environments as shown in 

Figure 8.  The hit percentage per target shows the 

percent of frames in which each mover was correctly 

identified as a mover.  This is lower in high clutter 

environments due to occlusions. A consistently low 

false alarm rate was maintained. 

 

 

 

 

 

 

 

 

 

Figure 7. A portion of the Ladar field of view 

containing every 4
th

 frame of a sequence with two 

moving vehicles.  Clusters are shown by their bounding 

boxes and those identified as movers are marked with 

arrows.  In the top two images the center vehicle is 

beyond the range hits, while the vehicle to the right is 

being tracked.  In the 3
rd

 image the center vehicle is 

detected and by the 4
th

 it is identified as a mover.  The 

ground clutter on the left occasionally generates false 

positives. 
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Figure 8. Detection performance using ground-truthed 

data runs.  The hit percentage per target is lower for 

wooded terrain because of numerous occlusions.  This is 

because misses are accumulated after each occlusion 

while the algorithm determines it is a mover.   The false 

alarm rates are consistently low and slightly higher with 

more clutter.  

CONCLUSION 

We have developed a surface probability density 

model for 3D object registration.  It does not require a 

mesh and is appropriate for objects that are coarsely 

sampled.  The Bhattacharya measure comparing two 

density functions gives an absolute similarity estimate 

between 0 and 1, enabling the goodness of a match to be 

assessed.   Our discrete implementation using 

convolution filtering enables real-time registration 

without being trapped by local minima.  Horizontal 

translation and rotation about the vertical axis are 

modeled.  When integrated with a tracker, we obtained a 

robust mover detector that can handle high clutter and 

significant self-motion, and still obtain high detection 

rates with few false alarms.   
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