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Abstract— In this paper, we optimize over the control
parameter space of our planar-bipedal robot, RAMone [7],
for stable and energetically economical walking at various
speeds. We formulate this task as an episodic reinforcement
learning problem and use Covariance Matrix Adaptation [2].
The parameters we are interested in modifying include gains
from our Hybrid Zero Dynamics style controller [8] and from
RAMone’s low-level motor controllers.

I. INTRODUCTION

Humans [5] and animals [3] use different gaits to locomote
with energetic economy at different speeds. In our previous
work [6], we found that the same was true for a detailed
model of the planar bipedal robot RAMone (Fig. 1): walking
was more economical for RAMone at low speeds, and
running at high speeds. However, it remains to be seen if
these simulated results extend to RAMone in hardware.

To this end, we used numerical optimization to find
energetically economical gaits for a model of RAMone at
various speeds [6]. This optimization involved minimizing
the energetic cost of transport (CoT), the electrical work
needed to travel a unit distance. The computed gaits
described the optimal joint and motor trajectories as
functions of time.

These optimal trajectories are not sufficiently stable when
run in an open-loop manner on RAMone. One way to
stabilize them, as we do here, is with a Hybrid Zero
Dynamics (HZD) style controller, which synchronizes the
controlled degrees of freedom to a phase variable [8].

An HZD style controller requires tuning a set of
parameters, which at different speeds may have different
values. Hand-tuning, although often used in practice, is
time-consuming and may not lead to desired results. For
example, we were unable to find parameters for stable
walking at low speeds. Hand-tuning is likely to be even more
of a challenge on hardware.

In this work, we explore an automated method to optimize
over our parameter space at various speeds in simulation. We
formulate this problem as an episodic reinforcement learning
task. Our plan is to use the resulting control parameters to
achieve stable walking in hardware.

II. METHOD

A. Parameter Space

For our walking controller, we follow a similar approach to
[8], which relates the optimal trajectories, discussed earlier,
to a phase variable (here, this is horizontal displacement of
the upper body from the stance foot). This HZD controller

Fig. 1. The robot RAMone [7] is a five-link biped with series elastic
actuation at the knees and hips, and rolling contacts at the feet. The robot
is mounted on a planarizer system that restricts its motion to the sagittal
plane [1]. The RAMone hardware is based on the ScarlETH leg design [4].

has two gains to tune: the foot clearance gain kfc and the
foot placement gain kfp. The foot clearance gain modifies the
swing leg’s knee angle to change the height of the swing foot
trajectory; the foot placement gain modifies stance leg’s hip
angle to control the next stepping location. We also tune two
low-level gains of the system: the proportional error tracking
gains khip and kknee of the hip and knee motors. Lower gain
values result in a more compliant controller; whereas higher
gains result in a stiffer controller. These four gains

K = [kfc, kfp, khip, kknee]

make up the parameter space for our optimization.

B. Optimization

To optimize over our parameter space, we use Covariance
Matrix Adaptation, or CMA [2]. CMA is an iterative
algorithm that uses stochastic sampling for a distribution of
the optimization variables (parameters K here) described by
a mean and variance. As CMA is iterated, a cost function
is used to evaluate random samples of K and update the
distribution so that it is centered around ‘better’ samples.

We choose CMA because it is more robust to local
minima, when compared to gradient based methods. This
is because CMA is stochastic and, thus, considers a wider
range of sample states.

C. Evaluating Performance

We formulate our task as an episodic reinforcement
problem. In our case, an episode refers to simulating
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RAMone with a specific set of parameters K for a fixed time
tsim = 7s. An episode ends early if RAMone falls. At the end
of an episode, the performance of the set of parameters K
is evaluated with the following cost function:

Cost =

{
100 + 20 · ∆tremaining, robot falls
30 · CoT + 1000 · (∆ẋdes)

2
, otherwise

(1)

where ∆tremaining is the amount of time between the fall
and tsim, CoT is the cost of transport (as calculated in [6]),
and ∆ẋdes is the difference between desired and actual speed
of RAMone (average horizontal velocity of the main body).
For the actual speed, we average over the last six steps.

The constants in the cost function were heuristically
chosen to satisfy three criteria: 1) falling is always penalized
more than walking; 2) falling earlier is penalized more than
falling later; and 3) CoT and ∆ẋdes have approximately the
same weighted importance in the cost function.

D. Initialization of CMA

We compute optimal walking parameters K sequentially,
for a range of different speeds. For each speed, we use CMA
and the cost function (1); we initialize the CMA sample
distribution using previously found optimal parameters K
for an adjacent speed. For the speed of 0.4 m/s at the first
iteration, CMA is initialized using hand-tuned parameters.

III. RESULTS AND DISCUSSION

With the approach described, we found control gain
parameters K that produced stable walking of RAMone
in simulation for speeds between 0.1 m/s and 1.0 m/s. In
contrast, when using hand-tuning, we were only able to
stabilize walking at speeds between 0.4 m/s and 1.0 m/s.

We found that the control parameters obtained through
CMA yielded similar CoT, compared to the hand-tuned
parameters, as shown in Fig. 2. There are two possible
explanations for this: 1) The cost of transport does not
depend strongly on the chosen parameters; and 2) our
optimizer is getting caught in local minima and is thus
not finding a more optimal solution. At the same time, the
CMA-optimized controller performed better at desired speed
tracking, compared to the hand-tuned controller, see Fig. 3.

To continue this line of work, we plan to use the
parameters found through optimization to achieve stable
walking on hardware. We also intend to modify the described
method for application on hardware.
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Fig. 2. The cost of transport (CoT) across different speeds for control
parameters obtained through hand-tuning (blue) and optimization (red).
The CoT is similar in both cases, however optimization was able to find
parameters for stable walking over a larger range of speeds.
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Fig. 3. The percent error of RAMone’s speed in simulation against the
desired speed using control parameters obtained through hand-tuning (blue)
and through optimization (red). Optimized parameters track the desired
speed more accurately than hand-tuned parameters across all speeds.
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