
Grasp that optimises objectives along post-grasp
trajectories

To be appeared in the Proceeding of ICRoM 2017

1st Amir M. Ghalamzan E.
School of Metallurgy and Materials

University of Birmingham
Birmingham, United Kingdom

a.ghalamzanesfahani@bham.ac.uk

2nd Nikos Mavrakis
School of Metallurgy and Materials

University of Birmingham
Birmingham, United Kingdom

nxm504@bham.ac.uk

3rd Rustam Stolkin
School of Metallurgy and Materials

University of Birmingham
Birmingham, United Kingdom

R.Stolkin@bham.ac.uk

Abstract—In this article, we study the problem of selecting a
grasp pose on the surface of an object to be manipulated by
considering three post-grasp objectives. These objectives include
(i) kinematic manipulation capability [1], [2], (ii) torque effort
[3] and (iii) impact force in case of collision [4] during post-grasp
manipulative actions. In these works [1]–[4], the main assumption
is that a manipulation task, i.e. trajectory of the centre of mass
(CoM) of an object is given. In addition, inertial properties of the
object to be manipulated is known. For example, a robot needs
to pick an object located at point A and place it at point B by
moving it along a given path. Therefore, the problem to be solved
is to find an initial grasp pose that yields the maximum kinematic
manipulation capability, minimum joint effort and effective mass
along a given post-grasp trajectories. However, these objectives
may conflict in some cases making it impossible to obtain the
best values for all of them. We perform a series of experiments
to show how different objectives change as the grasping pose
on an object alters. The experimental results presented in this
paper illustrate that these objectives are conflicting for some
desired post-grasp trajectories. This indicates that a detailed
multi-objective optimisation is needed for properly addressing
this problem in a future work.

I. INTRODUCTION

Grasping an object and performing manipulative actions are
key distinguishing skills of primates [5] learnt in early stage of
skill development. In spite of the research conducted on this
topic in different fields, e.g. neuroscience [5], neuropsychol-
ogy [6], this complex behaviour is not yet fully understood.
Robotic grasping and manipulation have been widely inspired
by the studies from other fields [7]. Although a robot is desired
to make stable contacts on object surface by its hand/fingers
to move the object to another pose, most robotic grasping
literature focuses on just computing contact points that make
a stable force-closure [8], or form closure grasp [9]. Hence,
an obtained grasp pose may not be sufficiently good for
manipulative motions after making stable contacts. The reason
for this may be (i) computing a set of contact points on an
object for a robotic hand using a 2D image or partial/full

This project was funded by EU H2020 RoMaNS, 645582, and EPSRC
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Figure 1. Simulation setup with a Baxter robot in Gazebo simulator. The robot
is tasked with grasping and then moving the object. This paper is concerned
with enabling the robot to choose from several feasible grasps, to obtain
some objectives during post-grasp actions. The robot manipulates a cuboid
object with dimensions 0.5 × 0.15 × 0.2 [m3] and mass of 0.4 [kg]. The
coordinate axes of the object’s centroid are shown, where red, green and
blue correspond to x,y and z axes, respectively. The inertia tensor of the
object is known in advance. 10 different grasps are generated for evaluation.
We provide three different Pick-and-Place tasks for the robot to execute, and
for each task and grasp, we pre-calculate the effective mass, the joint effort
and the manipulability along the task trajectory. We aim to investigate the
performance of each grasping point according to the calculated metrics.

point cloud is yet an open challenging research question [10]–
[12] and (ii) planning the post-grasp trajectory [13], [14]
is a complex problem. Hence, they are often tackled in
isolation. Nevertheless, this two complex problems must be
jointly solved [15] because they have dependent solutions, For
example, to pick and object shown in Fig. 1 and to place it
at the desired pose, the robot may grasp the object such that
the torque effort/energy during manipulative actions becomes
minimum.

The lesson we learnt from our previous works [1]–[4]
suggest that post-grasp objectives can be efficiently optimised
during reaching an object to grasp it. The main assumption in
these works is that the trajectory of the centre of mass (CoM)
of the object to be manipulated is given. These objectives can
be used to prune a set of possible grasp pose candidates. These
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objectives, however, are task relevant (application example),
i.e. one objective may become more important for an appli-
cation example. For example, Ghalamzan et al. [1] proposed
a kinematic velocity manipulability (TOV) and showed this
criterion can be maximised by a suitable selection of grasp.
TOV is integral of velocity manipulability along the desired
manipulation trajectory. The grasp pose selected according to
TOV has been shown to yield minimum joint velocities and
consequently implicitly avoiding singularities along a post-
grasp trajectory of object’s CoM. Moreover, this metric is used
in [2] to assist human teleoperating a manipulator for grasping
an object. On the other hand, Mavrakis et al. [3], [4] studied
the effect of grasp pose selection on torque effort and impact
force along a post-grasp trajectory.

The ideas on “task-informed grasp selection” [1]–[4] poses
this question that “ may the objectives, which are proposed
for task-informed grasp selection, conflict?” The answer to
this question depends on the desired manipulative task and
application example. For instance, in surgical robotics [16],
minimising torque effort (energy consumption of the robot)
may not be as important as minimising cognitive workload of
the surgeon operator; hence, maximising task oriented kine-
matic manipulability becomes the main objectives for task-
informed grasp selection [2]. However, the objectives of task-
informed grasp selection may conflict in many applications
where they are all desired to be optimal.

In this paper, we study how the values of the objectives of
task oriented grasp selection changes with a different selection
of grasp poses. Our experimental results suggest a multi-
objective optimisation is needed for optimally selecting a grasp
pose in a future work.

The remainder of this paper is as follows. First, in Sec-
tion II problem formulation including our main assumption
is presented. Next, the objectives of task-informed grasp
selection are presented in Section III. Finally, experimental
results in Section IV demonstrate that these objectives conflict
showing that multi-objective optimisation is needed for better
understanding optimal grasp selection.

II. OPERATIONAL SPACE TRAJECTORY OF A TASK

By operational point we refer to point Fg ∈ SE(3),
attached to the end-effector, which will come into contact
with the grasped object, once a successful grasp is achieved.
SE(3) denotes the group of 3D poses (3D position and 3D
orientation). Operational space trajectory ζg refers to a vector
of successive poses, of a frame attached to this point, defining
a desired trajectory for the object. Let us denote a world
reference frame {Or, xr, yr, zr} by Fg . A trajectory to be
followed by the manipulated object implies that local frame
Fo, attached to the CoM of the object, follows a sequence of
poses:

ζc = Fo(t)

0 ≤ t ≤ T
(1)

where t denotes a particular time during the motion, and T
is the total time that the robot needs to complete the desired

x1(t1)

z1(t1)

y1(t1)

xc(t1)

yc(t1)

zc(t1)

xc(tN )

yc(tN )

zc(tN )

Fg

yr

zr

x1(tN )

z1(tN )

y1(tN )

Figure 2. An object in the global coordinate frame Fr = {Or, xr, yr, zr},
shown in black. A local coordinate frame Fo = {Oc, xcyc, zc} is attached to
the center of mass of the object, shown in red color. This frame follows a tra-
jectory cζ during manipulation. Fo(t1) = {Oc(t1), xc(t1), yc(t1), zc(t1)}
and Fo(tN ) = {Oc(tN ), xc(tN ), yc(tN ), zc(tN )} denote this frame at the
initial and terminal point of the manipulation trajectory with the corresponding
frame of grasp candidate Fg(t1) = {Og(t1), xg(t1), yg(t1), zg(t1)} and
Fg(tN ) = {Og(tN ), xg(tN ), yg(tN ), zg(tN )} shown with blue colour.

manipulation task1. Fo(t) determines a complete pose of the
grasped object at time t. Although there are a variety of
different possible representations of orientation, for the sake of
simplicity here we use the conventional transformation matrix.

Let us consider a local frame Fo = {Oc, xc, yc, zc}. This
frame can be described by a transformation matrix2 from the
global reference frame {Or, rx, yr, zr} into the local frame
{Oc, xc, yc, zc}:

rTo(t) =

[
rRo(t) rto(t)
01×3 1

]
4×4

. (2)

Hence, rxo = {rto, rRo} ∈ SE(3). Note that here we assume
grasping and manipulation of rigid objects. Let us denote a
local frame attached to the robot end-effector, which we refer
to as the “operational point”, by Fg = {Og, xg, yg, zg} which
corresponds to the robotic arm configuration. Because the ob-
ject is non-deformable, any candidate robot wrist pose can be
expressed by a fixed transformation matrix oTg = {otg,o Rg}
from Fo into Fg (Fig. 2):

rRg(t) = rRo(t)oRg

rtg(t) = rto(t) + rRo(t)otg
. (3)

For the sake of the simplicity of presentation, we choose to
represent the orientation component of Fg with a quaternion
parametrisation; hence, the trajectory of the end-effector is
represented by rxg = {rtg,r qg} ∈ SE(3) where qg ∈ SO(3)
represents the unit-quaternion associated to the rotation matrix
rRg .

1Throughout this paper, Y (t) denotes a continuous function of time, where
Yi is a corresponding value of Y (t) at time ti ∀ i = 1, ..., n, where t1 =
0, tn = T and 0 ≤ ti ≤ T denotes discrete sampling time. We also use Yt
as a shorthand of Y (t) where necessary. ∗ζ(t) and ∗ζ(t) are continuous and
discrete trajectory of poses of a frame attached to point ∗ of object in Figs. 2.

2 In general, (..)
(.)

X ∈ R4×4 denotes a transformation matrix from local
frame (.) into local frame (..).
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Figure 3. A 2-D manipulator follows a semi-circle from right to left shown
with dashed blue line: (a) The manipulability ellipsoids are depicted at several
configurations. Red and green arrows represent the ellipsoid major/minor axes.
The proposed task oriented velocity manipulability measure (black arrow) is
obtained by evaluating the radius of the manipulability ellipsoid along the
desired end-effector path. The corresponding TOV value and joint velocities
are shown in (b) against the samples’ number of trajectory.

III. POST GRASP OBJECTIVES

The problem of planning both grasps and subsequent ma-
nipulative actions have typically been studied in isolation. For
example, oxg = {otg,o qg} ⊂Xg is a set of wrist poses of the
manipulator in eq. (3), which allow stable contacts of robots
hand on object surface. Such poses can be computed by a
variety of well known grasp planning algorithms (e.g. [8]–[12],
or other grasp-planners as the user prefers). The current state-
of-the-art grasp planners, typically generate a set of various
possible stable grasp configurations. In [10], [11] these are
based on learned relationships, between features of the object’s
surface geometry and appropriate configurations of various
parts of the robot hand. Alternatively, a set of potential stable
grasps can be computed using grasp simulation software [12],
force-closure analysis [8], or form closure [9]. However, joint
reasoning is essential to enable robots to both make a stable
grasp and complete real manipulative tasks. In this paper,
the two problems are considered jointly and a solution that
takes both into consideration is proposed. Manipulative actions

after making stable contacts may provide challenging research
questions in different contexts. For instance, safety becomes
very critical in the context of human-robot interaction. In
this paper we consider three different criteria including (i)
manipulation capability (in section III-A), (ii) torque energy
(in section III-A) and (iii) impact force in the case of collision
of robot hand with an object (in section III-A) while perform-
ing post-grasp actions. We show that these objective values
are functions of both a selected grasp pose and a post-grasp
trajectory.

A. Task Oriented Kinematic Velocity Manipulability (TOV)

Ghalamzan et al. [1] introduced a task-relevant velocity
manipulability cost function (TOV) to address the problem
of jointly planning both grasps and subsequent manipulative
actions. Later, this cost function is used in a mixed initiative,
shared control for master-slave grasping and manipulation [2].
The novel system proposed in this work gives informative
force cues to a human operator and assists her/him to grasp
an object (making stable contacts between robot’s hand and
object surface) such that the TOV is maximum during manip-
ulative actions. It is shown that maximising TOV results in
significantly reduced joint velocities. Let θ ∈ R6 be the joint
vector of the considered manipulator arm, and

u =

[
vg
ωg

]
= J(θ)θ̇ (4)

be the geometric Jacobian relating joint velocities to the end-
effector linear/angular velocities u = (vg, ωg) ∈ R6 in the
end-effector frame Fg (for ease of notation, we drop the
superscript g for the quantities in (4)). Kinematic velocity
manipulability ellipsoid is defined by

uT (JJT )−1u = 1 (5)

that represents the capability of the robot manipulator in
generating task space velocities for a given norm of joint
velocities (thus, representing some sort of dexterity of the
robot arm). In this work we are interested in maximising
(in an integral sense) a particular task-oriented manipulability
measure derived from (5): the radius of the manipulability
ellipsoid along the tangent vector to the desired path in task
space. This is meant to ease as much as possible the execution
of the desired trajectory (3) by the manipulator arm with the
smallest possible control effort (norm of the joint velocities).

We consider θ(t) being the trajectory in joint space associ-
ated to the end-effector trajectory and generated by the robot
inverse kinematics (3) where u(t) is the corresponding lin-
ear/angular end-effector velocity at each time. We decompose
u(t) as u(t) = a(t)ū(t), with a(t) representing the norm of
u(t) and ū(t) its (unit-norm) direction. From (5) it follows
that, along the planned path,

a2(t)ūT (t)(J(θ(t))JT (θ(t)))−1ū(t) = 1. (6)

It is easy to verify that the quantity a(t) solution of (6)
represents the length of the ellipsoid radius along the direction
ū(t), see also the illustrative example in Figs. 3. Our aim is



to maximise the quantity a(t) along the whole path as defined
in the following integral cost function:

HTOV(rxg) =

∫
ζo

a2(rxg, s)ds

=

∫
ζo

1

ūT (J(θ)JT (θ)−1)ū
ds,

(7)

where 0 ≤ s ≤ 1, s is a parametrisation of the path, s = 0
indicates t = 0, s = 1 shows t = tf and tf is the time
to completion. From eq. (3), it can be confirmed that u =
u(rxg, s), θ = θ(rxg, s). In [2], HTOV is called Task-oriented
velocity manipulability (TOV).

B. Manipulator dynamics under load

In this section, we assume that the dynamic model of the
robot is known to us, and we have the corresponding governing
equation of motion of the manipulator in the joint space, as
per Eq. (8). Here, we are interested in computing the total
energy consumption of the robot when executing the desired
post-grasp trajectory. Hence, we need to obtain“augmented”
equation of motion, i.e. a combined equation of motion for
both the robot and its grasped object, in the robot’s joint space.

The joint space dynamic model of an n-degree-of-freedom
(DOF) manipulator is defined by:

M(θ)θ̈ + C(θ̇,θ) + N(θ) = τ (8)

where θ and τ ∈ Rn are the vectors of joint positions and
joint torques, respectively, and M(θ) is the manipulator inertia
matrix.

Again, it can be confirmed that θ = θ(rxg, s) and τ =
τ(rxg, s) from eq. (3).

Cij(θ̇,θ) =
1

2

n∑
k=1

(
∂Mij

∂θk
+
∂Mik

∂θj
− ∂Mkj

∂θi

)
θ̇k (9)

represent the Coriolis and centrifugal force terms.

N(θ, θ̇) =
∂V

∂θ
(10)

defines a gravitational force term, where V (θ) is potential
energy due to gravity. The dynamics of the robot in operational
space are represented using the operational coordinate x as
follows:

M(θ)ẍ(t) + C(θ̇,θ)ẋ(t) +N(θ) = F (t) (11)

where:
M = J−T (θ) M(θ)J−1(θ),

F = J−T (θ)τ , N(θ, θ̇), C(θ̇) are the corresponding grav-
itational and Coriolis terms in operational space, and J(θ)
is the robot’s Jacobian. Now, augmented dynamic model of
manipulator and object to be manipulated can be computed
using the generalised inertia matrix of an object Mg .

Mo =

(
mI3x3 0

0 ICoM

)

where m and ICoM denote the object’s mass and inertia tensor
w.r.t. the CoM. This inertia tensor can be expressed in Fg as
follows:

gMo = E−T (xg)MoE
−1(xg) (12)

where E(xg) is the matrix transforming the linear and angular
velocities of the object’s CoM to generalised velocities in the
frame attached to the end-effector. Accordingly, we represent
the grasped object’s dynamics in the joint space:

Mtot(θ) = Marm(θ) + Mo (13)

where Mo =
[
JT (θ)Mo(xg)J(θ)

]
is the grasped object’s

inertia tensor representation in the joint space.
1) Manipulation energy consumption: We use Mtot in

eq. (8), (9) and (10) to compute the corresponding torque of
augmented model of object and manipulator as per eq. (8).
Eventually, the energy consumption of the robot to manipulate
the object along path ζo is

HTME(rxg) =

∫
ζo

τ 2ds (14)

2) Effective mass definition: While one can compute the
force at every point of interest of the manipulator by writing
the corresponding operational space equation, we can analyse
the kinetic energy matrix M(θ) and compute the impact force
during a collision without needing to solve the second order
differential equation in Eq. (11).

It has been shown that a manipulator is perceived according
to its effective mass during a collision (Eq. (15)), denoted by
me. In analogy, we define the effective mass of the total system
as

me(
rxg, s) =

1

ūTM−1
tot (x)ū

(15)

where Mtot = gMo + M expressed in the operational space
and

HTEM(rxg) =

∫
ζo

meds (16)

Ideally, a high value of HTOV and small values of HTEM and
HTME are desired. In a manipulation task, we would like to
have minimum values of HTEM, HTME and 1

HTOV
. Although

a native approach to minimise all can be achieved by an affine
combination of all objectives, we will show that this approach
is not sophisticated and the solution must be obtained through
a multi objective optimisation approach.

IV. EXPERIMENTAL RESULTS

To validate our hypothesis, i.e. performing a multi-objective
optimisation is needed for selecting the best grasping pose,
we conduct a series of experiments with a Baxter robot
manipulating an object with a given task using the Gazebo
simulator. The set-up is shown in Fig. 1. The task is to pick
a cuboid object and place it at different poses. The object
has dimensions 0.5 × 0.15 × 0.2 [m3] and uniform mass
distribution with a mass value of 0.4 [kg]. We consider 10
different grasping poses on the object surface. The contact
locations of the grasping poses are uniformly distributed on



(a) (b) (c)

Figure 4. In the first task, the Baxter is desired to pick up the object (blue cuboid), which is located on the table, move it −20 [cm] in line with y axis and
10 [cm] in line with x axis and place it on the table. The x and y axes are shown with red and green arrows in Fig. 1. All the 10 grasping poses are equally
distributed on the top edge of the cuboid. Three example grasps on the object are shown where (a), (b) and (c) show the first, fifth and tenth grasping pose.
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Figure 5. Heat map of the computed effective mass for the third task. The
horizontal axis represents the waypoints along the task trajectory and the
vertical axis shows the grasp poses considered on the top edge of the object.
This figure shows that the metric value of effective mass correlates with the
waypoint of the pick-and-place trajectory and the selected grasp pose.

the top edge of the cuboid. Three of the generated grasp poses
are shown in Fig. 4. The first grasp is located at −0.22 [cm]
and the last one is at 0.22 [cm] along the y-axis. The Baxter
approaches the contact points of each grasping pose on the
top edge of the object from predefined approach points located
15 [cm] above each grasping pose.

The robot is tasked with performing three Pick-and-Place:
the robot lifts up the object 10 [cm] from its initial position
along the z axis,

1) translates it in a combined motion −20 [cm] along the
y axis and 10 [cm] along the x axis and finally puts it
down −10 [cm] along the z axis;

2) translates −0.35 [cm] along the y axis and finally puts
it down on the table;

3) translates −35[cm] along the y axis and −10[cm] along
the x axis and finally places it on the table.

For the sake of comparison, we only present the results of
pure translations.

By using the Baxter PyKDL library, we compute the Ja-
cobian and the dynamic model for each point of a trajectory
allowing us to compute the metrics as per eq. (7), (14), (16).
An example of the effective mass for every initial grasping
pose versus sample points of the third task trajectory is
presented in Fig. 5.

We computed the integrals presented in eq. (6), (14) and
(16) for every tasks. For the sake of visualization, the metrics
values of 1

HTOV
, HTEM and HTME are normalised against

their corresponding maximum values; that is,

HTOV =
HTOV

max (HTOV)
,

HTEM =
HTEM

max (HTEM)
,

HTME =
HTME

max (HTME)
.

Theses normalised metrics are shown in Fig. 6(a), 6(b)
and 6(c) for the first, second and third task.

A characteristic example is the first task (Fig. 6(a)), where
we can see that the grasp No. 1 is the optimal yielding
minimum effective mass, minimum joint effort and maximum
manipulability. Furthermore, Fig. 6(a) shows the manipula-
bility, effort and effective mass significantly changes with the
choice of grasp poses. This enables us to use our methodology
in choosing the grasp that is safe, yields the least effort and
provides large manipulability for executing the task.

In contrast, the results yielded for the second task (Fig. 6(b))
shows that the objectives do not agree on the optimal grasping
pose(Fig. 6), i.e. while the effective mass and joint effort are
implying that grasp number 1 is optimal, TOV manipulability
suggests that grasp number 6 is optimal. Likewise, the indexes
obtained for the task number 3 (Fig. 6(c)) shows they conflict,
i.e. grasping pose number 2 yields minimum joint effort,
whereas grasping pose number 1 is the best in terms of both
TOV manipulability and effective mass.

These results illustrate that the grasping pose selection for
predefined manipulative actions is a complex multi-objective
optimisation problem. Although one may consider an affine
combination of these objectives for grasp selection, a more
clever approach of multi-objective optimisation for grasp se-
lection is needed which would be an interesting future work.

V. CONCLUSION

Primates are capable of grasping and manipulating objects
very efficiently by taking different objectives into considera-
tion, e.g affordance of the object, maximum reachability and
minimum wrist effort. In this paper, we presented an argument
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Figure 6. The final scalar metric values (namely TOV shown with green line,
joint effort shown with blue line and effective mass shown with red line)
for task 1 (top) 2 (middle) and 3 (bottom). The L2 norm of a metric along
post-grasp trajectory yields a scalar value for each grasp pose. These values
represent the quality of the grasp and are directly related to the task to be
executed. As a result, the robot can choose a grasp that has low effective
mass, low effort and higher manipulability. For instance, grasp number 1 in
the first task, top figure,has maximum manipulability and minimum effective
mass and effort.

in favour of studying the problem of grasping pose selection
as a multi-objective optimisation. In specific, we considered
three cost functions of a given post-grasp trajectory presented
in previous works [1]–[4] that have been used for selecting a
grasp pose for a manipulator. These cost functions include (i)
kinematic velocity manipulability (TOV) (ii) torque effort (the
energy robot consumes to perform the manipulative actions)
and (iii) impact force in the case the end effector of the

manipulator collides with an obstacle. We presented a series
of experiments. The results demonstrate how a manipulator
can use the knowledge of post grasp actions and desired
objectives for more intelligently grasping the object. Moreover,
the results illustrate that the desired objectives (cost functions)
conflict in some examples while they do not conflict each
other in the first experiment. Our study suggests that a multi-
objective optimisation must be used to better understand
the problem of grasp selection according to the proposed
objectives.
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