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3D Reconstruction & Assessment Framework
based on affordable 2D Lidar

Xueyang Kang! Shengjiong Yin? Yinglong Fen'

Abstract— Lidar is extensively used in the industry and
mass-market. Due to its measurement accuracy and insensi-
tivity to illumination compared to cameras. It is applied onto
a broad range of applications, like geodetic engineering, self-
driving cars or virtual reality. But the 3D Lidar with multi-
beam is very expensive, and the massive measurements data
cannot be fully leveraged on some constrained platforms.
The purpose of this paper is to explore the possibility of
using cheap 2D Lidar off-the-shelf, to perform complex 3D
reconstruction, moreover, the generated 3D map quality is
evaluated by our proposed metrics at the end. The 3D map
is constructed in two ways, one way in which the scan is
performed at known positions with an external rotary axis not
parallel to the intrinsic rotary axis of Lidar. The other way,
in which the 2D Lidar for mapping and another 2D Lidar
for localization are placed on a trolley, the trolley is pushed
on the ground arbitrarily. The generated maps by different
approaches are converted to octomaps uniformly before
the evaluation. The similarity and difference between two
maps will be evaluated by the proposed metrics thoroughly.
The whole mapping system is composed of several modular
components. A 3D bracket was made for assembling of the
Lidar with a long range, the driver and the motor together.
A cover platform made for the IMU and 2D Lidar with a
shorter range but high accuracy. The software is stacked up
in different ROS packages.

I. INTRODUCTION & RELATED WORK

Lidar has been one of the most anticipated sensors in
recent years. It emits light pulse with unique identity,
and correlates the light bouncing off the surface with
the original signal. The depth information to the object
can be measured in three ways, the time of flight(ToF)
measurement, phase-shift measurement, and triangulation.
At present, the most affordable 2D Lidar sensors in the
market are with a single laser beam. The upper part of the
device containing sender and receiver is mounted onto the
motor shaft, to get a 360-degree view.

Building 3D scan based on 2D laser requires additional
dimension, such as, (a) adding a fixed rotary axis to
extend 2D device. (b) 2D scanner mounted onto the mobile
platform, generating 3D data along moving. Each of them
has its own pros and cons. Another issue is how to evaluate
the quality of 3D map. Since it is difficult to obtain the
ground truth in reality, the metrics are only devised to

*This work was not supported by any organization

1Xueyang Kang and Yinlong Fen are Master student of Electrical and
Information Engineering, Technical University of Munich, Munich D-
80333, Germanyalexander.kang@tum.de

2Shengjiong Yin is with the Smart Monitoring Laboratory, Tongji
University, Shanghai 201804, China

rate the relative quality among compared maps. To evalu-
ation process, implementation directly on 3D point cloud
is very computationally expensive, hence the reasonable
solution should utilize existing efficient storage structure,
like multi-dimensional tree search.

Many existing methods to construct 3D map via 2D
scanner is to extend dimension, like a tilting angle can be
introduced into scanning process for a hand-held device
[1], some open source projects about 3D reconstruction
via Lidar [2] have already borrowed from this approach.
Obviously, this method adds to the complexity of the
hardware, furthermore, the coordination of two rotary axes
is complicated.

The trivial work involved in the fusion of different
sensor measurements, requires to calibrate the different
outputs, and synchronize the different data streams [8].
For positioning, the traditional method depends on IMU
to implement odometry, but the outputs of accelerometer
need to be integrated twice, consequently the drift error
will accumulate over the time, the estimation from wheel
encoder also suffers from this problem. The alternative is
to use camera to implement visual odometry(VO) [3], [4].
The accuracy of the current mature VO algorithms is supe-
rior to IMU. However, if the lighting condition varies too
much abruptly, this method will not work. But Lidar based
Simultaneous Localization and Mapping(SLAM) can deal
with these problems and achieve robust performance.

The main 2D SLAM algorithms in ROS community
includes: “gmapping” [5], an improved Rao-Blackwellized
algorithm based on the particle filter, depending both on
the Lidar and the odometer, in “gmapping”, the Lidar
outputs for measurement model and the odometer outputs
for motion model executed iteratively in succession; "Hec-
torSLAM” [6] based on 2D grid map, the algorithm uses
scan match to find the optimal transform and estimate the
new position. The objective for optimization is a function
of the occupancy probability. Each grid cell in the 2D map
is registered along with the occupancy probability. The
continuous model is approximated through the bi-linear
interpolation of the probability, Hector is only dependent
on the Lidar, it can register multiple maps with different
resolutions and retrieve them on demand; the newly re-
leased algorithm “cartographer” [7] with a several meters’
drift error on a kilometer’s trajectory, the loop closure
detection and pose optimization have also been added into
“cartographer” to further imrpove map consistency, and the
pruned search is introduced to speed up the match search.



Some graph-based SLAM algorithms utilize the existing
topological structure in the world to optimize the map [14].
The mathematical model behind SLAM algorithm is recur-
sive probability update, as stated in [13], [15].

Traditionally, the root-mean-square error [10] can be em-
ployed in evaluation when the ground truth is available. In
computer vision, the IoU metric [11] calculates the common
pixels in two images to make a pixel-wise comparison. But
3D point array produced by Lidar,is an inefficient memory
management way to be used for evaluation, the octomap [12]
is a tree based structure, in which the endpoints are repre-
sented by the cubes, a type of 3D voxels [16].

II. SYSTEM OVERVIEW

Two types of sensors are adopted, IMU and two 2D
Lidar sensors, Sweep Scanse and Rplidar. The whole system
is composed of three parts: the localization part integrates
Rplidar and 9 axes IMU; the 3D scanner part, includes
Sweep Scanse, stepper motor and motor driver; the laptop as
back-end on which the fusion algorithm, the post-processing
pipeline, and visualization process run. All sensors were
installed onto the 3D printed kits to be protected.

A. Hardware

The system components and transmission protocols are
presented in FigI] The Raspberry Pi 3B is responsible for
collecting the measurements from sensors as front-end, while
the laptop serves as back-end. In fusion mode, the measure-
ments from Sweep Scanse and Rplidar, as well as the mea-
surements from gyroscope, accelerometer, magnetometer, are
sampled by Raspberry Pi 3B, and then wirelessly transmitted
to laptop. The 3D scan at stationary locations only requires
the measurements from Sweep Scanse. and the stepper motor
will provide the additional dimension. Particularly, the step-
per motor is directly driven by the dedicated PWM signals
from driver board. The communication between Raspberry
Pi and laptop is through WLAN. The measurements from
IMU and the controlling commands for the stepper motor
are transmitted via I2C, but their transmission directions are
different. The two Lidar sensors are connected to Raspberry
Pi by USB cables, without extra power required.

The parameters provided by the Lidar suppliers are listed
in the following table. Rplidar is with short range, but higher
resolution, while Sweep Scanse has opposite features. This is
mainly due to their different measurement principles, Rplidar
uses triangulation measurement, while Sweep Scanse uses
ToF. Each 2D Lidar costs about 300 to 500 dollars.

TABLE I: Specifications comparison

Sampling rate(samples/s) | Range(m) | Frequency(Hz)
Rplidar 4000 0.15-6 1-11
Sweep 1000 0.1-40 1-10

Fig. ] shows the measurement errors from experimental
tests. For both Lidars, the relative errors in the left y-
axis drop drastically at the distance ranging from 1.5 to
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Fig. 1: System overview

2.0 meters, finally level off at about 2%, as the measuring
distance increases. But the absolute error in right y-axis ini-
tially fluctuates, then increases gradually. In general, both the
relative and absolute error of Sweep Scanse are greater than
those of Rplidar. It is worth noting that, the maximal range
40 meters claimed by Sweep Scanse inventor is not real.
The possibility of getting valid measurements is very small
at distance above 10 meters according to test, consequently
the 10 meters is adopted as the range at software level for
valid measurement.
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Fig. 2: Absolute and relative errors

B. Software

The whole software is stacked on Ros framework hosted
on Ubuntu system. The fusion algorithm transforms mea-
surements from local frame into a same global frame, and
matches the different data-streams based on their sampling
time. Then the transformed point cloud is passed to the
post-processing pipeline to reject outliers, and converted



to octomap. Lastly, the evaluation process runs offline to
compare the two maps constructed by different methods or
under different hardware settings. Fig. [3] contains all ROS
nodes in the system, the arrow denotes the topic passed to the
subscriber node. Left block contains the driver nodes of sen-
sors, which work on Raspberry Pi, right block contains the
nodes running on laptop. Especially, the measurements from
IMU are processed by "Madgwick filter” [17] on Raspberry
Pi, because the IMU outputs are sampled at high rate, the
filter implemented at front-end can avoid the transmission
latency. The ROS nodes connected by the dashed arrows,
are regarding the 3D reconstruction at static locations. The
remaining nodes pertaining to the 3D reconstruction along
movement. The “Fusion Node” fuses all the measurements
from IMU, Rplidar, and Sweep Scanse together to generate
3D map. The pipeline from "PCL Filter Node” to "PCL to
Octomap Node”, all the way up to "Metric Node”, is to post-
process the point cloud and convert it into the octomap.
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III. 3D RECONSTRUCTION

3D reconstruction methods based on 2D Lidar are mainly
divided into two types, as mentioned previously: 3D scan at
static positions, or incremental 2D scan along movement.
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Fig. 3: Node work-flow

A. 3D Reconstruction At Known Locations

The figure below shows the entire 3D scanner device after
assembling the motor, the driver, and Raspberry Pi into the
3D printing suite.

Fig. 4: 3D scan device

The static position (zp, y,) on the ground is provided by
optical instrumentation with high precision, the orientation
¢ of the device is determined by the stepper motor rotation
angle. Each of the measurement pair, range L and bearing 6
in Sweep Scanse’s local frame can be transformed to a 3D
point (z;, yi, z;) in global frame. But the bearing 6, ranging

from 0° to 180°, is transformed by the current yaw angle ¢,
for the bearing, ranging from 180° to 360°, the accumulative
yaw orientation ¢ of the device is updated after stepper motor
rotation by d¢, this is because when the beam is pointing to
the bottom of the device, measuring is blocked, hence this
interval can be taken advantage of, to rotate the upper part
of the device to the new orientation.

xp — Lsin(0)sin(¢)
yp + Lsin(0)cos(¢) if0<fd<m

- Lcos(0)
H _ o
zi xp — Lsin(0)sin(¢ + 6¢)

yp + Lsin(0)cos(p + d¢)
Lcos(0)

if,mr <0 <2m

B. 3D Reconstruction Along Movement

The incremental 2D scan along movement can build up
a 3D map, the initial position is in the same global frame
as that of the 3D scan at static locations. Movement is
decomposed into rotation and translation. The rotation is
estimated by the two times’ fusion, the first time fusion of
accelerometer, magnetometer, gyroscope is done at front-
end by Madgwick algorithm, the second time fusion of
HectorSLAM and Madgwick estimation is completed on
laptop through Covariance Intersection(CI), while the po-
sition is estimated only by HectorSLAM. Two-level fusion
will minimize the uncertainty of the state estimation. The
correlation between the two types of yaw angle estimation
sources, Madgwick and HectorSLAM is unknown, so CI is
applied for the secondary fusion. (u, P) is the estimated
mean angle and variance of Madgwick, (', Q) is the
estimated mean angle and variance of HectorSLAM. The
fused result is shown below, w is inversely proportional to
P and bounded from 0 to 0.5.

Pl=(1-wP '+wQ " we(0,05) @

p=P(A-wP lptw Q Ty )

The Fig. [f]is the comparison result of yaw angle estima-
tion. Integral denotes estimate only depending on gyroscope,
a constantly increasing drift over the output presents, which
is the worst. The deviation after CI fusion is significantly
reduced by half compared to that of a single source.

= Madgwick
10f |+ Integral
HectorSLAM

—~Covariance Intersection|

s
o~ A

2 i N

o 50 100 150 200 250 300 350 400
Orientation(®)

Fig. 5: Fusion accuracy comparison



All synchronization between different sensor topics is
based on the time stamp at which the data is sampled.
Because both Lidar sensors either for mapping or localization
work at low rotation frequency, the entire trolley outfitted
with all sensors in Fig. |6| can only be pushed along an
arbitrary trajectory slowly in the experiment.

Fig. 6: Trolley outfitted with sensors

IV. METRIC

In practice, 3D point cloud based evaluation is a difficult
task. Here several statistical metrics are proposed, which
are all implemented in octree structure. These metrics will
evaluate the similarity and difference between two maps
quantitatively.

A. IoU

The intersection over union is a method, applied in two
dimensional visual field like the work in[11], the principle
behind it is to find the common part from two compared 3D
maps, then divided by union part from two maps. Mark ”no”
in the following equations indicates the unexplored areas, and
the symbol ~occ” is short for “occupied” . The proportions
of three types of nodes in the whole octree are calculated.
To count unknown nodes, a pre-defined bounding box with
known length extracted from octree is employed, then the
inner nodes with null pointers in octree are traversed by
nested loops. A built-in iterator tool from octomap package
is provided for traversing of leaf nodes.
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Then the three IoU results corresponding to the three
types of nodes are derived below. The individual JoU metric
corresponding to one of three voxel types is calculated, the
“Intersection” indicates the number of voxels with same
visualized type in two octomaps, Union corresponds to the

total number of the voxels with same type from the compared
octomap or the reference octomap.
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Then the final weighted sum IoU is as Equation

Roce X IoUoce + Rfree X 10U free + Rno X I0Uno

if.(Roce + Ryree) > 0.10
(10)

The threshold here is set according to the proportion of
valid measurements in a bounding box, if the map occupies
only a small fraction of the whole volume space, then
the final outcome of intersection over Union should be
determined only by the occupied and free sets, otherwise
the measurement difference in two maps cannot contribute
to a remarkable difference in the overall result.

{Rm X IoUoce + Ryree X 10U free  if,(Roce + Rfree) < 0.10
IoU =

B. Log-odds

This metric is dependent only on occupied and free nodes
with probability values. It is derived from machine learning’s
loss function for training, but instead of the difference is
logged, the ratio of probability values from two maps is taken
logarithm, at each overlapping spatial voxel. The log odds
output of two identical maps is zero. Logarithm is applied to
avoid the quotient being constant, when it near to 0 or near
to 1.
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The ¢ in Equation [IT] is the index for each node, N is
the total number of nodes in the octree. The ref symbol
stands for the reference, while tar denotes the target to be
compared, The larger this metric value is, the more two
octomaps vary.

C. Correlation

This metric is also borrowed from visual filed, the
normalized cross correlation for feature descriptor. This
metric is also based on occupied and free nodes only.

B SN UNEN |(pyed, L = B) X (P2, ., — D)
VIR Y Whthy e — )7 X SN (0, — P
(12)
The coordinates of all nodes in two octrees were already
transformed into a same global coordinate during 3D re-
construction process, so the evaluation by this metric can
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be directly implemented on octomaps. In Equation [I2} p
tar 4 pre f
2;

is determined by ZifyiNz:N e 9 SRR

probability is averaged over the proba@glities from spatially
overlapping occupied and free nodes, z;,y;, 2;, as the coor-
dinate of individual node. The larger this rating is, the more
correlated the two compared maps are.

, this means

V. EVALUATION RESULTS

The 3D reconstruction for a conference room were con-
ducted in two ways, as mentioned before. To verify the
proposed metrics. We specially constructed three groups of
3D point clouds at static positions, in which each set of point
clouds is formed by splicing several point clouds at known
locations. Particularly, the mapping Lidar range was set to
10 meters when the rotation frequency set to 1Hz, at single
location, while the hardware settings of mapping Lidar, were
kept same during the collection process of other point clouds,
all with 5 meters’ range when 2 Hz rotation frequency
was used. Point clouds in Figure 7 were constructed along
motion, point clouds in Figure 8 were built-up at a fixed
location, the scanner with the minimal rotating rate and the
longest range setting. The point clouds in Figure 9 were
collected from four locations, in Figure 10 collected from six
locations, point clouds in Figure 7, 9, 10 were constructed
under same settings, scanner with rotation rate 2Hz and range
at 6m. The point clouds in the leftmost column of Figure 7
to Figure 10 below are original. In the middle column are
post-processed point clouds. The rightmost column are the
octomaps converted from adjacent filtered point clouds. Here
all octrees were built up in the same voxel size. Because the
point clouds in these maps are with different characteristics,
consequently different PCL filter pipelines were utilized to
process them. E.g., point cloud in first row is very sparse,
hence there is no need of using down-sampling filter.

In the following, symbol “map1” refers to point clouds in
Figure 7, others and so on, but the "ref” is used for the point
clouds built-up at six locations in Figure 10, which serves
as reference for comparison. The Table |H| presents adopted
PCL filters for individual map. All point clouds went through
the down-sampling and pass-through filters, but the point
clouds collected from six positions was furthermore filtered
by Gaussian filter, because the point clouds collected at six
static positions have the most valid points. The pass-through
filter intercepts partial point clouds from the original map,
to remove the part containing the glass wall. Since the effect
of glass wall on measurement is unpredictable.

TABLE II: Post-processing comparison

Down-sampling | Pass-through | Gaussian
Point Cloud 1 X v X
Point Cloud 2 v v X
Point Cloud 3 v v X
Point Cloud 4 v v v

Table [ITI] makes a basic statistical analysis of maps, un-
known nodes are not taken into consideration in our case,

(a) Point Cloud 1 (b) Filtered Point Cloud 1 (¢) Octomap 1

Fig. 7: Map constructed along movement

(a) Point Cloud 2 (b) Filtered Point Cloud 2 (¢) Octomap 2

Fig. 8: Map constructed at single position

(a) Point Cloud 3

(b) Filtered Point Cloud 3

(¢) Octomap 3

Fig. 9: Map constructed at four positions

(a) Point Cloud 4

(b) Filtered Point Cloud 4

(¢) Octomap 4

Fig. 10: Map constructed at six positions

because the point cloud filtered by pass-through filter only
retains most of the valid measurements in the known area.

TABLE III: Proportion

Occupied Ratio | Free Ratio | Leaf nodes number
mapl 13.059% 86.941% 17140
map2 19.061% 80.939% 18320
map3 18.6405% 81.3595% 20553
ref 30.4077% 69.5923% 22491

Proportions of three compared octomaps are almost same,
but they are different from that of reference map, so it is very
hard to rate the compared octomaps by this rough method.
Particularly, the point clouds reconstructed incrementally
along movement are very sparse, consequently the generated
octomap is with many defects. The figure below shows the
final scores via our metrics, they are all normalized ranging
in 0 to 1, mapl to map3 are all compared against reference
map. The ideal result is at rightmost for the two same
maps, log odds is 0, IoU metric and Correlation metric
score 1. Here the log odds is an average value over all
the free and occupied nodes. The additional histogram in
red is the mean probability of common nodes in the two
compared octomaps, and the vertical bar on top is the
average probability deviation. The final result shows that, the
octomap generated from point cloud at a single location is the
most consistent, followed by the octomap from point clouds
at four locations, the octomap from point clouds collected



along movement is the worst.
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Fig. 11: Metric score

The leaf node with the size attribute in octree is visualized
in octomap, and its size is determined by resolution setting.
The following figure displays the required time to convert
the point cloud to the octomap, and the occupied volume
at different resolutions of octree. The whole evaluation
process, including all three metrics above is implemented
on two exactly same octomaps at different resolutions. The
smaller the size of voxel in the octree is, the smoother the
reconstructed structure is. The big size of the occupied cells
will make the map with many enclosures, unable to be used
for navigation. However, the higher resolution increases the
whole evaluation time, so a trade-off between computational
time and map quality should be found. The octomap at
resolution 0.20m, built-up at six positions is with 9979 nodes
in the octree, the evaluation time takes only 75ms, therefore
the metric can be implemented in real time potentially.
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Fig. 12: Relationship between resolution and size, time

VI. CONCLUSIONS

Through the experimental tests, the entire system can
achieve the 3D reconstruction by two means, including incre-
mental 2D scan along movement, or the 3D scan completed
at fixed locations. The octomap based metrics can assess
the target and reference maps’ similarity and difference
comprehensively. The final test, also indicates that the evalu-
ation by the proposed metrics, can be completed in hundred
milliseconds level, but constrained by other parameters, like
the total number of points and the voxel size. With appro-
priate parameters, the metrics can be implemented while
constructing the octomap incrementally, because 2D Lidar’s
maximal sampling rate is around 1000 points per second, the

number of measurements in this order of magnitude, can be
converted to octree nodes within a few milliseconds by ray-
casting, so the total time including conversion and assessment
process can be performed within 1 second. At the same time,
we should be aware that, the use of low cost 2D Lidar sensors
off-the-shelf to build 3D point cloud, will either increase the
complexity of the hardware, like the scan with additional
dimension controlled by motor, or requires additional ego-
motion estimation sensor, which increases the complexity of
the software. Because the rotation frequency of the low-
cost Lidar is not high, therefore, the whole frame work
is not applicable to the mapping in a fast and continuous
motion. The complete 3D scan process relying on 2D Lidar
is also quite time-consuming, making the whole system for
3D reconstruction only applicable to some low-speed mobile
platforms to preform 3D perception.
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