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ABSTRACT

Incorrect operations of a Multi-Robot System (MRS) may not only lead to unsatisfactory results,

but can also cause economic losses and threats to safety. These threats may not always

be apparent, since they may arise as unforeseen consequences of the interactions between

elements of the system. This call for tools and techniques that can help in providing guarantees

about MRSs behaviour. We think that, whenever possible, these guarantees should be backed

up by formal proofs to complement traditional approaches based on testing and simulation.

We believe that tailored linguistic support to specify MRSs is a major step towards this goal. In

particular, reducing the gap between typical features of an MRS and the level of abstraction of

the linguistic primitives would simplify both the specification of these systems and the verification

of their properties. In this work, we review different agent-oriented languages and their features;

we then consider a selection of case studies of interest and implement them useing the surveyed

languages. We also evaluate and compare effectiveness of the proposed solution, considering,

in particular, easiness of expressing non-trivial behaviour.

Keywords: multi-robot systems, languages, communication, collective behaviour, automated reasoning

1 INTRODUCTION

Multi-robot systems (MRSs) are an increasingly popular topic in robotics research. Their broad range

of activities have been categorised in several different ways (Brambilla et al., 2013; Arai et al., 2002;

Bayındır, 2016). Typical tasks include exploration or patrolling, object transport and manipulation (e.g.

foraging), deployment (e.g. pattern formation), collective decision making (e.g. flocking), task allocation,

and many others.

Cooperation is the real power of a MRS: by working together, the robots can globally achieve goals

that would be “difficult, if not impossible, to be accomplished by an individual robot” (Arai et al., 2002).

On the other hand, the concerns that typically arise with any robotic system (Vasic and Billard, 2013)

are largely exacerbated in the presence of multiple cooperating units. In particular, the risk of incorrect

operation, whence possible economic losses and even threats to safety, is much greater. Such concerns are

related to the inherent features of MRSs rather than the specific kind of task of a MRS.

A first source of trouble is open-endedness of MRSs, i.e. the fact that robots can dynamically enter

or leave the system. This happens when decommissioning faulty units, or deploying extra units to
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increase the throughput or system’s fault tolerance. Another complication is anonymity, in the sense that

cooperating robots may not necessarily rely on, or be aware of, each other’s identity. The identity is, for

instance, irrelevant in a flock of drones that adjust their directions by looking at each other. Anonymity

has a particularly disruptive impact on communication, as it renders existing traditional mechanisms

such as point-to-point communication fundamentally inadequate. Another cause of concern with MRSs is

decentralisation, i.e. the absence of a central entity to coordinate the robots’ activities. Decentralisation

makes synchronisation especially challenging, if possible at all, and in general makes it difficult to achieve

an acceptable robustness of the interaction protocols. Another source of complexity in MRSs is the

typically large size of the systems, and in particular the considerably large state space resulting from

asynchronous interaction of large numbers of components.

These features result in challenges to the specification of MRSs. A vast portion of literature relies

on general-purpose languages to model MRSs (Pitonakova and Bullock, 2013; Pitonakova et al., 2016;

Buchanan et al., 2016) but, typically, each work focuses on rather narrow classes of systems while making

specific assumptions on the operating contexts. In general, modelling the mentioned features of MRSs

using general-purpose languages is not intuitive, and can lead to increased code complexity, higher

likelihood of programming errors, and generally makes programs hard to develop and maintain, and

complicates reasoning about them.

On the other hand, domain-specific languages with tailored, higher-level primitives that reduce the

conceptual gap with the above mentioned features can make the specification of new MRSs easier, as

well as constraining the complexity of the resulting global behaviour (Matarić, 1993). However, the

heterogeneity of the domains might be detrimental for compositionality; it may become harder to specify

complex systems by composing available solutions. Also, there is some risk in adopting abstractions

that are too specific, as they might oversimplify the problem space and might not be able to realistically

describe scenarios of interest. Thus, linguistic support should aim at addresing the aforementioned sources

of complexity, while achieving an acceptable trade-off between expressiveness and generality.

The nature of MRSs also makes their analysis problematic. For instance, the correctness and efficiency

of an MRS is commonly measured through simulations or experiments in a real, yet controlled,

environment. However, interaction between components may give rise to complex collective behaviour

that is difficult to predict (Matarić, 1995). The interleaving of individual processes also means that it

is often impossible to systematically explore any possible behaviour through simulation: subtle corner

cases can go unnoticed and lead to failure in a real-world deployment. Languages equipped with a clear

semantics can address these concerns by supporting both informal reasoning and formal verification of

properties. Appropriate primitives can also prove helpful in this regard, since verification can often exploit

high-level information on the system to guide the analysis (Clarke et al., 1996; Flanagan and Godefroid,

2005). This, in turn, can make research on more complex systems feasible. In the long term, such

languages could become the core element of integrated environments aiding the design of MRSs through

automated reasoning tools, quite like the currently available integrated development environments (IDEs)

for programming languages.

In this paper we review some languages stemming from MRS and multi-agent systems (MAS) literature.

Our selection is driven by their different nature and goals. Buzz is oriented to real-world applications

and shares some similarities with popular languages, such as Python, JavaScript and Lua. ISPL and

its surrounding framework are specifically designed to enable reasoning on the knowledge of agents,

and provides explicit abstractions for the external environment. Finally, SCEL is a process description

language where MRS features, such as as anonymity and open-endedness, are transparent to the designer,
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allowing for a high degree of naturalness in the specification of individual behaviour. We highlight the

main characterizing features of these three formalisms and compare them by considering how they model

several traits commonly found in MRSs. We also analyse how well the languages can support the design

phase through simulation or verification tools. We focus on languages based on individual behaviour

design. That is, a developer using said languages is mainly concerned with the behaviour of single

components: the expected global behaviour is not explicitly programmed, but is expected to arise from

interaction between the robots. Although alternative methods have been proposed, such as automatic

design of individual behaviour from higher-level specifications (Ulusoy et al., 2013; Nikou et al., 2016)

or top-down behavioural languages (Bachrach et al., 2008), the bottom-up approach is still widely adopted

due to its intuitiveness (Brambilla et al., 2013).

To guide our comparison, we focus on two popular case studies, namely foraging and flocking. When

foraging, robots must find items in the environment and bring them back to a fixed “home” location.

Flocking, on the other hand, is a process where robots that initially move in different directions eventually

agree to head in the same way. Both case studies are commonly observed in biological systems and cover

most of the sources of complexity in MRSs.

This paper is structured as follows. In Section 2 we list a set of features commonly found in MRSs,

describing how they can represent a source of complexity during the specification or analysis of these

systems. Section 3 introduces the considered languages and provides an overview of their main features.

We then compare them on their ability to model the aforementioned features. In Section 4 we describe our

case studies and, if possible, we provide a basic implementation in each language, along with observations

on their respective advantages and limitations. Section 5 contains our conclusions, as well as related and

future work.

2 COMMON FEATURES OF MULTI-ROBOT SYSTEMS

In this section we outline and categorize some common features of MRSs. First of all, these systems

are typically decentralized, as they lack a central unit of control: therefore there is no reliable way for a

component to obtain correct information about the full state of the MRS. Robots might also be free to join

or leave the system at any time, a feature known as open-endedness. This may happen deliberately (e.g.

robots returning to a home location to charge their batteries) or due to unexpected events, such as hardware

failures. Open-endedness complicates reasoning: for instance, robots leaving the system create issues

similar to those raised by failed processes in distributed computing (Lamport, 1978a). Meanwhile, robots

that join a MRS often need to gather information from other components before they are able to cooperate;

as another example, a robot might have to find alternative solutions when a collaborator leaves the system.

This calls for components with self-managing capabilities, such as self-configuration (Kephart and Chess,

2003). Furthermore, computational processes are distributed, both physically and logically, across the

whole system. Physical distribution, among other consequences, means that inter-process communication

may incur significant delays and possible failures. On the other hand, logical displacement requires

additional care to avoid well-known risks of concurrent programming, such as deadlocks and process

starvation. As a further source of complication, often there are no temporal constraints to computation

and interaction, as these systems may be partially or fully asynchronous. For instance, robots may

take an arbitrary long time to send or read a message, and it is known that this can be the source of

some fundamental problems in distributed computing, such as the distributed consensus (Fischer et al.,

1985). Interaction in these systems is also characterized by anonymity, as it does not typically rely on

identity. Moreover, in a decentralized or open-ended system the whole concept of identity is not easy to
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establish, and may even be irrelevant. The ability to select partners according to their current task, or

their capabilities, can be more useful. For instance, robots in a foraging swarm can perform recruiting

by communicating the position of food to idle neighbours (Pitonakova et al., 2017). Such action only

relies on the observed state of neighbours, and thus can be performed also when agents are completely

anonymous.

Due to the above mentioned features, in a MSR, the common interaction patterns of concurrent and

distributed systems, such as point-to-point communication, shared memory, or synchronization, turn out

to be inadequate. Therefore, different solutions have been proposed which better fit to large, open-ended

systems that do not rely on the concept of identity. These include many-to-many communication (e.g.

multicast or broadcast), or even group-oriented interaction. A group-oriented network is composed of

groups of collaborating processes, and the message passing primitives do not target individual processes,

but whole groups (Birman, 1993). Indeed, robots that are popular in the MRS literature, like the

Kilobot (Rubenstein et al., 2012), even lack hardware tools for unicast or synchronous communication,

making the aforementioned approaches the only viable ones.

As the complexity of MRSs increases, there is a growing need for them to react to new environmental

conditions without human support. This feature, known as adaptiveness, is considered a necessity for

future computing systems as a whole (Kephart and Chess, 2003), but is especially attractive in the case of

MRSs, since they are situated in a physical world where a large number of unexpected situations may arise.

Adaptive behaviour can be found in various biological systems such as ant colonies: when a source of

food is found, ants collectively find an optimal path from the nest. When said path is disrupted, the colony

is able to found a new, optimal one by relying on a set of elementary actions performed by individual

ants (Dorigo et al., 2006). This example also shows that system-wide adaptiveness can be obtained even

from simple actions by individual components.

Moreover, robots can be different from one another: their behavior, equipment and capabilities may be

heterogeneous. In principle, it is always possible to describe a system with differentiated behaviour as a

homogeneous one, if the chosen formalism provides adequate control-flow statements. This approach can

be acceptable for modelling mostly homogeneous swarms, but it is insufficient when different groups of

specialized robots are considered: in fact, it introduces a significant overhead at various levels. First of

all, it greatly increases the complexity of the resulting specification. Because of that, very heterogeneous

systems could become hard to understand and maintain. For instance, errors in the control flow may

produce unwanted behaviour. The need to differentiate behaviour at runtime may also negatively affect

the performance of simulations and real-world implementations. Finally, informal reasoning on system

with a complicated control flow is difficult, as well as verification through automated tools.

The large size of the system may hinder the feasibility of practical implementations, as it puts a high

stress on the underlying runtime environment and data structures. Often, an individual behaviour that

is acceptable when the number of robots is small becomes unworkable as the population grows. For

instance, each robot can obtain a quite accurate view of a small system by just exchanging messages with

all the others. But, due to the limited computational and networking capabilities of robots, this is usually

not possible in the case of large MRSs. A large size is detrimental to verification, and even simulation

may become harder. These effects are further complicated by non-determinism and non-linearity. When

the system is non-deterministic, multiple transitions are executable from a given state, complicating the

analysis. Non-linearity, on the other hand, means that a local change may trigger a disproportionate,

potentially system-wide effect. As a consequence, simulation is not only more demanding, but also less

significant, as it might not spot critical, yet subtle cases where the system fails. The size of a system also
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plays a role in its classification. For instance, nearly-homogeneous MRSs with a very large number of

components typically fall into the swarm robotics category. A quantitative definition classifies a system

of size N as a swarm when 102 < N << 1023, with the rationale that “Avogadro-large” systems are better

treated with statistical tools (Beni, 2005; Hamann, 2018). MRSs represent a more generic classification

as they can be smaller in size but more heterogeneous.

The presence of an environment plays a critical role in MRSs, too. In fact, many applications of MRSs

involve sensing and actuation, i.e. the gathering of data from, or manipulation of, the external environment.

It is often unfeasible to model these actions with the same tools used to describe agents, since additional

guarantees of synchrony, atomicity and consistency must be provided which do not hold in agent-to-agent

communication. A similar observation has also been made in the more general context of multi-agent

systems (Weyns and Holvoet, 2004; Weyns et al., 2006).

The manipulation of the environment can also work as a medium of indirect interaction between

robots. This mechanism, known as stigmergy, is often found in biological systems (Grassé, 1959;

Theraulaz and Bonabeau, 1999) and has some benefits over direct message passing. For instance, it is

inherently anonymous, as each agent simply react to changes in the environment without knowing who

caused them. It is also considered a highly scalable solution (Heylighen, 2016). While inaccuracies in

sensing and actuation can lead to lossy information transfer, these advantages make stigmergic interaction

attractive and widely studied (Arkin, 1992; Werfel et al., 2005; Pitonakova and Bullock, 2013).

Additional pecularities of MRSs are strictly related to the knowledge of robots. Each component has

only partial awareness of the current state system it is operating in and possibly even of its own state.

For instance, robots can typically know the position of their neighbours, but not the one of robots that

are farther away. In open-ended systems, they might even not know the size of the system itself. Even

when robots are able to obtain information about the system, said knowledge might be partial or become

outdated by the time it is accessed. This raises the problem of how to adequately represent knowledge and

its propagation among components, which is an important element to accomplish complex coordination

tasks (Pitonakova et al., 2017). As any kind of shared memory is unacceptable in large and distributed

systems, resorting to distributed data structures may be the only feasible approach. However, the design

of these structures must deal with the problems arising from the extremely dynamic nature of MRSs,

which can lead to integrity and consistency problems.

3 LANGUAGES

In this section we present a set of languages suitable for the specification and analysis of MRSs, namely

Buzz (Pinciroli and Beltrame, 2016), ISPL (Lomuscio et al., 2017) and SCEL (De Nicola et al., 2014b).

Our selection is driven by their different nature, which makes them almost orthogonal with respect to

each other. This allows us to better outline their respective strengths and drawbacks. Buzz is oriented

to real-world applications and provides a quite mature runtime environment, including a reference virtual

machine and a simulation platform with an integrated physical engine. Its similarities with popular general-

purpose languages, such as Python, JavaScript and Lua, can also be considered an advantage. ISPL and

its surrounding framework are specifically designed to support epistemic logics, which enables reasoning

on the knowledge of individuals or groups of agents. Appropriate primitives are provided to model the

interaction among agents and of agents with the environment. Finally, SCEL is a process calculus that

offers the possibility of naturally guaranteeing features such as anonymity and open-endedness. This is

made possible by its inherently group-oriented interaction primitives, which rely on dynamic ensembles
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formed by taking into account the exposed features of components. Thanks to its parametric semantics,

the language can also be adapted to manage different knowledge models.

3.1 Buzz

Buzz (Pinciroli and Beltrame, 2016) is a language for heterogeneous robot swarms. It is designed as a

core language that provides a few communication and coordination primitives, and can be extended to

suit the needs of the user. For instance, it supports asynchronous communication with neighbours: each

component maintains a list of neighbours and can broadcast a key-value pair or listen (in a non-blocking

fashion) for a given key. Swarms, i.e. dynamic ensembles of robots, are also a first-class abstraction

in Buzz. Robots can join or leave an ensemble at runtime, and swarms can execute arbitrary functions.

For instance, one could design a system where an ensemble periodically broadcasts sensor data, while a

second swarm receives these messages and uses them to take decisions.

A distinctive feature of the language is the concept of virtual stigmergies (Pinciroli et al., 2016).

Stigmergies represent a first-class abstraction of a shared knowledge base. They are distributed key-

value stores, replicated on all robots, where entries propagate or get overwritten based on their attached

timestamps. For instance, when two agents try to bind the same stigmergy key to different values, there

will be an initial phase where both entries will spread across the system. However, if the swarm is

connected (i.e. each robot has at least one neighbour), at some point the entry with the lower timestamp

will stop propagating. The newer entry, on the other hand, will continue spreading, eventually overwriting

the other one on the local copy of every component. To avoid inconsistencies without resorting to a

global clock, the mechanism relies on Lamport timestamps (Lamport, 1978b). This mechanism gives

some guarantees over the eventual consistency of all local copies of the virtual stigmergies.

Buzz is very marginally concerned with embodiment, i.e. the fact that robots are distinct entities situated

in, and able to interact with, the physical world (Brooks, 1991). Indeed, any kind of sensing and actuation,

including the robot’s own movements, must be modelled by extending the language with appropriate

functions. This philosophy reduces the complexity of the language, but also leaves the developer the

responsibility of defining the semantics of the extensions.

The current implementation of Buzz requires all robots to have a unique identifier, which is attached

to all messages. For instance, the tie-breaking protocol for virtual stigmergies reduces to a comparison

between IDs. Moreover, all robots periodically broadcast their ID so that they can use these messages

to keep their neighbours list up-to-date. These aspects might raise scalability issues, especially in

dense swarms where each robot could have tens of neighbours. Buzz also assumes that a robot, upon

receiving a message, can automatically detect the position of the sender thanks to situated communication

equipment (Støy, 2001). As a consequence, there is no need for robots to declare their own position

in the message payload, making the maintenance of the neighbour list less complex. At the same time,

situated communication devices currently face other limitations: for instance, only robots that are in direct

line-of-sight with each other can exchange messages. This might be a limiting factor in very cluttered

environments.

MRSs defined through Buzz can be simulated on the ARGoS platform (Pinciroli et al., 2012). The user

configures the number of robots and the Buzz script they execute by editing an XML file. This file also

describes the arena and its obstacles, the spatial distribution of robots, and their equipment. Even though

the authors stress that all robots must execute the same Buzz script, we were actually able to simulate

a system where two groups of MarXbots (Bonani et al., 2010) execute slightly different scripts. We

observed that robots can communicate with each other through a virtual stigmergy, even if they belong to
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different groups. However, we also noticed that different agents may have the same identifier. Even though

our simulation behaved as expected, this violates the aforementioned assumption on the uniqueness of IDs

and therefore can lead to undesired consequences.

3.2 ISPL (Interpreted Systems Programming Language)

The ISPL language (Lomuscio et al., 2017) is based on interpreted systems, a generalization of labeled

transition systems where multiple LTSs may synchronize on specific actions (Fagin et al., 1995). Each

agent has a state (a set of user-defined variables) and a protocol that defines the actions it can perform

given the current state. Changes to the local state are encoded in a local evolution function, which takes

into account both the current local state and the actions performed by other agents. As a consequence there

are no explicit primitives for communication, the latter is encoded in the evolution of agents as the result

of the synchronization on specific actions. The state of agents is encapsulated: agents can only observe

other agents’ actions, and eventually synchronize with them. The environment is an exception, as it is a

distinct agent whose variables may be fully or partially observed by the other agents. The synchronization

mechanisms over actions can be used to model different communication schemes involving an arbitrary

number of agents. Furthermore, specific actions can be defined so that they require the simultaneous

interaction of multiple agents and of the environment.

This way of modelling interaction, while flexible, also makes asynchronous interaction difficult to

describe. For instance, representing the delayed reception of a message requires the declaration of

appropriate variables and evolutions within each agent. Value-passing is difficult to describe as well. In

principle, agents should encode each possible value in a different action. This approach may cause an

increase in the complexity of agents, and does not account for values over infinite domains. Moreover,

anonymity and open-endedness are not considered, as the system size is fixed and transitions explicitly

take into account other agents’ actions.

These concerns have been partially addressed in the MCMAS-P framework (Kouvaros and Lomuscio,

2016b), where the size of system is parametrized. The user only specifies the behaviour of each kind of

agent in the system; in the verification phase, concrete systems are instantiated by creating a fixed number

of agents for each role. Thanks to cutoff techniques, verification of a property against a limited number

of concrete systems can be sufficient to prove that all concrete systems derived from the same set of roles

do satisfy the property. However, finding a cutoff for an arbitrary property is, in general, an undecidable

problem. Hence, the cutoff search algorithm of MCMAS-P is sound but incomplete. Moreover, open-

ended systems are still out of reach, as the size of each concrete instantiation is fixed.

Verification is possible through model-checking of epistemic properties in the MCMAS framework.

An epistemic formalism is typically derived from an existing temporal logics by adding modalities

to “reason about the knowledge of the agents in the system” (Lomuscio et al., 2017). For instance,

epistemic logics naturally allows to express properties such as “All agents eventually know ϕ” or “Agent

i always knows ϕ”, where ϕ is another temporal or epistemic property. MCMAS originally supported the

ATLK language, an extension of Alternating Temporal Logics (ATL) (Alur et al., 2002). A more recent

implementation supports a significantly more expressive language, LDLK (Kong and Lomuscio, 2017).

The same framework also provides support for interactive simulation, where the user can choose an initial

state of the system and manually select a sequence of transitions to better understand the behaviour of

agents.
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3.3 SCEL (Software Component Ensemble Language)

SCEL (De Nicola et al., 2014b, 2015) is a formal language for the description and verification of

collective adaptive systems (Hillston, 2014). In order to capture the highly dynamic nature of this class of

systems, it naturally supports concepts such as open-endedness and anonymity.

Communication in SCEL is deeply related to the concept of knowledge repositories. A knowledge

repository is a container of knowledge items. The nature of repositories and items is not specified,

and the SCEL semantics is parametric with respect to their semantics. While most works use

tuple spaces (Gelernter, 1985), other kinds of repositories have been proposed. Soft constraint

programming (Schiex et al., 1995), for instance, can be integrated into SCEL by defining repositories

as constraint stores (Montanari et al., 2015). Each component is equipped with a set of attributes, which

are named values exposed to the whole system. Attributes and their values are stored in the knowledge

repository of the component, thus they can change during the evolution of the system. The set of exposed

attributes, known as interface, can be dynamic as well.

Communication is achieved through the manipulation of said repositories. In addition to inserting items

(via the put action), a component can read or withdraw an item that matches a specified pattern, or

template (via the qry and get actions, respectively). All operations are either point-to-point or attribute-

based, i.e involving only those components that satisfy a given predicate over their exposed attributes.

This leads to a high degree of anonymity, as components do not need to know the identity of interaction

partners, nor to expose their own. Components are able to manipulate their own repository by using the

special self identifier. The knowledge repository is also an abstraction layer over sensing and actuation.

For instance, the intention of an agent to move towards a destination d could be represented by putting a

(“moveTo”, d) item into its own repository. It is assumed that another process will retrieve this tuple, drive

the agent’s motors accordingly, and potentially announce the result of the operation by inserting another

tuple in the repository. Notice that the put action is the only non-blocking one. The blocking nature of

qry and get is useful to implement various reactive patterns and to guarantee processes synchronization.

Guards, for instance, are naturally implemented by waiting until a specific item can be withdrawn from

the component’s own repository. When the semantic of repositories is similar to that of tuple spaces,

generative communication patterns can be easily applied (Carriero and Gelernter, 1989; Carriero et al.,

1994).

Implementing a runtime environment that respects the SCEL operational semantics is not trivial. The

jResp implementation provides three options. The first one relies on a centralized message broker, which

may be unacceptable in scenarios where full decentralization is needed. Alternatively, messages and

predicates could be broadcasted in a bus-like topology. In this case, receivers accept or reject a given

message after evaluating the associated predicate over their own interface. This solution is completely

decentralized, but evidently does not scale well with the size of the system. The third option is a

peer-to-peer topology based on the Scribe protocol (Castro et al., 2002).

With jResp it is also possible to simulate the computational aspects of a SCEL system. However,

physical simulation (such as the one offered by Buzz through ARGoS) is currently unavailable. Multiple

verification approaches exist for systems specified in SCEL and its derivatives. The subset of SCEL

without policies, known as SCELight, can be directly translated to Promela, thus allowing for model-

checking through the SPIN tool (De Nicola et al., 2014a). The MISSCEL implementation (Belzner et al.,

2014) enables simulation and logical model-checking within the MAUDE framework. Furthermore,

MULTIVESTA can be used to verify systems through statistical model-checking, a technique based on
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checking formulae satisfaction against a finite number of executions. As a consequence, it can only

provide a statistical evidence that the required property is satisfied. On the other hand, it is highly

parallelizable and can provide insight on systems that are too large to be formally verified (Legay et al.,

2010).

3.4 Comparison

We summarize in Table 1 our findings about the three formalisms.

Table 1. Comparison of MRS support of the languages we considered.
Buzz ISPL SCEL

Open-endedness No No Yes
Asynchrony Yes No Yes
Anonymity Medium (neighbors) Low High

Heterogeneity Low High High
Communication Ranged broadcast Multicast Multicast

Knowledge
representation

Local variables, virtual
stigmergies

Local and environmental
variables

Parametric (e.g. tuple
spaces)

Environment No Yes Yes (as an additional
component)

Semantics Reference
implementation

Formal (Kripke
structures)

Formal (SOS)

Analysis Physics-based simulation
(ARGoS)

Simulation,
Model-checking
(MCMAS)

Simulation (jResp);
Model-checking (SPIN,
MAUDE); statistical
model checking (VESTA)

We found SCEL to be the only language with the capability to represent systems of dynamic size. Its

syntax contains a new keyword that allows components to “spawn” additional agents. This can be crucial

to naturally specify fully open-ended MRSs.

ISPL is different from both Buzz and SCEL in that it enables explicit specification of the environment. It

is not clear whether implementing an environment on top of Buzz would be possible, as its primitives are

fully asynchronous and oriented to concrete robots. Extending the language seems the most appropriate

approach. Meanwhile, using one or more SCEL components to model an environment could be viable,

since the language provides both asynchronous and synchronous mechanisms, and a more flexible

representation of knowledge. ISPL has no primitives for asynchronous interaction, nor value-passing. This

means that replicating asynchronous features, while possible in principle, would be quite complex and

might negatively affect verification times. The different approaches to communication are also reflected in

the support for anonymity. In ISPL, anonymity is low as interaction happens through synchronization with

specific agents: the mediation of the environment can represent a solution, like in our flocking example

below, but adds complexity to the specification. Buzz offers the possibility of broadcasting or listening

messages among neighbours, but the dependence on unique IDs contrasts with full anonymity. In SCEL,

by contrast, attribute-based actions are inherently anonymous, as sender and receivers can communicate

without any specific information on each other.

As regards the analysis of specified systems, to the best of our knowledge Buzz is the only language

equipped with a physics-based simulation environment. This could be important to study the behaviour

of agents under conditions that they could face in the real world. Meanwhile, Buzz offers little support

for formal verification. On the other hand, no language except SCEL provides documented support for
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statistical model checking, which could be a useful tool for large MRSs. However, given that MCMAS

can already compute traces from a given ISPL system, extending ISPL to support this technique seems

relatively straightforward.

4 CASE STUDIES

4.1 Foraging

Foraging is considered a canonical case study in the literature related to MRS and robotic swarms,

since it can be used to model many kinds of scenarios, such as “waste retrieval” and “search and

rescue” (Brambilla et al., 2013). Specifying a foraging MRS can show the capabilities of the chosen

specification language with respect to different features of these systems, such as the representation of

the agents’ knowledge and their interaction with the environment through sensors and actuators.

Buzz. As Buzz lacks a notion of environment as well as synchronous communication primitives, food

items have to be implemented as components, and specific protocols must be set up to limit inconsistencies.

The system consists of into two swarms: food items and forager agents. Foragers perform a random walk

and repeatedly broadcast a pick-up request to all neighbours. Food items wait for pick-up requests and

if the requesting forager is close enough, they respond with its id to signal that they have been collected

successfully.

function food_listen(vid, value, rid) {

# Check if the robot is closer than 50 cm

d = neighbors.get(rid).distance

if (d < 50) {

neighbors.broadcast("response", rid)

# Stop responding to other foragers

neighbors.ignore("pick_up")

}

}

function robot_listen(vid, value, rid) {

if (value == id) {

log(id, ": picked up ", rid)

}

}

function init() {

# Robots with id = 0, 4, 8 etc. are food items

foodSwarm = swarm.create(1)

foodSwarm.select(id % 4 == 0)

# All the others are foragers

foragerSwarm = foodSwarm.others(2)

if (foodSwarm.in()) {

neighbors.listen("pick_up", food_listen)

} else {

neighbors.listen("response", robot_listen)

}

}
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function step() {

if (foragerSwarm.in()) {

# Only foragers execute this block

# Random walk (sets linear and angular velocity)

gotop(5, math.rng.uniform(-3.0, 3.0))

neighbors.broadcast("pick_up", id)

}

}

We encode the individual behaviour inside two standard Buzz functions. The first one is init(), which

will be executed only once, after the agent has been created. The function step(), instead, is repeatedly

executed by each robot until the experiment terminates. One might think of stopping food items once they

signal their availability to one of the foragers, but it appears that the execution of function step() cannot

be blocked through any statement provided by the language.

This solution has still some limitations. For instance, it is still possible for two foragers to pick up the

same food item. Indeed, if a food item receives two pick-up messages, it could perform the listener

function food listen twice and send two different response messages.

ISPL. Let us assume that the arena is a two-dimensional grid of size 10× 10. We use the Environment

agent to keep track of the position of food items and to recorder whether they have been collected or

not. This information needs to be stored in observable variables, since foraging robots need to access it.

We also define an internal variable with the number of found items, which will be used for verification

purposes. Robots, on the other hand, are agents with a position. We only give the specification of Robot1,

as the only difference between foragers is their identifier.

Agent Environment

Obsvars:

food1X : 1 .. 10;

food1Y : 1 .. 10;

food1 : boolean;

food2X : 1 .. 10;

food2Y : 1 .. 10;

food2 : boolean;

end Obsvars

Vars:

foundItems : 0 .. 2;

end Vars

-- ...

end Agent

Agent Robot1

Vars:

x : 1 .. 10;

y : 1 .. 10;

end Vars

-- ...

end Agent
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We define the protocol and evolution functions so that foragers perform a random walk and can only pick

up an item when they are in its same position, and it has not been collected yet. When an item is collected,

the environment updates the corresponding boolean variable and increments the internal counter.

-- Environment

Evolution:

food1 = false and foundItems = foundItems+1 if

(Robot1.Action = PickFood1);

-- Repeat for all robots and food items

end Evolution

-- Robots

Actions = {Up, Down, Left, Right, PickFood1, PickFood2};

Protocol:

y < 10 : {Up};

y > 1 : {Down};

x < 10 : {Right};

x > 1 : {Left};

Environment.food1 = true and

x = Environment.food1X and

y = Environment.food1Y : {PickFood1};

-- Repeat for all food items

end Protocol

Evolution:

x = x+1 if (Action = Right);

x = x-1 if (Action = Left);

y = y+1 if (Action = Up);

y = y-1 if (Action = Down);

end Evolution

Finally, we specify some constraints on the initial state of the system: namely, all items are available and

the foundItems counter is set to 0. As we specify no restriction on the positions of robots and items,

their value will be fully non-deterministic.

InitStates

Environment.food1 = true and

Environment.food2 = true and

Environment.foundItems = 0;

end InitStates

Alternatively, one could model food items as components. Parametrised versions of this approach are

available in the literature (Kouvaros and Lomuscio, 2016b), but to our knowledge these models do not

take into account the physical location of robots and items.

SCEL. Let us assume knowledge repositories to be tuple spaces. The implementation we describe

is based on more complex examples, related to search and rescue operations, available in the existing

literature on SCEL (De Nicola et al., 2014b, 2015).

We can model both foraging robots and food items as SCEL components. Each forager exposes its own

position pos, the task it is performing (initially all robots are idle), and the range of its sensor. Each food

item runs the same process Pfood :
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Pfood , put (“food”, this.pos )@ (task = “idle” ∧ ‖pos− this.pos‖ ≤ range) .Pfood

+

qry (“found” ) @self.nil

This means that the food item will repeatedly communicate its own position to all idle foragers that

are closer than the range of their own sensor. This process will terminate when the item discovers a

(“found”) tuple into its own knowledge repository. (nil denotes the inactive process). Before describing

the behaviour of foragers, let us assume that each food item initially has a (“lock”) tuple in its repository.

We will use it to ensure that only one forager is able to collect the item.

Foragers alternate between the idle and working states. In the idle state, they just perform a random walk

until they sense a food item. In that case, they change their task attribute accordingly and move towards

the food source.

Pidle , get (“food”, ?f ) @self.Pwork (f) + put (“randomWalk” )@self.Pidle

Pwork (food) , put (“task”, “work” ) @self.

put (“moveTo”, food )@self.qry (“reached”, food )@self.(

get (“lock” )@(pos = food).put (“found” ) @(pos = food).

put (“task”, “idle” )@self .Pidle

+

put (“task”, “idle” )@self .Pidle)

The syntax (“food”, ?f ) denotes a template. In this case, the template is matched by all two-element

tuples where the first element is “food”: when such a tuple is found, it is removed from the repository and

its second element is bound to the variable f . Like in most programming languages, Pwork (f) denotes

a parametric invocation, where the actual parameter f is bound to the formal parameter food . As stated

in Section 3, we use special tuples, such as moveTo and reached, to represent the start and stop of a

movement. Notice that updating the value of an attribute, such as task, needs no additional primitives, as

it just can be obtained by manipulating items in the local repository. As said above, to pick up an item, a

robot must first withdraw its lock tuple. If this is not possible, it means that another forager has already

picked up the item: hence the robot simply turns back to the idle state.

4.2 Flocking

Flocking is an example of emerging behaviour where agents starts from a state of incoherent motion, but

eventually agree to move in the same direction. This case study is a basic instance of a consensus problem,

which is fundamental for many cooperative tasks (Valentini et al., 2017).

Except for cases where the language provides better suited primitives, we will address this problem

by specifying some variation on the voter model. In a voter model, agents are seen as nodes in a graph

that initially have different opinion about what to choose among a finite number of possibilities (Liggett,

2005). Furthermore, each agent can observe and copy the opinion of a random neighbour. A voter model
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can either converge (i.e. all agents eventually adopt the same opinion) or oscillate, based on a number of

factors, such as the initial distribution of opinions, the topology of the graph, etc.

Buzz. We can easily adopt a virtual stigmergy to make the swarm agree on a direction (Table 2).

Table 2. Flocking in Buzz with virtual stigmergies.

function init() {

math.rng.setseed(id*id)

my_yaw = math.rng.uniform(0, 2.0 * math.pi)

vstig = stigmergy.create(1)

vstig.put("yaw", my_yaw)

}

function step() {

var cur_yaw = pose.orientation.yaw % (2. * math.pi)

var err = vstig.get("yaw") - cur_yaw

control(err)

}

In the init() function we use the squared ID of the agent as a seed for the pseudo-random number

generator (PRNG): this is needed to make each agent behave differently. We then generate a random value

for the direction and put it into a virtual stigmergy.

At each execution step, robots retrieve the direction from the stigmergy by calling the vstig.get()

function, and compute the current error (i.e the difference between the desired yaw angle and the current

one). The control() function then rotates the robot if the error is too big, and makes it move forward

otherwise. An elementary implementation of such a function is the following:

function control(err) {

if (math.abs(err) > 0.5) {

sign = err / math.abs(err)

gotop(0, sign * 2) # Rotate (+/- 2 rad/s)

}

else {

gotop(3, 0) # Move forward (3 cm/s)

}

}

Each time a robot reads a value from the stigmergy, the Buzz virtual machine automatically asks its

neighbours to confirm whether its local value is up-to-date. Neighbours either use this information to

update their own local copies or to reply with a more recent value. This mechanism makes it easier for all

robots to converge to a common value, even when parts of the swarm become temporarily disconnected

from the rest.

A basic voter model can also be described in Buzz. We can use the neighbour communication primitives

to enable each robot to broadcast its chosen direction among its neighbours. Periodically, robots listen to

the direction of a neighbour and change their own accordingly (Table 3).

Here the condition (t % 20) == 0 means that robots can only attempt to change their opinion

once every 20 time steps. By altering the condition it is possible to simulate other kinds of models.
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Table 3. Flocking in Buzz: a voter-model approach.

t = 0

function init() {

math.rng.setseed(id*id)

my_yaw = math.rng.uniform(0,2) * math.pi

neighbors.listen("yaw", function(vid, value, rid) {

if(value != my_yaw and (t % 20) == 0) {

my_yaw = value

log(id, " change to ", my_yaw)

}

})

}

function step() {

t = t + 1

var cur_yaw = pose.orientation.yaw % (2. * math.pi)

var err = my_yaw - cur_yaw

control(err)

neighbors.broadcast("yaw", my_yaw)

}

For instance, the waiting time of each robot could follow an exponential (Cox, 1989) or power-

law (Takaguchi and Masuda, 2011) distribution. The effects of zealots, i.e. agents that never change their

opinion (Mobilia et al., 2007), could also be studied.

ISPL. We decided not to rely on explicit communication between robots. To do so, we should create

appropriate protocol and evolution rules for each pair of agents: therefore the size of the specification

would grow quadratically with the number of robots. Our implementation, again, takes advantage of the

Environment agent. Each robot starts with a random direction stored in its state. At any moment, a

robot can move in its stored direction, or it can watch and imitate the direction of the last robot that moved.

Agent Environment

Obsvars:

dir : {Up, Down, Left, Right};

end Obsvars

-- ...

Evolution:

dir = Up if (Robot1.Action = Up);

-- Repeat for all robots and directions

end Evolution

end Agent

Agent Robot1

Vars:

x : 1 .. 10;

y : 1 .. 10;

dir : {Up, Down, Left, Right};

end Vars

Actions = {Up, Down, Left, Right, Watch};

Protocol:

dir = Up and y < 10: {Up, Watch};
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-- Similarly for other directions

Other: {Watch};

end Protocol

Evolution:

dir = Environment.dir if (Action = Watch);

y = y+1 if (Action = Up);

-- Similarly for other directions

end Evolution

end Agent

We define the protocol so that robots cannot move in their chosen direction if they are are on the edges

of the arena. For instance, an agent at position (3, 10) cannot go in the Up direction. In these cases, robots

can only perform the Watch action. We encode this with the special condition Other, which holds in

all the states that do not match the other protocol rules. In this case we were able to verify that two robots

will always agree to move in the same direction, by checking a property of the form AF consensus (for

all possible executions, eventually the consensus proposition will hold). However, when there are three or

more robots, the MCMAS model checker is able to find cyclic traces where consensus is never achieved.

We can slightly alter the description of robots, so that they can move across an edge and get to the

opposite side of the grid. For instance, a robot at (1, 4) will be able to move left and reach (10, 4). In other

words, we consider a toroidal, rather than square, arena. With these changes we are unable to prove global

properties about consensus, even for the two-robot case.

Protocol:

dir = Up : {Up, Watch};

-- ...

end Protocol

Evolution:

y = 1 if (Action = Up and y = 10);

y = y+1 if (Action = Up and y < 10);

-- ...

end Evolution

While ISPL cannot express voter models in a natural way, an ad-hoc version of the

language (ISPL-OFP) has been implemented to model and verify an array of opinion formation

protocols (Kouvaros and Lomuscio, 2016a).

SCEL. Modelling a basic voter model in SCEL is simple. Each component exposes its current position

and direction, and uses the qry action to copy the direction of a neighbour. Due to the semantics of the

action, a neighbour will be selected nondeterministically among the components that satisfy an attribute-

based predicate. In this example the predicate relies on an additional attribute, storing the communication

range of the component, and only targets neighbours exposing a different direction.

P , qry (“direction”, ?d ) @ (‖pos − self .pos‖ ≤ self .range ∧ direction 6= self.direction) .

put (“direction”, d )@self.P
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We can further refine this behaviour by introducing logical clocks (Lamport, 1978b), obtaining a

protocol similar to the one of Buzz based on virtual stigmergies. Suppose that each component has a

(“time”, 0) tuple. This value is also exposed as the time attribute of the component. We use this attribute

to the qry predicate to ignore out-of-date neighbours. We also attach a timestamp to direction tuples.

Whenever a component finds a neighbour with a timestamp t higher than its own, it sets its own clock to

t + 1. A similar approach can be taken to divide the computation into “rounds” and solve more complex

problems, such as distributed graph coloring, see e.g., (Abd Alrahman et al., 2017).

P , qry (“direction”, ?d, ?t )@ (‖pos − self.pos‖ ≤ self.range ∧ time ≥ self.time) .

put (“time”, t+ 1 )@self.

put (“direction”, d, t+ 1 )@self.P

5 CONCLUSIONS, RELATED AND FUTURE WORK

In this work, we have described a number of features typically found in multi-robot systems. These traits

can make MRSs hard to design, implement and reason about. We have presented a selection of languages,

showing how specific linguistic primitives can help in the specification of such systems. We also compared

the languages considering the tools that have been provided to support analysis of their systems. To

better understand the strengths and weaknesses of each language, we considered two case studies that are

popular in the MRS literature, and provided basic implementation in the surveyed languages. We used

these implementations to show how specific abstractions provided by the languages facilitates modelling

non-trivial behaviours. For instance, the presence of synchronous operations is vital for scenarios where

the interaction with the environment is predominant. At the same time, we have seen that group-oriented

forms of interaction, either among neighbours or based on the more general framework of attribute-based

communication, allow for a more natural specification of non-trivial cooperation between agents. Our

work is by no means an exhaustive review of the state of the art. We focused on choosing a meaningful

set of features to allow an effective qualitative comparison of existing languages. Additional languages

and frameworks could be the subject of further investigation. Describing and clarifying the factors that

make MRSs distinctively challenging is also an important first step towards the specification of new MRS-

oriented languages, which is another possible direction of research.

Related work. A number of language surveys can be found in the field of Multi-Agent

Systems (Mascardi et al., 2005; Bordini et al., 2006; Feraud and Galland, 2017). As MASs are a superset

of multi-robot systems, said surveys may lack detail and miss specific features highlighted in our

work. Surveys of robotics languages and platforms are also available (Kramer and Scheutz, 2007;

Nordmann et al., 2014), but to the best of our knowledge they do not address the sources of complexity

presented in this overview. Peculiar traits of complex systems in general, such as emergence, are

also the subject of a substantial amount of research (Heylighen, 1989; Barabási and Albert, 1999;

Odell, 2002). The literature also provides taxonomies for specific aspects found in MRSs, such as

coordination (Yan et al., 2013) and task allocation (Gerkey and Matarić, 2004).

Future work. This work is for us instrumental to design a new language for multi-agent systems by

building on the lesson learned from the three languages we have surveyed. The language we are aiming

at should make it possible an intuitive design of local specifications and automated analysis of global

properties and emerging behaviours. We will aim at a language that combines stigmergic interaction of
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Buzz with the attribute-based communication of SCEL, whose agents will interact by manipulating and

asynchronously propagating their limited share of knowledge. The language will be equipped with a

formal semantics to enable automatic verification of logical properties by building on tools and methods

developed for ISPL.
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