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Abstract—In this paper we propose a method to improve the
accuracy of trajectory optimization for dynamic robots with in-
termittent contact by using orthogonal collocation. Until recently,
most trajectory optimization methods for systems with contacts
employ mode-scheduling, which requires an a priori knowledge
of the contact order and thus cannot produce complex or
non-intuitive behaviors. Contact-implicit trajectory optimization
methods offer a solution to this by allowing the optimization to
make or break contacts as needed, but thus far have suffered from
poor accuracy. Here, we combine methods from direct collocation
using higher order orthogonal polynomials with contact-implicit
optimization to generate trajectories with significantly improved
accuracy. The key insight is to increase the order of the
polynomial representation while maintaining the assumption that
impact occurs over the duration of one finite element.

Index Terms—Motion and Path Planning, Contact Modeling

I. INTRODUCTION

C
ONTACT is ubiquitous in nature. Animals utilize contact

with their environment to enable dexterous manipulation

of objects or agile locomotion. In order for robots to one

day perform similarly complex maneuvers in challenging

environments, contacts must be adequately considered (and

exploited) during motion planning. However, achieving this is

still challenging as impulsive contact represents a significant

numerical challenge for current methods.

One recent approach to solving this problem, introduced

by Posa [1] and Mordatch [2], is contact-implicit optimization

(also called contact-invariant optimization or through-contact

optimization). This method encodes both the contact force and

the body state as part of an optimization problem, with the

contact consistency enforced by algebraic constraints. Unlike

hybrid systems models, which use a fixed contact sequence

defined a priori (or with an outer loop optimization) for the

full system [3–7] or per-leg [8], or Mixed Integer Programming

(MIP) [9, 10], which encodes the contact mode in an integer

variable, in contact-implicit optimization there is no variable

specifying the contact mode at each time, and the contact
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Fig. 1. The concept of contact-implicit optimization using orthogonal col-
location is shown. The state trajectory is expressed as a series of high-order
polynomials on finite elements. Contact mode changes are enforced to only
occur at the edges (mesh points) of the finite elements, ensuring smoothness
and accuracy of the transcription.

is determined implicitly by the optimization. These methods

are very effective for systems with many possible contacts

or an unknown optimal contact sequence, and have enabled,

e.g., discoveries of novel legged gaits [11, 12] and balancing

trajectories [13].

However, most implementations only employ a first-order

(Euler) integration method [1, 2, 13] or a pseudo-trapezoidal

method [11, 14], and are based on time-stepping simulation

[15]. The disadvantage of first-order integration is that these

methods requires a large number of steps, N, for sufficient

accuracy (they have O(1/N) accuracy), which limits their

application to short time-horizon motions. These methods

have been combined with variational integrators to produce

a contact-implicit method with second-order accuracy [16],

as well as versions that use B-Splines [17] or Hermite-

Simpson polynomials [18]. Previous works have noted that

time-stepping methods can never exceed first-order discretiza-

tion due to the fact that discontinuities could exist within the

state trajectories [14, 19–21].

In this paper, we show that higher-order methods can

indeed be employed and that doing so increases the accuracy

of contact-implicit trajectory optimization. Our method uses
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higher-order orthogonal collocation (i.e. it solves the dynamics

at collocation points based on K-th degree orthogonal poly-

nomials) [22, 23] to provide a smoother representation of the

state and velocity at every point on the interior of a finite

element (for O((1/N)2K−1) accuracy).

It is this more accurate smooth representation that [14, 19–

21] point to as the problem with higher-order methods, because

a smooth representation would require an event-finding algo-

rithm (i.e. collision detection) to isolate the non-smooth points.

The presented method resolves this problem by approximating

an event-driven simulation scheme (instead of time-stepping)

within the context of a contact-implicit optimization problem.

That is, the presented method isolates the event times that

the algebraic constraints are activated or deactivated and can

apply an impulsive transition between contact modes. The key

to this working is that we constrain the events (contact mode

switches) to occur only at the mesh points (edges of the finite

elements) as shown in Fig. 1. So long as the optimizer is

given sufficient freedom to adjust the times that these mesh

points represent, it implicitly solves the event-finding problem

as part of the optimization. This eliminates the need for an

additional collision detection algorithm. To make the problem

formulation more tractable, we also present a relaxation that

still maintains several key physical assumptions (especially

impulses acting over the duration of one finite element) from

the first-order implementations. We show that this relaxation

approximates the exact formulation in the limit as time-steps

are allowed to go to zero.

The paper is organized as follows: Sec. II describes the

method, starting with a background on collocation for dy-

namic (but smooth) trajectory optimization (Sec. II-A) and

then contact-implicit trajectory optimization (Sec. II-B). In

Sec. II-C, the application of orthogonal collocation to contact-

implicit optimization problems is presented, with further im-

plementation considerations presented in Sec. II-D. Then,

Sec. III presents three case studies which utilize the method,

ranging from a simple point particle to a bipedal robot.

Lastly, Sec. IV concludes the paper with a discussion of the

implications of the results and proposed future work.

II. METHOD

This paper considers trajectory optimization, where the

dynamics and control inputs are transcribed into a nonlinear

program (NLP) that can be solved with numerical optimization

algorithms. Trajectory optimization can be formulated either

by direct or indirect methods. Here, we focus on direct

methods as indirect methods have known disadvantages [3].

Comprehensive tutorials on trajectory optimization can be

found in [3, 23].

A. Direct Collocation

Direct collocation formulates the trajectory optimization

problem as an NLP without the need for forward integration

(as in shooting methods) [24]. This is done by discretizing

the trajectories (state and control) into N time periods (finite

elements) using polynomials. In our particular case the tra-

jectories are represented using a Runge-Kutta basis with K-

collocation points. The advantage of this representation, when

compared to others such as B-splines [17], is that most of the

polynomial coefficients have the same variable bounds as the

profiles themselves as well as considerably better numerical

accuracy [23, Ch. 8].

For example, consider the state variable z:

dz

dt
= f (z(t), t), z(0) = z0. (1)

For time t in finite element i, this yields the following Runge-

Kutta basis representation of the state variable:

z(t) = zi,0 + hi

K

∑
j=1

Ω j(τ)żi j , t ∈ [ti, ti−1], (2)

where zi,0 is a coefficient that represents the state variable at

the beginning of element i, żi j represents
dz(ti j)

dτ , hi is the length

of the finite element, τ the relative time within that element,

and Ω j(τ) is a polynomial of order K, satisfying:

Ω j(τ) =

∫ τ

0
l̄(τ ′)dτ ′, τ ∈ [0,1], (3)

where l̄(τ ′) = ∏K
k=1,6= j

(τ ′−τ ′k)

(τ ′j−τ ′
k
)
.

Here, we employ K-point Radau collocation (a Gauss-

Jacobi polynomial) to solve the differential equation at selected

points in time. Radau collocation has many attractive features

(stability, stiff decay) as well as having equivalent accuracy to

Implicit Runge Kutta (IRK) integration, O(h2K−1) [23]. Using

this, the state variable at each collocation point k of finite

element i is represented as:

zi,k = zi,0 + hi

K

∑
j=1

Ω j(τk)żi j , k ∈ {1, · · · ,K}, (4)

with Ω derived using (3) and τk the relative time of collocation

point k. For a given K, values for the weightings Ω and time

divisions τ can be found in [23, Ch. 8]. Continuity at the finite

element boundaries is enforced by:

zi,0 = zi−1,K , i ∈ {2, · · · ,N}. (5)

B. Contact-Implicit Trajectory Optimization

For contact-implicit trajectory optimization, the dynamics

(1) can be modeled as a rigid multi-body system using Euler-

Lagrange mechanics with generalized coordinates q and often

expressed in the form:

Mq̈+Cq̇+G = Bu+ JTλ , (6)

where M represents the mass matrix, C the Coriolis and

centrifugal matrix, G the gravitational force, B the input

mapping, u the generalized input, J the contact Jacobian, and

λ the contact forces. Multi-body systems with contact possess

hybrid dynamics, where λ only acts in specific configurations

of the state space (i.e. when in contact). When switching

between contact conditions, Newtonian plastic impact says that

an impulse Λ at the contact location leads to a discontinuity
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in velocity from q̇− (pre-impact) to q̇+ (post-impact), defined

by1:

M(q̇+− q̇−) = JT Λ, Jq̇+ = 0 (7)

which may be derived by taking the limit of a an impact event

as the time duration goes to zero in (6).

Prior contact-implicit methods of trajectory optimization

for these systems [1, 2] are based off the time-stepping

simulation method [15] which discretizes time and considers

the combination of both forces λi and impulses Λi integrated

over time-step i in a combined λi. The dynamics are encoded

using direct transcription using 1-point collocation, i.e. a first

order approximation defined entirely by the value of the states

and contact forces at each mesh point (the start of each finite

element). By including λ as part of the decision variables,

the optimization implicitly chooses the sequence of contacts,

represented as time-steps i where λi > 0. The contact force

requires the complementarity constraint:

λ T
i φ(qi+1) = 0, φ(qi)≥ 0, λi ≥ 0 (8)

where φ(q) represents the non-penetration constraint between

rigid bodies (and J = ∂φ
∂q

). Note that this formulation is not

meant for systems with a large number of bodies or complex

surfaces (e.g. billiards or walking on gravel) and assumes a

finite number of contact constraints. The choice of indices is

important to ensure that a contact force or impulse over a

time-step i enforces the equality φi+1 = 0 at the end of that

time-step. Additional constraints enforce the friction cone2 [1]:

λy,i ≥ 0, λ+
x,i ≥ 0, λ−

x,i ≥ 0, (9)

µλy,i −λ+
x,i −λ−

x,i ≥ 0, (10)

(µλy,i −λ+
x,i−λ−

x,i)
T γi = 0, (11)

with λ = [λ+
x,i −λ−

x,i , λy,i]
T where x is the direction tangent to

the contact surface and y is the direction normal to it, while

γi is the magnitude of the relative tangential velocity at the

point of contact. Additionally, if the contact point is sliding, it

is constrained to do so with a frictional force along the edge

of the friction cone:

γi +ψ(qi, q̇i)≥ 0 (12)

γi −ψ(qi, q̇i)≥ 0 (13)

λ+T
x,i (γi +ψ(qi, q̇i)) = 0 (14)

λ−T
x,i (γi −ψ(qi, q̇i)) = 0 (15)

with ψ(qi, q̇i) the relative tangential velocity at the contact.

The constraints (8), (11), (14), (15) transform the NLP into

a Mathematical Program with Equality Constraints (MPEC)

which is notoriously difficult to solve. The two main methods

for making the MPEC problem more tractable are the ε-

relaxation method and the penalty method [26–28]. In the

1In closed form, these constraints define Λ = −(JM−1JT )−1Jq̇−, as in
e.g. [25, Eqn. 25], however in this optimization context it is more convenient
to leave the definition of the impulse Λ implicit. While other models of impact
dynamics could be used, we believe that plastic impact is the most appropriate
model for robot dynamics for the reasons given in [25, A8].

2For clarity, we’ve only included described the 2D case, but these can easily
be extended to 3D [16].

ε-relaxation method, the complementarity constraints are re-

formulated as a set of inequality constraints, relaxed by a

parameter ε > 0:

αT β = 0 ⇒ αT β ≤ ε, (16)

where α and β are positive slack variables. The MPEC is

then solved as series relaxed problems decreasing ε to a user-

defined accuracy. In the penalty method [29], the complemen-

tarity constraint is removed and its l1 norm is included in the

objective:

min
z

g(z)+ραT β . (17)

This allows the problem to appear more feasible to the NLP,

but requires ρ to be greater than some critical value ρc in

order to exactly satisfy the complementarity at the solution.

In the examples described in Section III, we find that the

best MPEC solution strategy is problem dependent.

C. Our Approach

In this paper, we use direct collocation with higher-order

orthogonal polynomials to represent the state q and velocity

q̇ of a contact-implicit optimization, while enforcing the

dynamics at both the mesh points and the collocation points.

Prior first-order methods evaluate the dynamics at each mesh

point and use a linear interpolation in between (Fig. 2). These

first-order methods do not determine where within a finite

element an impact occurs, because the effect of an impulse

Λ is spread out over the entire element. However, only having

a linear interpolation limits their accuracy both by not locating

the point of impact as well as not following other nonlinear

changes in the trajectory.

Here, with a higher-order representation of the system

within a finite element, contact changes are constrained to

only occur at the mesh points. If this is not done, as in

[17, 18], complementarity is not guaranteed within the finite

element (e.g. the foot could leave or strike the ground at a

collocation point). Using a higher-order representation with

contact changes at the mesh points increases the accuracy of

the trajectory both by isolating the time of impacts and by

tracking the continuous dynamics more closely.

By isolating the event times, the optimization can be con-

sidered as approximating an event-driven simulation scheme

instead of a time-stepping scheme. In event-driven simulation,

the continuous dynamics are integrated with a numerical ODE

(ordinary differential equation) or DAE (differential-algebraic

equation) integration algorithm (e.g. ode45) and stopped

when an event is detected to handle the impulsive change

in contact conditions. A time-stepping scheme combines the

effect of continuous dynamics over a fixed time-step with the

impulsive contact changes in a single step, performing a first-

order integration of the system as an MDI (measure differential

inclusion). These are typically considered separate classes of

numerical algorithms (e.g. [30, Sec. 6.3]), but in this setting

lying along the same continuum.

Once the events are constrained to the mesh points, the

question then becomes how to handle the discontinuous dy-

namics of impact, (7). This was not an issue in the first-

order methods since they are already non-smooth everywhere.
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Fig. 2. Comparison of different approaches to handling impact. In first order
methods, the state is piecewise-linear and the effect of contact forces and
impulses are combined over a finite element. In the hybrid-system formulation,
the state is a smooth polynomial within a finite element and the optimization
solves for the contact forces, impulses, and times. In the relaxed formulation,
the smooth state representation is maintained everywhere but the contact
impulse is again combined with contact force over a finite element. The impact
element is exaggerated in length for clarity.

Here we present two possible solutions: the full hybrid-system

formulation and a more tractable relaxed approximation.

a) Hybrid-system Formulation: The hybrid-system dy-

namics of (7) can be explicitly included in the optimization

by replacing the velocity continuity equations (5). Contact

impulses Λi at each mesh point i are added to the set of

decision variables (Fig. 2), just as contact forces λi are in

any contact-implicit scheme, with the additional constraints:

ΛT
i φ(qi+1) = 0, φ(qi)≥ 0, Λi ≥ 0 (18)

as well as constraints analogous to (9)–(11) in the case of

frictional impact.

b) Relaxed Formulation: However, this hybrid formu-

lation introduces even more complementarity conditions and

thus far has only resulted in a solvable optimization problem

when initialized very close to the correct solution. Therefore,

we relax the hard-impact constraint by spreading the impulse

out over the duration of a finite element (Fig. 2). This may

at first seem to violate the rigid-body model of physics,

as the impulse start to act before the object reaches the

contact. However, this is the same relaxation that the first-order

methods use implicitly [1, 2], the only difference is that the

higher-order version approximates the intermediate trajectory

smoothly while the first-order case does not. The other contact

constraints still hold – the impulse may act just before contact

is made only if the bodies do in fact make contact at the end

of that finite element.

The impulse (encoded as part of the contact force) is only

allowed to be applied for the duration of one finite element.

That time, hi, is a decision variable. In the limit, if we let

hi become very small, the equations of motion converge to

exactly the plastic impact law of (7), as seen in Sec. III-A

and Fig. 3. In practice, the optimization algorithm naturally

chooses small hi with comparatively large contact forces as it

uses this freedom to approximate the rigid-body impact.

Using the complementarity formulation of (8), requiring

contact over finite element i+1 to enable contact forces over

finite element i, also produces a challenging constraint at

liftoff. Just as the contact force could act before touchdown,

it must also cease before liftoff. Smooth (nonimpulsive) liftoff

occurs when the contact force goes to zero anyway, so this con-

straint is not as tricky as the touchdown constraint. However,

the optimizer must have the freedom to either use sufficient

control effort to maintain zero contact force or reduce the time

duration of the liftoff event to a small value of hi. This also

implies that contacts must persist for a minimum dwell time

of at least one finite element, precluding exact solutions to

simultaneous but sequential transitions (e.g. [25, Thm. 8]). An

example showing this limitation is given in Sec. III-A.

D. Implementation Details

A previous application of orthogonal collocation to MPEC

optimizations by Baumrucker & Biegler [29] enforces mode

changes at the mesh points by complementing one variable

with the L1 norm of the other within the finite element. A

new slack variable is introduced:

α ′
i =

K

∑
j=0

αi j , (19)

and then the complementarity is expressed as:

α ′
i βi j = 0. (20)

This solves the complementarity constraint at each collocation

point and ensures that the mode is constant within the finite

element. This formulation ensures accuracy but results in N x

K complementarity equations.

To apply this to contact-implicit optimization, we propose

an additional set of slack variables:

β ′
i =

K

∑
j=0

βi j, (21)

with the following reformulated complementarity:

α ′
i β

′
i = 0, (22)

which increases the problem size, but results in the com-

plementarity constraints only being evaluated once at each

mesh point, while ensuring contact mode is fixed within the

finite element. This formulation can readily be applied to the

complementarity equations (8), (11), (14) and (15).

An additional change that must be introduced when increas-

ing the number of collocation points is that the control input, u,

must be constrained within a finite element. While the control

variables could be represented using Lagrange polynomials,

with discontinuities at the mesh points, in practise this leads
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to an artificial oscillation in control signal over the course of

a finite element which leads to slow convergence (see [23]

for discussion). Here, we employ a piecewise-constant control

within the finite element as this mitigates the problem of

singular arcs in the control problem (though other more refined

control laws may be used instead). An example of why this is

necessary is given in Sec. III-C and Fig. 7.

In summary, the optimization problem has the following

decision variables, indexed by system state h, finite element

i, collocation point j, contact point k, control input l, and

direction m ∈ {x,y}:

qh,i, j System state

q̇h,i, j System velocity

q̈h,i, j System acceleration

λy,i, j,k Normal contact force

λ+
x,i, j,k Tangential positive contact force

λ−
x,i, j,k Tangential negative contact force

ui,l Control input

hi Time duration

αm,i, j ,α
′
m,i slack variables for φi, j,k or γi, j,k

βm,i, j,β
′
m,i slack variables for λm,i,k

For H system states, N finite elements, K point collocation,

and C contact points, and U control inputs, this results in

N(K(3H + 3C)+U + 1+ 8C(K + 1)) decision variables (for

planar friction).

The optimization problem has the following constraints:

(6) Acceleration dynamics

(4), (5) Collocation constraints for q, q̇

(8) Normal complementarity

(9) – (15) Frictional complementarity

(19), (21) Slack variable definitions and constraints

for a total of N(3KH +C(20+ 8K)) constraints, in addition

to problem-specific constraints such as initial and final condi-

tions, bounds on variables such as hi, or input constraints. The

objective function, g, is also problem-specific, with minimum-

time, minimum-effort, and similar functions commonly used.

This results in a large but sparse optimization problem which is

particularly suited for sparse nonlinear solvers such as IPOPT

[31], CONOPT [32], or SNOPT [33]. For the results in this

paper, the optimization problems were written in GAMS [34]

and solved with either IPOPT or CONOPT. This code is

available online:

https://github.com/UCTMechatronics/orthogonal-collocation-with-contacts

III. RESULTS

We implement the contact-implicit trajectory optimization

with orthogonal collocation method on three example prob-

lems, with a focus on testing the hypothesis that it provides

better accuracy. We also show the implications of some of the

formulation decisions discussed in Sec. II-C and II-D.

A. Ball Hitting Ceiling

In this example, we simulate the trajectory of a ball (point

mass) colliding with a ceiling. The ball has an initial upward

velocity and is acted on by gravity and a contact force

when colliding with the ceiling. This example was chosen to

Time (ms)

V
el

o
ci

ty
(m

/
s)

Ball Hitting Ceiling

Hybrid
hL = 10µs

hL = 1µs

hL = 100ns
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0.3

0.2
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Fig. 3. Velocity at the point of impact is depicted. As the time-step lower
bound (hL) is decreased, the solution approaches the true, discontinuous
solution.

demonstrate the ability to successfully capture impulse-like

behavior as the lower bound on finite element time, hL ≤ hi,

is reduced. The system was implemented using 3-point Radau

collocation, with total simulation time (T ) of 1s and 100 finite

elements. The optimization was performed in GAMS using the

CONOPT solver and the complementarity constraints were

formulated using the penalty method. To assess accuracy, a

hybrid-dynamic simulation was also implemented in Matlab

using the ode45 solver (accuracy 1e-12).

The results show that lowering the time-step bound in-

creases the accuracy of the solution and in the limit the

trajectory approaches the hybrid system trajectory, as seen in

Fig. 3. Even in the worst case here, the impact event duration

is around 2.5ms (and the other examples are all less than 1ms).

The system is able to capture the sequential-but-simultaneous

impact and liftoff transitions [25, Thm. 8], lasting one finite

element each, however the liftoff is slightly delayed compared

to the hybrid solution.

B. Double Pendulum with Hard-Stops Swing-Up

The second test system is a double pendulum with hard

stops in the center joint, Fig. 4. For this system we compare

the solving time and accuracy of three- and five-point Radau

collocation algorithms (R3 and R5) to implicit Euler (IE) [1]

and variational integration (VI) [16]. Using a torque τc acting

at the base of the first link, the pendulum must swing itself

up to a stationary vertical configuration.

The second link is constrained with hard contacts to swing

only within π/4 radians relative to the first link. The following

constraints assure that the rebound torque λr can only act when
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θ2

λr

π/4

θ1

τc

Fig. 4. Double pendulum model with hard stops at the center joint.

the link hits these bounds:

α+
up,α

−
up,α

+
lo ,α

−
lo ,λ

+
r ,λ−

r ≥ 0 (23)

α+
up −α−

up =
π

4
− (θ2 −θ1) (24)

α+
lo −α−

lo =−
π

4
− (θ2 −θ1) (25)

α+
upλ−

r = 0 (26)

α−
loλ+

r = 0 (27)

Solving this trajectory optimization problem is challenging

for most NLP solvers. One strategy for improving the con-

vergence rate is to provide a feasible (or close to feasible)

initial solution [35]. As such, this problem was solved in two

sequential stages: first solving for a feasible problem (no cost

function) and then using this solution as a seed to the full

problem to optimize the cost function,

g(z) =
N

∑
i=1

τ2
c,ihi, (28)

The active set solver CONOPT was utilized and the penalty

method (17) was used to formulate the complementarity prob-

lem. The state variables were initialized with random values

between −π and π , while all other variables were set to a

fixed nonzero value (0.01). Each algorithm was tested with 600

random seeds for three different problem sizes: N=50, 100,

and 200 elements. Further tests using 600 and 1000 elements

were run in the case of the IE algorithm, to correspond

to the combined number of collocation points (N × K) for

N=200 with R3 and R5 (since the dynamics are evaluated at

N ×K points). The maneuver was executed in approximately

2 seconds, with the hi allowed to vary within ±20 percent of

2/N seconds.

The accuracy of the solutions was tested by comparing

the state at each collocation point to the value generated by

integrating the dynamic equations from the start of the finite

element using MATLAB’s ode45 solver with 1e-12 accuracy

[29]. Since the VI method does not explicitly use instantaneous

velocities, these values were approximated by calculating the
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Fig. 5. Error and solving times for pendulum swing-up trajectories in all
data sets. Bars indicate the inter-quartile range for 600 trials. Note that extra
tests for N=600 and 1000 for implicit Euler are still not as accurate as N=100
Radau 5-point and are also much slower.

generalized momentum p from the discrete Lagrangian Ld as

in [36]:

pi = D2Ld(qi−1,qi)+ τc,i + τr,i, (29)

where, D2 is the second derivative with respect to time. The

velocities can then be evaluated using p = δL
δ q̇

.

Each trial was run using four cores on a 32 core PC (Intel

Xeon 2.2 GHz, 32 GB RAM). The median values and inter-

quartile range for error and solving time for all problem are

shown in Fig. 5. These results show that the IE and VI

algorithms require more elements and longer solving times to

achieve comparable accuracy to the Radau method (however

see Sec. IV for a discussion of when a variational integrator

may be warranted). For example, note that the N=100 R5

method is both faster and more accurate than either N=600

or N=1000 for IE (both of which evaluate the dynamics at

more points than the N ×K=500 points with R5).

C. Biped

One of the primary motivations for this work is to generate

long-time-horizon optimal motions with legged robots. Here,

we optimize a biped model (based on [37]) to perform a 10m

run. However, we do not prescribe periodicity nor contact

order. In addition to the contact points at the toes, we also

include contact points at the heels, for 4 total contact points.

The model is constrained to start and end standing upright and

at rest with the terminal condition being x(t f ) = 10m with the

objective function of energy minimization as in (28). A 1 m

gap is also included, which the robot is required to negotiate.

The problem is discretized using N = 300 elements, K = 3

Radau collocation, and solved using IPOPT in GAMS. The

complementarity constraints were formulated using the ε-

relaxation method. Due to the four contact points and long-

time horizon, this problem is significantly more challenging to

solve the previous examples having around 90,000 variables

and 100,000 constraints. We employ two stages of initializa-

tion: First, the problem of finding a feasible (fixed cost) and

ε-relaxed (ε = 10) trajectory is solved with fixed time-steps.

This trajectory is then used to seed the full problem, where

the hi are allowed to vary within ±50 percent of T/N. Total
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Fig. 6. Animation of the resulting trajectory showing that the model starts and ends at rest while traversing 10m and negotiating a gap in the floor.

Time (s)

H
ip

T
o

rq
u

e
(N

m
)

Regularization Example

Unconstrained
Piecewise Constant

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

200

150

100

50

0

-50

-100

Fig. 7. A comparison between the unconstrained (changing at each collocation
point) and piecewise constant (fixed over an entire finite element) torque is
depicted. This illustrates the need for regularization of the control input to
prevent oscillation and aid convergence.

convergence time was about 3 hours on the same PC described

in III-B.

The resulting solution (Fig. 6) demonstrates that the method

is able to generate motion plans without prescribing contact

sequences for a multi-contact model. For comparison, an

implicit Euler trajectory (see supplementary video) was also

generated, however the resulting motion is quite unnatural,

exhibiting excessive chattering and floating behaviour. As with

the previous example, implicit Euler and 3-point Radau collo-

cation were compared using ode45 in Matlab and the higher

order collocation improved the RMS error from 1.12× 10−2

to 2.04× 10−4.

To illustrate the need for input torque regularization, we

re-ran the same optimization and allowed the input torque to

be unconstrained within the finite element (i.e. vary at each

collocation point within the element). This nearly doubled

the convergence time over the regularized (piecewise-constant

over the finite element) torque version. Additionally, as is

evident by Fig. 7, without regularization the torque oscillates,

which would be undesirable when implementing this trajectory

on a robot.

IV. DISCUSSION & FUTURE WORK

This paper presents a method for contact-implicit tra-

jectory optimization which utilizes higher order orthogonal

collocation to obtain a more accurate representation of the

dynamics than previous methods. To avoid the problems of

discontinuities in the smooth representation [14, 19–21], we

enforce mode changes to only occur at the mesh points. In

contrast to the limitations of time-stepping simulation, where

“if no collision detection is performed, the integration method

cannot exceed order one,” [14], in the context of trajectory

optimization where the time-steps are not fixed, collision

detection is in fact being performed by the optimizer, allowing

for higher order integration that approximates an event-driven

simulation.

Transitioning from time-stepping to event-driven as the

underlying simulation for the contact-implicit trajectory op-

timization is well justified in many robotic systems where the

frequency of contact changes is relatively low (as opposed

to, e.g., a billiard simulation). Because of this, the higher-

order collocation allows for fewer finite elements to be utilized

without loss of accuracy. Indeed, [30] notes that the time-

stepping scheme, “is of order 1 therefore not very accurate

unless h is decreased a lot ... it should therefore be preferred

for systems with a lot of events only”. However, in the relaxed

formulation presented here the impact events are stretched

over the duration of a full finite element (as in time-stepping

schemes). As such this method maintains the ability to model

systems with many near-simultaneous impacts, with the same

loss of precision that time-stepping incurs in isolating the

effects of the separate events. The main disadvantage of our

method (like other contact-implicit methods) is that it is not

suited for cases with a large number of interacting bodies

as each possible interaction would require a dedicated set of

complementarity constraints, thereby increasing the problem

size considerably [1].

One improvement of the presented method would be to use

a more expressive control basis. In this formulation we have

utilized piecewise-constant inputs (within the finite element)

as a means to regularize and aid convergence of the singular

control problems. Other input control profiles that vary over

the finite element, but still provide the regularization to avoid

the problems shown in Fig. 7, would improve the performance,

e.g. as in [38].

Another interesting future direction of this work would be

to combine the variational methods described by [16] with

orthogonal collocation. This can be achieved by discretizing

the Lagrangian using Radau collocation, thereby increasing the

accuracy while maintaining the attractive energy preservation

properties of the variational methods [39].
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