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Abstract—Pneumatic muscle actuators (PMA) are easy-to-
fabricate, lightweight, compliant, and have high power-to-weight
ratio, thus making them the ideal actuation choice for many
soft and continuum robots. But so far, limited work has been
carried out in dynamic control of PMAs. One reason is that
PMAs are highly hysteretic. Coupled with their high compliance
and response lag, PMAs are challenging to control, particularly
when subjected to external loads. The hysteresis models proposed
to-date rely on many physical and mechanical parameters that
are difficult to measure reliably and therefore of limited use for
implementing dynamic control. In this work, we employ a Bouc-
Wen hysteresis modeling approach to account for the hysteresis of
PMAs and use the model for implementing dynamic control. The
controller is then compared to PID feedback control for a number
of dynamic position tracking tests. The dynamic control based
on the Bouc-Wen hysteresis model shows significantly better
tracking performance. This work lays the foundation towards
implementing dynamic control for PMA-powered high degrees
of freedom soft and continuum robots.

I. INTRODUCTION

Pneumatic muscle actuators (PMA) are a popular choice
for powering soft and continuum robots [1]. There lightweight
design, high compliance and high power-to-weight ratio, com-
bined with the ease of fabrication and customization have
fueled their popularity among the researchers and hobbyists
alike [1]. Invented in late 50’s (also known as Mckibben
artificial muscles [2]) PMAs have been well studied over the
years and commercialized for industrial applications [3]. Based
on the same fundamental operation principle, researchers have
investigated novel varieties of PMA actuators to generate non-
linear and complex deformations beyond the linear (extending
or contracting) strain of traditional PMAs [4]. Moreover, the
PMA’s also laid the foundation for novel types of fluidic mus-
cle actuators, such as fiber-reinforced soft bending actuators
[5], now widespread in soft robotics [6].

Unlike the soft bending actuators [5], PMA powered robots,
such as multisection continuum arms [7], can operate at much
higher pressure levels, and therefore are able to generate higher
forces to execute useful tasks in the task-space. The stiffness
of PMAs, which is a function of the pressure provided,
could be varied within a wider range to attain compliance
for environmental interactions and stiffness for supporting
body weight during manipulation [8] and locomotion [9].
For instance, the well known OctArm continuum robotic

∗ School of Computing, DePaul University, Chicago, IL 60604. email:
igodage@depaul.edu. † Dept. of Mechanical Engineering, University of
Arkansas, Fayetteville, AR 72701. ‡ Dept. of Electrical and Computer
Engineering, Clemson University, SC 29634.

This work is supported in part by the National Science Foundation grant
IIS-1718755.

Fig. 1. Pneumatic muscle actuator (PMA) experimental setup, detailing the
separate elements.

manipulator, developed at Clemson University by Dr. Walker
and the group demonstrated a range of applications including
compliant manipulation of fragile objects as well as manipu-
lating and dragging heavy objects [10].

The recent surge in soft robotics and compliant human-
friendly robotics have collectively put the spotlight back
on compliant actuators such as PMAs [11]. Despite the
widespread usage and research conducted on soft and contin-
uum robots, which has spanned over a decade and half, PMA
powered robots are still largely confined to laboratory settings
with their demonstrated potential untapped. This lag can be
attributed to the lack of effective dynamic control schemes
developed for such robots for handling the compliance and
hysteresis; which essentially leads to better PMA dynamic
models. For instance, for systems as complex as a traditional
robot manipulator (with 7+ degrees of freedom), the contin-
uum robot state-of-the-art research lags in terms of dynamic
control and efficient dynamic models. The latter however has
seen significant advancement lately [12].

The overall dynamics of continuum arms heavily depend on
the dynamics of PMAs. Yet, most of the dynamic models for
continuum robots employs intermediate joint-space variables
such length change of PMAs while pressure is being the true
controlled variable. In quasi-static conditions, one can consider
that the length variation of a PMAs is proportional to pressure.
However, because of the hysteresis, this assumption does not
hold for dynamic motion, which is a requirement for robots
to efficiently operate in the task-space or match the human
operation bandwidth in human spaces as co-robots.

Prior work have taken different avenues to model PMAs
[13], [14]. Bulk of the work focuses on static or quasi-static
models and propose methodologies to systematically derive
the models based on physical parameters (such as bladder
dimensions) and mechanical properties (i.e., elastic coefficient
etc.) of the construction material. However, these properties are
difficult to measure reliably, especially when they are heavily
coupled to one another during PMA development. Thus,
models have been limited to theoretical studies with inadequate
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experimental testing, notably related to dynamics. Relatively
low attention has been paid for developing hysteresis models
for PMAs [14] and limited work has shown experimental
evaluation under external load [15]. Also, tests carried out
to-date were also limited to tracking signals of bandwidth
less than 0.5 Hz. The authors introduced a variant of Bouc-
Wen hysteresis model for PMAs in [16]. The method relies on
experimental characterization to identify the actuator specific
dynamic behavior and hysteresis. This approach is particularly
suitable for accounting for varying performance of PMAs
due to complex and nonlinear interactions of materials and
variations of the fabrication method. Utilizing the Bouc-Wen
hysteresis model, the authors have shown that the model is
able to correctly simulate the hysteretic behavior of PMAs
individually as well as a continuum section (where three PMAs
are bundled together for generating spatial bending).

This work extends the contribution reported in [16] and
presents the initial results on the implementation of dynamic
control for PMA’s based on the Bouc-Wen hysteresis model.
The paper is organized as follows. Section II details the ex-
perimental setup, the dynamic model and the details of system
identification process and the controller design. Section III
presents the experimental results and compares the kinematic
feedback control performance to the computed torque control
output that utilizes the Bouc-Wen hysteresis model followed
by the concluding remarks in Section IV.

II. MATERIALS AND METHODS

A. Experimental Setup

Figure 1 shows the experimental setup consisting of the
prototype PMA, high resolution (2000 quadrature counts per
inch) linear optical encoder, variable external load support,
and air supply to the PMA. The PMA construction is similar
to the one detailed in [16]. The bladder is a silicone tube
of 12 mm diameter with 1.5 mm wall thickness, enclosed
within a 14 mm diameter Nylon braided mesh, and mounted
on 4 mm pneumatic union connectors at either end. The
PMA has 170 mm unactuated length (l0) and 85 mm steady
state extension (calculated from 10 measurements taken 100 s
after applying the pressure step) at 0.4 MPa. The PMA has
a 0.022 kg mass where the moving carriage has 0.045 kg
mass. The PMA is attached between an immobile base and the
low-friction moving carriage (McMasterCarr part # 6250K42),
mounted on a linear rail (McMasterCarr part # 6250K3), to
ensure that the PMA changes length axially. The air pressure
to the PMA is controlled by a digital proportional pressure
regulator (Pneumax 171E2N.T.D.0005S) that is controlled via
an analog, 0-10 V (maps to 0-0.9 MPa) voltage input provided
through a National Instruments PCI-6703 data acquisition in-
terface card. The quadrature encoder pulses are counted using
a CONTEC CNT-3208M-PE timer/counter interface card. The
interface cards are mounted on a Matlab Simulink Realtime
target machine and controlled directly from a Simulink model
on a host computer and solved using an ODE14X solver
at 1 kHz. This high update rate ensures minimal delay and
accurate dynamic control performance.
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Fig. 2. The plot of the sinusoidal chirp input pressure signal, system response
to the input signal, and the simulated system response with the use of optimal
Bouc-Wen shape coefficients.

B. Dynamic Model with Hysteresis

Schematic diagram of the dynamic system model we used
in this work is shown in Fig. 3. The carriage mass, M , to
which the free end of the PMA is considered as a load on
the system. Similar to [16], using the Lagrangian mechanical
principles, the PMA dynamic model can be derived as a single
degree of freedom system given by

(M +m) ẍ+ (M +m)g +Kex+ z = Ap (1)
ż = ẋ[α− {βsgn (ẋz) + γ}|z|] (2)

where M , m, Ke, g, and x are the variable load mass, PMA
mass, PMA bladder linear elastic stiffness, gravitational ac-
celeration, and PMA length change. For an in-depth treatment
of the equation of motion (EoM) derivation, the readers are
referred to [16]. α > 0 ∈ R, β > 0 ∈ R, and γ ∈ R are
dimensionless Bouc-Wen hysteresis loop control parameters.
A is the cross-section are of the PMA and p is the supplied
pressure (joint-space variable).

The shape of the hysteresis curve can be matched to that
of the experimental results by finding the appropriate values
for α, β, and γ. To realize this, we apply the PMA with
a signal of varying frequency to ensure to capture as much
dynamic response information as possible in order to model
the system well in faster motion. The PMA was provided with
a 0.5 MPa sinusoidal chirp signal of frequencies from 0.1 Hz
to 3 Hz for a 15 s duration and the input pressure signal

Fig. 3. PMA model with the Bouc-Wen hysteresis block.



and the system response, x′, were recorded. This experiment
is repeated 10 times and the average system response is
computed by taking the mean response at each time step. The
frequency range and the variation ensure that both quasi-static
(low frequency), transient, and dynamic behavior of the system
are captured. The experimentally recorded data (x′), are then
used to identify the Bouc-Wen hysteresis shape coefficients.
To achieve this, we implemented the EoM, given by (1) and
(2), in Matlab Simulink and defined the cost function, c ∈ R,
given by

c (α, β, γ, d,Ke, pdz) = RMS
∑
∀t

(x− x′) (3)

where t denotes a specific time instance when we measured the
experimental data and x is the simulated system response. To
derive the cost function for the entire simulation, we compute
the vector of differences of the simulated and experimental
data for each time sample and then take the root mean
square (RMS) value of this array. In addition to hysteresis
shape parameters, we include the system damping (d), elastic
coefficient (Ke), and the PMA dead zone (pdz) as parameters
to be modeled for the setup shown in Fig. 1. The reason
for including the latter parameters is that it is challenging to
experimentally measure them reliably in dynamic motion.

We then employed the Matlab global search functionality
and ran a constrained optimization routine (using ’fmincon’)
until we find the optimal Bouc-Wen hysteresis shape param-
eters. Figure 2 also shows the simulated response, obtained
from (1), using the optimal Bouc-Wen shape parameters given
by α = 23.705, β = 1.7267, and γ = −42.593 where
as d = 155.76, Ke = 624.78, and pdz = 66.922 kPa. The
optimized numerical model’s output is then plotted alongside
the experimental data. It can be seen that the numerical model
captures the system dynamics, both steady state and dynamics,
well overall.

III. EXPERIMENTAL RESULTS

The dynamic model is then used to implement the control
system shown in Fig. 4 which includes the standard joint-
space feedback (kinematic) PID controller and the computed

Fig. 4. Computed torque controller and the standard joint-space PID con-
troller.

torque controller [17] utilizing the dynamic model described
in Section II-B. The controller is implemented in Matlab
Simulink Realtime and switched between the two for assessing
the control performance. In the Simulink Realtime model, the
inner control loop was run at 100 Hz where the input signals to
the pressure regulator was run at 20 Hz. This low outer control
loop ensures that the digital pressure regulator bandwidth
is matched without driving the inner pressure control loop
unstable. As the load, we use a 500 g weight and we erected
the experimental setup so that the gravity induced weight
is toward the PMA extension (downwards). This prevents
the PMA from buckling under the load as here, there is no
constraining mechanism like the one reported in [16].

Then we applied the sinusoidal position tracking signal
given by

xd = 0.005 + 0.0225 sin (2πft) (4)

where f is the frequency of the signal. Note the 0.005 m bias
we applied to the tracking signal to compensate initial position
offset caused by the applied external load.

The performance of PID feedback control and the proposed
computed torque controller that uses the Bouc-Wen hysteresis
model was then evaluated. The sub-figures under each test
shown in Fig. 5 compare the position tracking error for
both PID control and computed torque controllers. Figure 5-
a shows the controller performance results for f = 0.5 Hz
signal tracking. Note that 0.5 Hz is relatively fast signals to
track in comparison to prior work on PMA control which
typically include frequencies less than 0.5 Hz. The computed
torque controller performance is superior to PID controller
particularly in phase response. This is significant, especially
when comparing the inherent lag present in PMAs. For in-
stance, the system response for the characterization signal
shown in Fig. 2, exhibit this phase lag of the output. This
lag is reflected on the PID controller output and becomes a
significant factor when tracking high frequency signals such
as 1 Hz (Fig. 5-b). This system delay, to a lesser degree, also
affects the computed torque controller but yet shows better
tracking performance where PID controller fails to maintain
the pace of tracking. Note that the dynamic controlled response
exhibits about 10% overshoot but quickly corrects quickly
to follow the falling edge accurately. We then pushed our
controllers to track a 2 Hz signal and the results are compared
in Fig. 5-c. Here, both controllers were unable to track the
signal well, although the computed torque controller output
was better overall and within an acceptable, less than 180◦,
phase lag and overall tracking amplitude profile. Whereas the
PID control output was 180◦ out of phase. Hence, the proposed
work demonstrates strong potential to be useful in realizing
PMA-powered multisection continuum arm dynamic control
towards applications in human spaces.
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Fig. 5. Computed torque controller and the standard joint-space PID controller
performance comparison, (a) 0.5 Hz frequency, (b) 1.0 Hz, and (c) 2.0 Hz. The
plots below of each experiments shows the tracking error. xd is the desired
tracking signal, xFB is the PID controller output, and xCT is the computed
torque controller output.

IV. CONCLUSIONS AND FUTURE WORK

Pneumatic muscle actuators (PMAs) are the choice of
many, researchers and hobbyists alike for powering soft and
continuum robots. PMA desirable features include inherent
compliance and high power-to-weight ratio. PMA operation
is highly hysteretic, posing challenges in controlling them,
particularly in highly dynamic applications. Consequently,
the soft and continuum robots so far have been limited to
teleoperation (open-loop control) or kinematic (slow motions)
control thus limiting their application potential. We proposed
a dynamic control scheme for PMAs, which is based on the

dynamic model previously proposed by the authors, where
hysteresis is modeled via a Bouc-Wen hysteresis model. The
work compared the dynamic control performance to a PID
feedback controller for a number of dynamic position tracking
tests on a PMA with external loading. The results showed
that the proposed dynamic controller is capable of tracking
the dynamic signals better. We plan to extend the proposed
dynamic control approach to the continuum arm reported in
[12] in manipulation tasks in human spaces.
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