
Parameter Sharing Reinforcement Learning Architecture for Multi
Agent Driving Behaviors

Meha Kaushik1, Phaniteja S2 and K. Madhava Krishna3

Abstract— Multi-agent learning provides a potential frame-
work for learning and simulating traffic behaviors. This paper
proposes a novel architecture to learn multiple driving behav-
iors in a traffic scenario. The proposed architecture can learn
multiple behaviors independently as well as simultaneously.
We take advantage of the homogeneity of agents and learn
in a parameter sharing paradigm. To further speed up the
training process asynchronous updates are employed into the
architecture. While learning different behaviors simultaneously,
the given framework was also able to learn cooperation between
the agents, without any explicit communication. We applied
this framework to learn two important behaviors in driving:
1) Lane-Keeping and 2) Over-Taking. Results indicate faster
convergence and learning of a more generic behavior, that is
scalable to any number of agents. When compared the results
with existing approaches, our results indicate equal and even
better performance in some cases.

I. INTRODUCTION AND RELATED WORK

Reinforcement Learning (RL) algorithms when trained
with the correct reward functions and favorable for learning,
training conditions, have shown surprisingly impressive re-
sults. Some popular examples being: mastering the Go Game
[1], playing Atari Games [2] and the very recent, defeating
the world’s top professionals in DOTA [3]. RL has shown
promising results in learning driving behaviors for single
agents [4], [5], [6], [7], [8], [9]. Inspired from the same, this
work focuses on behavioral based learning in multi agent
settings.

A lot of prior work exists for multi agent systems [10],
[11], [12]. The major paradigms include frameworks which
use inter agent communication [13], [14], and the ones which
learn in a decentralized manner [15] and ones which learn
in a centralized manner [16], there also exist frameworks
where training is centralized but testing is decentralized
[17], [18]. Centralized learning refers to learning actions
jointly for all the agents. The input to the algorithm is the
observation and action of all the agents, which results in a
major disadvantage: the exponential increase in state space
with the number of agents. Secondly, centralized approaches
are centralized not only during training but during testing
as well, resulting in higher resource requirements for actual
deployments. Unlike centralized approaches, in a concurrent
learning setting, multiple agents in the same environment
learn independently. Each one of them will have their own

All authors are affiliated with The Robotics Research
Center, International Institute of Information Technology,
Hyderabad. meha.kaushik@research.iiit.ac.in1

singamaneniphani.teja@research.iiit.ac.in2

mkrishna@iiit.ac.in3

networks, policies, observations and actions. This is equiv-
alent of learning multiple single agent learnings in a same
environment. The disadvantage of this approach is the huge
number of parameters and that no advantage is drawn from
the fact that agents are learning together. Lastly, each agent
is learning independently, hence the environment is non-
stationary which can lead to instability.

When similar agents are learning similar behaviors, their
parameters can be shared to enhance the speed of learning
and to decrease the complexity and resource utilization of
the algorithm. This concept of parameter sharing was first
introduced by Tan et.al in [19]. Authors showed that if
cooperation is done intelligently, each agent can benefit
from other agents’ instantaneous information, episodic expe-
rience, and learned knowledge. Sharing learned policies and
episodes between agents can speed up the whole learning.
Policies can be shared between homogeneous agents only,
and if episodes can be interpreted, heterogeneous agents can
also benefit from sharing episodes.

Chu et.al have shown Parameter Sharing in special cases in
[20]. Recently, Gupta et.al [21] introduced Parameter Sharing
extensions of three popular RL algorithms: Deep Q-Network
(DQN) [22], Asyncronous Advantage Actor-Critic (A3C)
[23] and Trust Region Policy Optimization (TRPO) [24].
Their results indicate a scalable cooperative reinforcement
learning algorithm, Parameter-Sharing TRPO and also show
that Policy Gradient methods outperform temporal-difference
and actor-critic methods. Inspired by their success, we have
developed a Parameter Sharing Deep Deterministic Policy
Gradients (DDPG) [25] architecture, where the agents share
their Actor and Critic Networks.

The proposed architecture was applied to traffic agent
behaviors where multiple homogeneous agents are learning
similar behavior, which is trained by asynchronous and
cumulative efforts of all agents. The primary motivation
behind the proposed work is to develop a method which
can be used to generate behavior based traffic in simulators.
With the rising interests in autonomous driving research,
simulated environments provide a fast and risk-free method
to develop and test the algorithms. To the best of our
knowledge, this is the first work that targets behavior based
multi agent learning using Deep RL. Further, results indicate
faster trainings, scalable learning, which can be tested with
varied number of agents, independent from the number of
agents trained earlier. Importantly, the architecture is able to
learn multiple behaviors simultaneously using single Actor-
Critic Networks.

The rest of the paper is organized as follows, Section II ex-

ar
X

iv
:1

81
1.

07
21

4v
1

 [
cs

.L
G

]
 1

7
N

ov
 2

01
8

plains the architectural details of our proposed approach and
Section III contains the details of implementation specific to
behavior learning for driving agents and finally section IV
shows the results of various experiments from our approach.

II. PROPOSED ARCHITECTURE

Multi agent learning is a challenging task because of
the dynamic nature of the environment. Each agent ex-
plores the environment in an attempt to learn a policy
which increases the complexity of learning for other agents.
Above everything, learning for multiple agents involve high
number of parameters and resource requirements, which
further limits the performance of the algorithms. In this
section we propose and explain an architecture that addresses
these problems using the concept of parameter sharing. The
proposed architecture is based on Deep Deterministic Policy
Gradients (DDPG) [25], one of the first RL algorithms which
targeted problem solving in continuous spaces. It has shown
promising results in wide ranged domains: Humanoids [26],
controlling a bicycle [27] and the most relevant here, driving
on tracks [5] and overtaking behavior in presence of other
cars [6].

Fig. 1: Parameter Shared DDPG (PS-DDPG). The purple bars
in the figures lets only one signal to pass at one point of time,
depending on which agent is selected.

The proposed architecture is shown in Fig 1. As shown in
the figure, both Actor and Critic Network are shared between
all the agents. Apart from these, we also maintain a shared
Replay Buffer, which stores the experiences from all the
agents. Each agent has its own copy of its state informa-
tion, its observations from the environment, the actions it
takes and its corresponding rewards. For a given agent this
information is not known to any other agent. However, the
data stored in Replay Buffer is not distinguishable and hence
each agent gets benefits from the experiences of all agents.
Finally, actor and critic networks are updated asynchronously
by each agent at each step. The update equations are given
as follows:
• The Critic Network learns by minimising the loss be-

tween target y and the current Q value:

L =
1
N ∑

t
(yi,t −Q(si,t ,ai,t))

2

yi,t = (ri,t + γQT (si,t+1,µT (si,t+1)))

(1)

where ri,t is the reward for ith agent at the tth timestep,
QT (si,t+1,µT (si,t+1)) is the target Q value for the state-
action pair (si,t+1,µT (si,t+1)) where µT (si, t +1) is ob-
tained from the target actor network, Q(si,t ,ai,t) is the
Q value from the learned network, N is the batch-size
and γ is the discount factor.

• The Actor Network weights are updated as:

θ µ = θ µ +α∇θ µ J

∇θ µ J ≈ 1
N ∑

t
∇aQ(s,a)|s=si,t ,a=µ(si,t)∇θ µ µ(s)|s=si,t

(2)

where N is the batch-size, θ Q are the critic network
parameters and θ µ are the actor network parameters, α

is the learning rate. The rest of the terms have the same
meaning as those in Eq. 1.

The reward function has to be represented using one standard
function for all the agents, independent of the behavior they
learn. Additionally, the reward function should only contain
variables which can be derived from the state information
and the observation of the agent. This condition, makes sure
that the experiences in the replay buffer could be generalized
to all agents.

The proposed setting is highly advantageous over multiple
DDPG 1 setting. Firstly, in each step, every agent is updating
the networks, hence the speed of training is increased by
n times, where n is the total number of agents learning.
In a multiple DDPG setting, since each agent maintains a
separate Actor and Critic, only one update is possible for the
corresponding networks in each step. Hence, it takes longer
time to converge. Moreover, because of multiple Actor and
Critic Networks, very large number of parameters are present
in the architecture.

Secondly, the agents in the proposed architecture use a
shared replay buffer. Sharing the replay buffer increases the
diversity of experience for all the agents. This way, the
learned behavior of one agent does not depend only on
the experiences it sees, rather on the experiences of all the
agents which are getting trained. Sharing is possible, since
the agents are homogeneous in their properties. Unlike this
setting, Multiple DDPG do not have a shared replay buffer
and depends only on the agents individual experiences even
when the agents are homogeneous. This is another drawback
in this setting, even though the agents are learning in multi
agent setting, they do not make use of it for faster learning.

III. IMPLEMENTATION DETAILS

We use a modified version of TORCS called Gym-TORCS
[28] which supports development of RL algorithms. The
agent car used is ”scr server”. We use a NVIDIA GeForce
GTX 1080 GPU for training.

For individual behavior learning (either Lanekeeping or
Overtaking) , the state vector is a 65 sized array consisting
of the following sensor data:

1) Angle between the car and the axis of the track.

1Learning for multiple agents in a same environment using independent
DDPGs for each of them

2) Track Information: Readings from 19 sensors with a
200m range, present at every 10◦ on the front half of
the car. They return the distance to the track edge.

3) Track Position: Distance between the car and the axis
of the track, normalized with respect to the track width.

4) SpeedX, SpeedY, SpeedZ
5) Wheel Spin Velocity of each of the 4 wheels.
6) Rotations per minute of the car engine
7) Opponent information: Array of 36 sensor values,

each corresponding to the distance of the nearest
opponent in the range of 200 meters, located at a
difference of 10◦, spanning the complete car.

Further details about each of these sensor readings can be
found in [29]. The Action Vector consists of continuous
values of steer (-1,1), acceleration (0,1) and brake (0,1).

A. Reward functions for the Behaviors learned

For all of our experiments, we have used two main reward
functions. Both of these have been inspired from the work
done in [6].

1) Lanekeeping: Lanekeeping is a behavior when the
agent drives straight on the road and it is motivated by the
distance it moves along the lane in each step. The Reward
function to learn this behavior is given by:

RLanekeeping = vx(cosθ − sinθ) (3)

where vx denotes the longitudinal velocity of the car, θ

denotes the angle between the car and the track axis. We
give a positive reward when the car moves forward along
the track axis, given by vxcosθ , and negative reward when
it moves laterally, i.e. perpendicular to the track axis, given
by −vxsinθ . The above function can standalone handle the
negative impact conditions like collisions, off track drifting,
since on colliding with walls or other agents, ego vehicle’s
velocity will be decreased and hence the above term. The
decrease whether significant or not, the velocity has high
probability of remaining positive. The learning algorithm
would take high number of episodes to understand that
collisions are bad. To increase the learning, we introduce
extra reward conditions for such not required cases.

TABLE I: Extra Rewarding Conditions

Condition Reward
Collision −1000
Off track drifting −1000
No Progress −500

2) Overtaking: We used the reward of overtaking in [6].
The reward function in this case is given by:

Rovertaking = RLanekeeping +100∗ (n− racePos) (4)

Here n denotes total number of cars in a given episode and
racePos denotes the position of car in the race, which is
obtained from the simulator. The extra reward conditions are
same as in table I.

3) Multi-Behavior Learning: By multi-behavior, we im-
ply learning multiple behaviors simultaneously using one
single instance of the architecture. For Multi-Behavior learn-
ing the type of agents have to be distinguished somehow.
For the same, we gave them a ids. Agents which had to
learn the overtaking behavior were given id as 1 and the
lanekeeping agents were given the id as 0. The state vector
was modified from 65 to 66 space, because of the addition
of id. Reward function should be a single equation using the
terms derivable from observation or state vector of the agent.
Following this,

Rmulti = RLanekeeping + id ∗ (100∗ (n− racePos)) (5)

For a given training, n is the total number of agents present
in the simulator, which is a constant term, hence satisfies the
requirement of permissible variables in the reward function.
Next, racePos is a term TORCS provides as observation for
each agent, hence this variable also satisfies the requirement.

IV. RESULTS

A. Lanekeeping Behavior

• Figure 2 depict the result of our architecture. We learned
lanekeeping behavior for 6 agents and tested it for
number as high as 20. The agents moved harmoniously
with minimal collisions and followed the lane, staying
in the middle maximal times.

Fig. 2: Various instances of lanekeeping results from TORCS, the
blue and green cars, all are the trained agents. The training was
done on 6 agents, the results are shown on 3, 5 10 and 15 agents.

• Table II shows how the learning has evolved with
training episodes. At episode 0, the agents starts to train,
hence the reward is 0 while testing. Till 300 episode of
training the agents have learned to drive on lane, with
collisions only around 11% times, after 600 episodes
of training the average sum of reward of the complete
system has improvised, and collisions are approximately
same. From 300 to 600, the training results have almost
saturated. The reward indicates sum of reward of all
agents over an episode. While training there were 6
learning agents in the environment.

No. of
Training
Episodes

Sum of
Reward
of all
agents

%colliding
steps
in the
system

Observations

0 0 0 Nothing learned

300 47476 10.89 Learns to drive on
lane

600 50180 11.4 More stable driving

TABLE II: The percentage increase in reward from 300 to 600
episodes, is 5%, indicating over time reward value starts saturating.
All the values are averaged over 20 episodes. The sum of reward
of all agents is calculated episode wise, averaged over 20 episodes.
%colliding steps indicate the times when any one or more agents
were experiencing collisions

Number
of Agents

Average total
Reward/Progress

per agent
3 8165.8
5 7903.8
7 7918.6

10 7510.3
12 7570.8
15 7678

TABLE III: Total reward of each agent in an episode, averaged
over 600 episodes, for lanekeeping behavior. We observe as the
number of agents increase the total reward for each agent is approx-
imately same, this indicates that with increasing number of agents,
the per agent reward is not getting affected, implying behavior
and performance of agents is not affected. This demonstrates both
scalability and stability of our approach.

• Lastly, we compare PS-DDPG with regular DDPG,
trained in a single agent environment and multiple
DDPG agents trained in together.

Fig. 3: Comparing results of PS-DDPG and DDPG. The x-axis
in both plots is number of agents. The plot on the left shows the
number of collisions as the number of agents increase and the right
one shows the average reward in the same settings. In the figure,
blue bars correspond to single DDPG and red bars to PS-DDPG.
The results are produced after 300 episodes of training using PS-
DDPG with 8 agents and after 2k episodes of training of single
DDPG. The evaluation is done by varying the number of agents.
In terms of total number of collisions the complete system sees,
both of the approaches perform similar. As one can expect, with
the increase in number of agents, total collisions increase for both
approaches. In the second graph, we compare the total reward per
agent, per time step, averaged over 20 episodes. With the increase
in number of agents, this value decreases for DDPG, indicating,
single agent DDPG cannot support stable scalability. PS-DDPG,
on the contrary, has a relatively stable value of rewards.

In multi-DDPG setting, when 6 agents were trained simul-
taneously, only the 3 agents in the front were able to learn

the behaviour. The last 3 agents could not learn to drive and
got stuck at local minima. During training they collided with
the front cars and gained negative rewards, henceforth they
learned not to move forward at all. In this setting, the average
reward per agent is highest in case of single agent with
79.3257 and declined as more agents are introduced into the
setting. In case of 7 agents, the average reward obtained in
42.6297. However, in PS-DDPG setting, the average reward
remained almost constant, as evident from the Fig. 3

The number of training episodes required for DDPG were
2000, for PS-DDPG were 300 and for Multiple DDPGs
together were 3000.

B. Overtaking behavior

Similar to the curriculum learning approach followed in
for overtaking behaviors in [6], we initialized our overtaking
learning with weights from lanekeeping learning. Curriculum
learning not only helps in learning the behavior but also
reduces the training time.

• Figure 4 shows results of our approach for overtaking
behavior. Our learned agents, align themselves towards
right end, overtake the opponent agents and scatter back
on the road.

• Evaluation of how the training progresses is done in
table IV. Overtaking behavior is learned in a curricu-
lum fashion, it starts with initialization of lanekeeping
weights. Hence, the total system reward is not zero,
unlike the lanekeeping case. Overtaking, being a more
complex behavior, is effectively learned in 600 episodes,
unlike lanekeeping which was learned in 300 episodes
only.

No. of
Training
Episodes

Sum of
Reward
of all
agents

Sum of
Progress

of all
agents

%colliding
steps
in the
system

Observations

0 241420 43516 21.6 Follows lane-
keeping behavior

300 228160 39464 15.98

Learns to deviate
from lane and move

towards side to
avoid collision

600 295010 49813 9.55 Learns to overtake

TABLE IV: Progress of training results with the number of
episodes. The value “progress” in the table, indicates the reward for
lanekeeping behavior which is the forward movement made along
the track in one time step. The terms reward and %colliding steps
are same as in table II. Observe how the Progress decreases and then
increases. The initial high value is because the agent blindly follows
lane, colliding with anyone who comes in between, eventually as
the agent tries to navigate safely, collisions decrease as well as
the value progress, but the reward is increasing over the training
epochs.

Fig. 4: In the above figure, the yellow cars have learned overtaking behavior. The blue cars are passive opponent agents. All the yellow
cars start from behind the blue cars, they move to left side of road, overtake the opponent cars and comeback to middle of the road.

Fig. 5: The blue bars in all the plots correspond to single DDPG setting while the red ones correspond to PS-DDPG. The figure shows
number of collisions, progress and average reward against increasing number of agents. The values Reward and Progress are calculated
for each time step, averaged over 20 episodes and number of agents indicate the agents which are using the trained network for their
control. We observe single agent DDPG performs better in case of 1 agent, but as the number of agents increase, the performance in
terms of collisions and progress decrease drastically for DDPG. Contrarily, PS-DDPG performs better, this justifies not only scalability
but generality of performance i.e. PS-DDPG can perform across wide variety of situations. The reason of the same can be attributed to the
multi agent setting in training which helps it to explore better and see diverse set of experiences. The reward values are linearly increasing
because of the reason mentioned in V. Overall, the above graphs indicate better performance for PS-DDPG then DDPG.

Number
of Agents

Average total
Reward per agent

Average total
value of progress

per agent

Average
Colliding steps

per agent
3 56295 8295.2 13
5 46702 8401.9 10
7 52798 7769.6 20

10 62418 8088.3 13.6
12 6.7859 7909.4 14
15 76189 7742 8.7

TABLE V: Number of agents indicate the number of agents
which were following overtaking behavior. The values, reward and
progress are cumulative over all time steps in an episode, averaged
over 20 episodes. Average colliding steps are also defined over all
time steps in an episode. We observe that the values of progress and
collisions have remained in the range 9-14, with an outlier when
number of agents was 7. Similarly, progress has also remained in
range of 7.7k to 8.2k. This indicates that the performance of agents
was not affected by the increase in number of agents, which further
justifies the scalability of the architecture. Lastly, the values in
reward are increasing, since reward is proportional to total number
of agents in the scene (the term, (n-racePos)), which causes this
linear increase in average reward values.

Lastly, we compare PS-DDPG with single agent learned
DDPG, in table 5. Similar to lanekeeping case, we ex-
perimented replicating results for overtaking using multiple
DDPG learners. Even though, initial weights of the network
were initialized with lanekeeping stable weights, the agents
behind the first two agents, could not learn the overtaking
behavior. Unfortunately, in multiple DDPGs, even after ini-
tialization with lanekeeping rewards, only first two agents
were able to learn something. The other agents did not
learn anything. The resulting learned behavior of first two
agents was equivalent to the single DDPG training behavior.
The number of training episodes required, after curriculum
learning, for DDPG were 1k, for PS-DDPG were 600 and
for multiple DDPGs together were more than 2k.

C. Learning cooperative multiple behaviors
We learned the two behaviors using a shared network.

The reward function have been described in section III. The
training process required required around 1.5k episodes to

CaseA Reward Progress Collisions
Overtaking 828.7944 78.7944 23.6667

Lanekeeping 39.9274 39.9274 55.6667
Total 434.3609 59.3609 79.3333

CaseB
Lanekeeping 45.4132 45.4132 87.3333
Overtaking 703.1208 64.1625 54.6667

Total 561.4005 82.1817 142
CaseC
Lanekeeping 52.8251 52.8251 46.6667
Overtaking 711.8831 67.5081 64.3333
Total 382.3541 60.1666 111

TABLE VI: Analysis of results when the two behaviors were
learned simultaneously. Case A refers to the orientation, when all he
overtaking agents were placed ahead of all the lanekeeping agents,
Case B is vice versa and Case C is all the agents were randomly
mixed withe each other. We have used 8 agents, 4 of each type.
Here, reward and progress are averaged over timesteps for each
agent, over 20 episodes. For all the three orientations the value
of reward and progress are lying in similar ranges, indicating the
stability of the algorithm across diverse scenes. The collision values
are higher than single behavior learning, since the scenes are more
complex now.

converge. Our main observations indicated that the lane-
keeping agents moved slowly when in presence of other
agents, they cannot distinguish the other agents as lane-
keeping or overtaking. When they are not in vicinity of
other agents, their move with higher velocities. Similarly,
overtaking agents are always high sped, they do not compete
with other agents, since competition would lead to instability,
had the other agent been a overtaking agent. They instead
learn how to change lanes smoothly in order to overtake and
once they overtake, they maintain the speed to stay ahead in
lane. Our quantitative results are shown in figure 6 and table
VI.

Fig. 6: Results when multiple behavior were learned using one
shared Actor-Critic Network. The yellow agents are overtaking
agents and blue agents are lanekeeping agents. Both the behaviors
have been learned by a single Actor-Critic instance. The blue cars
cooperate with the yellow cars, by slowing down in the start, once
the yellow cars have overtook, the blue cars also speed up to
increase their own reward which corresponds to the progress along
the lane.

Fig. 7: Results when traditional DDPG was used for multiple
agents. In 6 agent case, the last 3 agents cannot learn to drive.
They are stuck at local minima, during training they collided with
the front cars and gained negative rewards, henceforth they learned
not to move forward.

V. CONCLUSIONS
Parameter Sharing is a well known concept in multi agent

systems, we extended it for Deep Deterministic Policy Gra-
dients for a particular case of simulated highway behaviors.
The homogeneous nature of the agents, enabled sharing
the replay buffer, hence each agent now has a plethora
of experiences. The network is updated N times in each
time step, because of which the algorithm converges faster.
In the cases when connecting additional agents does not
require heavy resources, PS-DDPG can be used to speed
up the training and to learn more generically. Apart from
its advantages over DDPG, it serves as a fast-asynchronous
multi agent learning algorithm. With a correct formulation of
reward function and state vector, multiple behaviors can be
learned jointly, an example of which is shown in this work.
Another advantage the current work offers is scalability. This
can be used to generate behavioral traffic in simulations.
Given the interests in autonomous driving, a simulator which
provides scalable traffic will help accelerate many complex
research statements.

REFERENCES

[1] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature,
2016.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing
atari with deep reinforcement learning. In NIPS Deep Learning
Workshop, 2013.

[3] OpenAI. Openai five. https://blog.openai.com/
openai-five/, 2018.

https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/

[4] Wei Xia, Huiyun Li, and Baopu Li. A control strategy of autonomous
vehicles based on deep reinforcement learning. In International
Symposium on Computational Intelligence and Design (ISCID), 2016.

[5] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil
Yogamani. Deep reinforcement learning framework for autonomous
driving. Electronic Imaging, 2017.

[6] M Kaushik, Vignesh Prasad, K Madhava Krishna, and Balaraman
Ravindran. Overtaking maneuvers in simulated highway driving using
deep reinforcement learning. In Intelligent Vehicles Symposium (IV),
2018 IEEE. IEEE, 2018.

[7] Sahand Sharifzadeh, Ioannis Chiotellis, Rudolph Triebel, and Daniel
Cremers. Learning to drive using inverse reinforcement learning and
deep q-networks. In NIPS workshop on Deep Learning for Action and
Interaction, 2016.

[8] Daniele Loiacono, Alessandro Prete, Pier Luca Lanzi, and Luigi
Cardamone. Learning to overtake in torcs using simple reinforcement
learning. In IEEE Congress on Evolutionary Computation (CEC),
2010.

[9] Lei Tai, Giuseppe Paolo, and Ming Liu. Virtual-to-real deep reinforce-
ment learning: Continuous control of mobile robots for mapless nav-
igation. In IEEE/RSJ International Conference onIntelligent Robots
and Systems (IROS). IEEE, 2017.

[10] Lucian Busoniu, Robert Babuska, and Bart De Schutter. Multi-agent
reinforcement learning: A survey. In Control, Automation, Robotics
and Vision, 2006. ICARCV’06. 9th International Conference on, pages
1–6. IEEE, 2006.

[11] Daan Bloembergen, Karl Tuyls, Daniel Hennes, and Michael Kaisers.
Evolutionary dynamics of multi-agent learning: a survey. Journal of
Artificial Intelligence Research, 53:659–697, 2015.

[12] Norihiko Ono and Kenji Fukumoto. A modular approach to multi-
agent reinforcement learning. In Distributed Artificial Intelligence
Meets Machine Learning Learning in Multi-Agent Environments, pages
25–39. Springer, 1997.

[13] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent com-
munication with backpropagation. In Advances in Neural Information
Processing Systems, pages 2244–2252, 2016.

[14] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and
Shimon Whiteson. Learning to communicate with deep multi-agent
reinforcement learning. In Advances in Neural Information Processing
Systems, pages 2137–2145, 2016.

[15] Martin Lauer and Martin Riedmiller. An algorithm for distributed
reinforcement learning in cooperative multi-agent systems. In In
Proceedings of the Seventeenth International Conference on Machine
Learning. Citeseer, 2000.

[16] Milad Moradi. A centralized reinforcement learning method for
multi-agent job scheduling in grid. In Computer and Knowledge
Engineering (ICCKE), 2016 6th International Conference on, pages
171–176. IEEE, 2016.

[17] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas
Nardelli, and Shimon Whiteson. Counterfactual multi-agent policy
gradients. arXiv preprint arXiv:1705.08926, 2017.

[18] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel,
and Igor Mordatch. Multi-agent actor-critic for mixed cooperative-
competitive environments. In Advances in Neural Information Pro-
cessing Systems, pages 6379–6390, 2017.

[19] Junling Hu, Michael P Wellman, et al. Multiagent reinforcement learn-
ing: theoretical framework and an algorithm. In ICML, volume 98,
pages 242–250. Citeseer, 1998.

[20] Xiangxiang Chu and Hangjun Ye. Parameter sharing deep determinis-
tic policy gradient for cooperative multi-agent reinforcement learning.
arXiv preprint arXiv:1710.00336, 2017.

[21] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Coopera-
tive multi-agent control using deep reinforcement learning. In Inter-
national Conference on Autonomous Agents and Multiagent Systems,
pages 66–83. Springer, 2017.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 2015.

[23] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages 1928–1937,
2016.

[24] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. Trust region policy optimization. In International
Conference on Machine Learning, pages 1889–1897, 2015.

[25] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. In International
Conference on Learning Representations (ICLR), 2016.

[26] S Phaniteja, Parijat Dewangan, Pooja Guhan, Abhishek Sarkar, and
K Madhava Krishna. A deep reinforcement learning approach for
dynamically stable inverse kinematics of humanoid robots. In 2017
IEEE International Conference on Robotics and Biomimetics (RO-
BIO), pages 1818–1823. IEEE, 2017.

[27] TaeChoong Chung et al. Controlling bicycle using deep deterministic
policy gradient algorithm. In Ubiquitous Robots and Ambient Intelli-
gence (URAI), 2017 14th International Conference on, pages 413–417.
IEEE, 2017.

[28] Naoto Yoshida. Gym-torcs. github.com/ugo-nama-kun/gym_
torcs, 2016.

[29] Daniele Loiacono, Luigi Cardamone, and Pier Luca Lanzi. Simulated
car racing championship: Competition software manual. arXiv preprint
arXiv:1304.1672, 2013.

github.com/ugo-nama-kun/gym_torcs
github.com/ugo-nama-kun/gym_torcs

	I Introduction and Related Work
	II Proposed Architecture
	III Implementation Details
	III-A Reward functions for the Behaviors learned
	III-A.1 Lanekeeping
	III-A.2 Overtaking
	III-A.3 Multi-Behavior Learning

	IV RESULTS
	IV-A Lanekeeping Behavior
	IV-B Overtaking behavior
	IV-C Learning cooperative multiple behaviors

	V CONCLUSIONS
	References

