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Abstract
In this paper, we propose a nonlinear control strategy for swinging up a pendulum to its

upright equilibrium position by shaping its swinging energy along with regulating the cart to a
desired location. While the base of a usual cart-pole system is restricted to move in a straight
line, the present system is allowed to move in the x-y plane with a nonholonomic consraint
that its allowable velocity is only along its orientation. A simple time invariant control law
has been presented and its effectiveness has been demonstrated using numerical experiments.

1 Introduction
Most of the controllers that are derived for nonholonomic systems are either time dependent or at
kinematic level. But using kinematics alone, the dynamic structure and properties of the system
are often left out.In a case like the present system where the dynamics of the pendulum are coupled
with the dynamics of the wheeled mobile robot upon which it is appended, kinematic level models
and control strategies prove to be futile and there arises a need to depend on the dynamics of
the complete system.In an attempt to exploit the rich dynamics of underactuated systems with
nonholonomic constraints, such a system has been modelled.

Energy shaping is a technique that has been proven to be very effective and has been extensively
studied through implementations on various underactuated systems with pendulums. In energy
shaping, first a desired energy of the whole system or a part of the system is formulated to which
the system’s energy or a part of it is converged. This ensures bringing the states of the system
close to the desire states from almost all initial conditions. Once the system is put in the orbit
(of that particular energy level), a linear controller is implemented once the states of the system
come close to the desired states. In the pendulum’s energy shaping control [4], the pendulum’s
energy at the upright equilibrium position is considered and the energy of the whole system is
converged to this energy level, which basically is same as bringing the states of the system onto a
homoclinic orbit which starts and ends at the same unstable equilibrium point.A lyapunov function
can be constructed by taking the square of the error in the desired energy and by deriving a control
law based on the error in the energy, it can be shown that the error asymptotically converges to
zero. It must be noted that just bringing the states of the pendulum to the homoclinic orbit does
not stabilize the system about its upright equilibrium point, since any small disturbance would
make the control law to converge the system back to the homoclinic orbit which might require the
pendulum to complete one full revolution and then come back to the upright equilibrium point.
Therefore, a need to use a linear controller near the unstable equilibrium point arises.

Other energy shaping controllers include swinging up an Acrobot to its upright equilibrium
position [6], where first a partial feedback linearization of the system is conducted and then an
energy shaping controller is implemented. Another controller for an Acrobot [5] uses a slightly
modified lyapunov function which along with the square of energy includes a term quadratic in the
angular position and angular velocity of the bottom link. The idea there was to make the Acrobot
behave like a single pendulum and swing it to the upright position. Although, our present system
is closer to a cart-pole [7] where the pendulum’s energy alone is considered and a pd controller is
added to regulate the position of the cart to a desired position. Other notable systems include a
Pendubot [8], Furuta pendulum [9,10], inertia wheel pendulum [11] etc.
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Figure 1: Schematic of a pendulum on a wheeled mobile robot

2 Model Description of the system
The system in consideration (see fig [1]) has a wheeled mobile robot (WMR) carrying a pendulum
mounted on top which is allowed to swing in the plane formed by the unit vector normal to the
plane in which the WMR moves and the unit vector along the direction of motion of the WMR.
the WMR is a differntial drive robot with two wheels to which torques can be applied to accelarate
and rotate the robot. A smooth caster is introduced to make the WMR a stable system. The
assumptions on the system are that the wheels are only allowed to roll without slipping and the
system cannot move in a direction perpendicular to its orientation which form the nonholonomic
constraints on the system.

The degrees of freedom of the system are the cartesian coordinates of the positions of the cart
(x and y), the orientation or the yaw angle (ψ) of the WMR (with positive X axis of the inertial
frame), the orientations of the wheels (φl - left wheel and φr - right wheel) and the angle made by
the pendulum with the vertical (θ). Therefore the system evolves on a manifold whose configuration
space is SE(2)×S1×S1×S1 the state vector of the system is [x, y, ψ, φr, φl, θ, ẋ, ẏ, ψ̇, φ̇r, φ̇− l, θ̇].
We assume that the motion of the skate is restricted to a plane with the same gravitational potential
throughout and hence there will not be any change in the potential energy of the WMR as the it
moves.

The nonholonomic constraints on the motion are given by the conditions that all the velocity of
the WMR is along the direction in which it is oriented (no lateral slippage) and both the wheels roll
without slipping.We now show how one can arrive at the nonholonomic constraints and derive the
equations of motion of the system. The position vectors of different parts of the system expressed
in the inertial frame are given by

rcenter of mass =(x, y,−h− l) (1)
rrightwheel =(x+ dsinψ, y + dcosψ,−h− l) (2)
rleft wheel =(x− dsinψ, y − dcosψ,−h− l) (3)

rpendulumbob =(x+ lsinθcosψ, y + lsinθsinψ, l − lcosθ) (4)

Here h always remains constant and does not appear in the equations of motion. l is the length
of the pendulum. Also since the potential energy of the WMR always remains constant, this can
be omitted from the formulation. Differentiating the position vectors, we obtain the velocities of
the parts which are also expressed in the inertial frame.

vcenter of mass =(ẋ, ẏ, 0) (5)

vrightwheel =(ẋ+ dψ̇cosψ, y − dψ̇sinψ, 0) (6)

vleft wheel =(ẋ− dψ̇cosψ, y + dψ̇sinψ, 0) (7)

vpendulumbob =(x+ lθ̇cosθcosψ − lψ̇sinθsinψ,
ẏ + lθ̇cosθsinψ + lψ̇sinθcosψ, lθ̇sinθ) (8)
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Therefore, the constraints can now be given by the following equations

− ẋsinψ + ẏcosψ = 0 (9)

ẋcosψ + ẏsinψ + dψ̇ −Rφ̇r = 0 (10)

ẋcosψ + ẏsinψ − dψ̇ −Rφ̇l = 0 (11)

where 2d is the distance between the wheels assuming that the WMR is symmetric and R is
the radius of the wheels. With the positions,velocities and the angular velocities set up, its quite
straight forward to find the kinetic and potential energies of the system and thereby the Lagrangian
of the system. The total kinetic energy (T) of the system can therefore be expressed as

T =
1

2
Jw1φ̇

2
r +

1

2
Jw2ψ̇

2 +
1

2
mw((ẋ+ dψ̇cosψ)2 + (ẏ − dψ̇sinψ)2) + 1

2
mw((ẋ− dψ̇cosψ)2 + (ẏ + dψ̇sinψ)2)+

1

2
mc(ẋ

2 + ẏ2) +
1

2
Jcψ̇

2 +
1

2
mp((lθ̇cosθ − lψ̇sinθsinψ)2 + (lθ̇cosθsinψ + lψ̇sinθcosψ)2 + (−lθ̇sinθ)2)

(12)

and the potential energy(V) of the system by taking the datum at the pendulum bob when it is
vertical is given by

V = −mpg(l − lcosθ)− (mc + 2mw)g(l + h) (13)

where mp is the mass of the pendulum bob, mc is the mass of the WMR without the wheels,
mw is the mas of each wheel, Jw1 and Jw2 are the mass moments of inertia of each wheel about
the major and minor axes respectively and Jc is the mass moment of inertia of the WMR without
the wheels about the vertical axis passing through its center of gravity. Hence the lagrangian (L)
is given by L = T − V The present system is subject to three nonholonomic constraints which can
be written in the form

A∗(q)q̇ = 0 (14)

Here A∗(q) is a 3×6 matrix and q is a 6×1 column vector. At any configuration q, the set of all
possible virtual displacements is defined to be the subspace of the tangent space to the configuration
manifold at q consisting of vectors δq that satisfy the constraints, i.e., the subspace Dq defined by

Dq = {δq ∈ TqQ |A∗(q).δq = 0}

The system is controlled by two inputs i.e., torques on each wheel ( τl on the left wheel and τr
on the right wheel). Choosing q = (r, s) where r and s are local coordinates and the forces enter
only through the r coordinates such that equation (14) can be rewritten as δsa + Aaαδr = 0 The
Lagrange–d’Alembert equations of motion for the system are those determined by δ

∫ b
a
L(qi, q̇i)dt =

0 where we choose variations δq(t) of the curve q(t) that satisfy δq(t) ∈ Dq for each t, a ≤ t ≤ b ,
and δq(a) = δq(b) = 0. This principle is supplemented by the condition that the curve q(t) itself
satisfy the constraints. we take the variation δq before imposing the constraints; that is, we do not
impose the constraints on the family of curves defining the variation. The usual arguments in the
calculus of variations show that this constrained variational principle is equivalent to the equations∫ b

a

(
d

dt

∂L

∂q̇
− ∂L

∂q
− f)δqdt = 0 (15)

substituting the variations in local coordinates we obtain the equations of motion to be

d

dt

∂L

∂ṙ
− ∂L

∂r
− f = A(r, s)(

d

dt

∂L

∂ṡ
− ∂L

∂s
)

where f = (τl, τr)
Using the nonholonomic constraints (9-11) to eliminate φ̇r and φ̇l, the Lagrangian can be

reduced and the resulting system is found analogous to a pendulum on a knife edge whose configu-
rati0on manifold is SE(2)×S1 The equations of motion for the reduced system can be established
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as follows

(M +m)ẍ+mlθ̈cosθcosψ −ml2θ̇2sinθcosψ −ml2θ̇ψ̇cosθsinψ + λsinψ = Fcosψ (16)

(M +m)ÿ +mlθ̈cosθsinψ −ml2θ̇2sinθsinψ +ml2θ̇ψ̇cosθcosψ − λcosψ = Fsinψ (17)

ml2θ̈ +mlcosθ(ẍcosψ + ÿsinψ)−ml2ψ̇2sinθcosθ −mglsinθ = 0 (18)

(J +ml2sin2θ)ψ̈ +ml2θ̇ψ̇sin2θ = τ (19)

where M is the total mass of the WMR, J is the effective mass moment of inertia of the Here
λ =M [2ψ̇(ẋcosψ+ ẏsinψ) + lθ̇ψ̇cosθ] is the lateral frictional force acting on the WMR which can
easily be computed using Newton’s laws. F = (τl + τr)/2d is the effective force on the WMR and
τ = τr − τl is the effective moment on the system.

3 Control design
In this section we present a control strategy to bring the pendulum to its upright position along
with regulating the WMR to a desired position. Without loss of generality we assume the desired
position to be the origin in our further discussions. The swing up energy of the pendulum is defined
as follows

E =
1

2
ml2θ̇2 −mgl(1− cosθ) (20)

It can easily be seen that the swing up energy when the pendulum is stationary with respect to
the WMR at its upright position E = 0. Once the states of the pendulum are such that they are
on this swing up energy level E = 0, the pendulum reaches its upright position with with zero
velocity in a finite time. taking the derivative of the swing up energy we obtain

Ė = ml2θ̇θ̈ −mglsinθθ̇
= (ml2θ̈ −mglsinθ)θ̇ (21)

(16)× cosψ + (17)× sinψ gives us

(M +m)(ẍcosψ + ÿsinψ) +mlθ̈cosθ −mlθ̇2sinθ = F (22)

Substituting (18) and (22) in (20) gives us

Ė = [mlcosθ(ẍcosψ + ÿsinψ)−ml2ψ̇2sinθcosθ]θ̇

= ml[(ẍcosψ + ÿsinψ)− lψ̇2sinθ]cosθθ̇ (23)

It is easy to see that ẍcosψ + ÿsinψ is the acceleration of the WMR along the direction of its
orientation (al). F can be applied in such a way that

al = lψ̇2sinθcosθ − kE θ̇cosθE (24)

for any positive value kE . Such a value ensures that the swing up energy exponentially converges to
the orbit E = 0 for almost all initial conditions except the ones starting at the downright position
with zero velocity with respect to the WMR, since now

Ė = −mlkE θ̇2cos2θ (25)

Constructing a lyapunov function in the following way proves that the swing up energy converges
to zero.

VE =
1

2
E2 (26)

The lyapunov function here is a simple quadratic function of the energy which is a positive definite
function.The time rate of change of the lyapunov function is given by

V̇E = EĖ

= −mlkEE2θ̇2cos2θ (27)
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Let D be the set of feasible initial conditions for the above control law to work.Then D can be
defined as

D =
{
(θ, θ̇) | θ̇ 6= 0 and θ 6= (2n+ 1)π, n ∈ Z

}
(28)

Define S ⊆ D such that

S =
{
(θ, θ̇) | V̇E = 0

}
=

{
(θ, θ̇) | θ̇ = 0 or θ = (2p+ 1)

π

2
, p ∈ Z

}
(29)

There are no trajectories in S that also lie in D apart from the trivial trajectory E = 0, therefore by
LaSalle’s invariance principle, the swing up energy asymptotically converges to the desired energy
level for all conditions in D. An F defined in the following way makes al equal to (24)

F = (M +msin2θ)ad + ν1

ad = lψ̇2sinθcosθ − kE θ̇cosθE
ν1 = mgsinθcosθ +mlψ̇2sinθcos2θ −mlθ̇2sinθ (30)

We can now add a PD term to F defined above to regulate the cart to the origin. Since the
nonholonomic constraints allow F to be only in the direction of orientation of the WMR, modifying
F alone does not regulate the system to the origin.Therefore we design τ in such a way that the
orientation of WMR is always aiming away from the origin. So the desired orientation at any
instant can be defined as follows

tan(ψd) = y/x (31)

We can then obtain the derivatives to be

ψ̇d =
xẏ − yẋ
x2 + y2

(32)

ψ̈d =
(x2 + y2)(xÿ − yẍ)− (xẏ − yẋ)(2xẋ+ 2yẏ)

(x2 + y2)2
(33)

The errors in orientation and its derivatives can be defined as

eψ = ψ − ψd (34)

eψ̇ = ψ̇ − ψ̇d (35)

We now define a lyapunov function to arrive at a controller that can asymptotically converge the
orientation to the desired orientation

Vψ =
1

2
kψ(ψ − ψd)2 +

1

2
kψ̇(ψ̇ − ψ̇d)

2 (36)

for some positive kψ and kψ̇

V̇ψ = kψ(ψ̇ − ψ̇d)(ψ − ψd) + (ψ̈ − ψ̈d)(ψ̇ − ψ̇d) (37)

To make V̇ψ to be negative semi definite, we define

τ = ml2θ̇ψ̇sin2θ + (J +ml2sin2θ)(−kψeψ − kψ̇eψ̇) (38)

Define a set S1 as follows

S1 =
{
(ψ, ψ̇) | V̇ψ = 0

}
=

{
(ψ, ψ̇) |ψ̇ = ψ̇d

}
(39)

there are no trajectories in S1 apart from the trivial trajectory ψ = ψd and hence by LaSalle’s
invariance principle ψ converges to ψd asymptotically. We now define the PD terms to be added
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to F so that the system is regulated to the origin. We restrict the PD gains to be in such a way
that the dynamics is critically/over damped to prevent ψ̇d from becoming infinity when the WMR
approaches the origin with nonzero velocity.

F = (M +msin2θ)ad + ν1 − kvev − kpep (40)

for some kv and kp satisfying the above mentioned conditions.
The velocity and position like error terms are defined as follows in a slightly unconventional

way, the relevance of which will be understood in the next section.

ev = ẋcosψ + ẏsinψ (41)
ep = xcosψ + ysinψ (42)

4 Numerical simulations
In this section we present numerical simulations of the system with initial conditions [x, y, ψ, ẋ, ẏ, ψ̇.θ, θ̇] =
[20, 30, π, 0.5, 0,−1.5, π4 , 0], gains [kE , kp, kv, kψ, kψ̇] = [1, 0.8, 0.16, 1, 2] and system parameters
[M,m, J, l, g] = [1, 0.1, 0.01, 1, 9.81]

Figure 2: Evolution of states with time

5 Stability Analysis
Since modifying F in (40) also modifies the way E evolves with time, it is not trivial to show that
the desired task is achieved using Lyapunov analysis. From the nonholonomic constraint that the
WMR cannot move in the direction perpendicular to its orientation, we can solve for ψ explicitly
as

tanψ =
ẏ

ẋ
(43)

In section 3, we have also shown that the actual orientation asymptotically converges to the
desired orientation. Once the orientation converges

tanψ = tanψd =
y

x
(44)
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Figure 3: Plots showing the path, phase portrait, total system energy versus time and the swing
up energy versus time

Therefore after the convergence

y

x
=
ẏ

ẋ
(45)

On rearranging, we obtain that

ẋy − ẏx = 0 (46)

Substituting (46) in (32), we obtain that ψ̇d and ψ̈d both converge to zero, implying that, ψd and
therefore ψ tend to a constant value. Assuming that at this constant value, tanpsi is finite, it can
be seen from (44) that

y = kx (47)
ẏ = kẋ (48)
ÿ = kẍ (49)

k = tanψ (50)

Substituting (47) through (50) in the control law, at steady state we obtain

(ẍ+ kvẋ+ kpx)
√
k2 + 1 = − Eθ̇cosθ

M +msin2θ
(51)

which is an equation in one dimension and is analogous to the motion of cart pole. The proof
of stability of this system has been presented using Floquet theory in [7] which the reader is
encouraged to refer.
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