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Abstract

Robust multi-vehicle path-planning is important for en-
suring the safety of multi-vehicle systems in applications
like transportation, search and rescue, and robotic explo-
ration. Chance-constrained methods like Iterative Risk Al-
location (IRA)(Ono and Williams 2008) have been devel-
oped for situations where environmental disturbances are
unbounded. However, chance-constrained methods for the
multi-vehicle case generally use centralized strategies where
the vehicle set is planned with couplings between all vehi-
cle pairs. This approach is intractable as fleet size increases
because computation time is exponential with respect to the
number of vehicles being planned over due to a polyno-
mial increase in coupling constraints between vehicle pairs.
We present a faster approach for chance-constrained multi-
vehicle path-planning that relies upon a decentralized path-
planning method called Risk-Aware Decentralized Model
Predictive Control (RADMPC) to rapidly approximate a cen-
tralized IRA approach. The RADMPC approximation is eval-
uated for vehicle interactions to determine the vehicle sets
that should be planned in a coupled manner. Applying IRA
to the smaller vehicle sets determined from the RADMPC
approximation rapidly plans safe paths for the entire fleet.
A Monte Carlo simulation analysis demonstrates the correct-
ness of our approach and a significant improvement in com-
putation time compared to a centralized IRA approach.

Introduction

Recent interest in the utilization of autonomous vehicle
fleets has skyrocketed for applications like urban transporta-
tion and undersea exploration. There is an imminent need
for architectures that support safe coordination of multiple
vehicles in a practical and optimal manner. A critical el-
ement of multi-vehicle coordination is safe multi-vehicle
path-planning in an environment where collisions are pos-
sible. Paths for autonomous vehicle fleets should be opti-
mal by some measure (e.g. actuation cost, solution execu-
tion time) and must have a reasonable computation time to
be practical.

Prior methods for fast multi-vehicle path-planning are
primarily fixated on situations where environmental distur-
bances are assumed to be bounded. Robust Model Predic-
tive Control (RMPC) techniques have been extensively stud-
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ied for multi-vehicle path-planning in this case. However,
the assumption of bounded environmental disturbances is
invalid in many practical applications. Chance-constrained
techniques are commonly used for path-planning in the al-
ternate case where environmental disturbances are assumed
to be unbounded. Current chance-constrained techniques for
the multi-vehicle case generally use a centralized strategy
where the couplings are present for all vehicle pairs in the
entire vehicle set. Centralized strategies are intractable as
fleet size increases because computation time is typically ex-
ponential as more vehicles are considered. This is due to a
combinatorial increase in binary variables that are required
for vehicle and obstacle avoidance constraints.

We present a faster approach to chance-constrained multi-
vehicle path-planning that relies upon a novel method
called Risk-Aware Decentralized Model Predictive Con-
trol (RADMPC). RADMPC extends from Decentralized
Model Predictive Control (DMPC) techniques by using a
single iteration of IRA as the primary optimization method.
RADMPC plays a key role in reducing the complexity of the
multi-vehicle path-planning problem by rapidly approximat-
ing a centralized application of IRA. The approximation is
examined for vehicle interactions to determine smaller sets
of vehicles that need to be planned in a coupled manner.
Individually applying IRA to the smaller vehicle sets plans
safe paths for the vehicle fleet much more quickly than a
centralized IRA approach.

Literature Review

There is a considerable body of work in path-planning for
multiple autonomous vehicles. This is a hard problem be-
cause of two reasons: the presence of environmental un-
certainty and the nonconvexity of the optimization prob-
lem. Mixed-Integer Linear Programming (Schouwenaars et
al. 2001)) and Disjunctive Linear Programming (Balas 1998))
strategies were used in initial techniques to handle the non-
convex optimization problems. However, these approaches
did not account for sources of uncertainty in the problem.
Many methods that handle uncertainty usually make the
assumption of bounded uncertainties and environmental dis-
turbances, allowing for the design of robust trajectories that
are resistant to constraint failure against the worst case dis-
turbances. Robust Model Predictive Control (RMPC) is an
extension of Model Prediction Control (MPC) that is com-



monly used for path-planning under this assumption. Trajec-
tories generated with RMPC techniques have been shown to
be safe from obstacle collision at up to 3o confidence at each
timestep (Pepy and Lambert 2006; |Alexis et al. 2015}, Jalali
and Nadimi 2006). However, RMPC techniques are still in-
tractable for multi-vehicle problems with larger groups of
vehicles.

Decentralized Model Predictive Control (DMPC)
(Richards and How 2004) algorithms employ the strategy of
decomposing the full multi-vehicle trajectory optimization
problem into decentralized subproblems to reduce compu-
tational intensity. Each subproblem optimizes the trajectory
of a single vehicle using an RMPC strategy. To account
for inter-vehicle coupling constraints, each subproblem
must be solved while considering all other vehicle trajec-
tories. DMPC techniques are computationally inexpensive
compared to RMPC techniques for multi-vehicle problems.

Many real-life situations involve uncertainties that can-
not be bounded, making it impossible to guarantee con-
straint satisfaction with zero probability of failure using
most RMPC and DMPC approaches. In lieu of guaranteed
constraint satisfaction, a different approach to path-planning
is to place chance constraints to limit the probability of
violating constraints. There are two kinds of chance con-
straints: individual chance constraints limiting the probabil-
ity of failure of a single constraint at a single timestep, and
Jjoint chance constraints limiting the probability of failure of
any constraint in a problem (Li, Wendt, and Wozny 2002)).

Solving a multi-vehicle path-planning problem with a
joint chance constraint is hard because it requires the com-
putationally intensive calculation of the probabilities of non-
independent events. Blackmore, Ono, and Williams|demon-
strate an elegant method in which Boole’s inequality is used
to decompose the joint chance constraint into individual
chance constraints. The new RMPC problem with individual
constraints can be more easily solved by constraint tighten-
ing. However, this chance-constrained method is conserva-
tive since it assigns a uniform value to the risk bound for
every individual chance constraint.

Iterative Risk Allocation (IRA) (Ono and Williams 2008))
is a two-stage optimization method that uses the concept
of risk reallocation to reduce the suboptimality of chance-
constrained approaches. By iteratively reallocating risk from
inactive chance constraints to active chance constraints, the
allocation of risk that optimizes the objective function can
be found. Unfortunately, the centralized application of IRA
still has an exponential solution time and is impractical for
problems with many vehicles.

A strategy for reducing the complexity of centralized ap-
proaches is to decouple unnecessary coupling constraints be-
tween vehicle pairs using heuristics. Keviczky et al.| uses a
distance-based heuristic for multi-vehicle path-planning to
maintain a communication topology graph that is updated
over time. Undirected edges between any two vehicles rep-
resent a coupling constraint indicating that either vehicle
must account for the other vehicle’s actions when planning.
However, the distance-based heuristic does not make full use
of the vehicle information available when determining cou-
pling constraints.

Problem Statement
Notation
The following notation is used throughout the paper

xh State vector for vehicle ¢ at time k

ul Control input for vehicle ¢ at time k

wh Disturbance for vehicle ¢ at time &

z¥ := FE[x"] : Nominal state for vehicle i at time k
5;? : Risk bound for chance constraint j at time k
A Risk bound for the joint chance constraint

5 Z5 ug
X =] X = U:=|":
ief0...N] jel0...L] kel0...T]

N denotes the number of vehicles to plan over. T denotes
the total number of timesteps in the problem. L refers to the
number of chance constraints present.

RMPC with a joint chance constraint

The chance-constrained multi-vehicle path-planning prob-
lem is formulated as follows:

mUi_n E[J(X,U)] (1)
s.t. it = Azk + Buf +wk 2)
Ui min < uf < Ui max 3)
w; ~ N(0,%,0) €
@) ~ N (&, %,0) 5)
N L T
Pr /\/\/\hf%ﬁggf >1-A (6)
1=07=0k=0

We model vehicles as discrete-time linear time invariant
(LTI) systems operating in the presence of unbounded envi-
ronmental disturbances. In Equation 1, we wish to determine
the control sequence U that generates a state sequence X
that minimizes the expected value of the objective function
J while obeying Equations 2 - 6. Equation 2 defines state
evolution for vehicles from time & to time k + 1 where ma-
trices A and B represent linear vehicle dynamics and control
effects. The combination of Equation 2 and Equation 4 ex-
plicitly describe the effects of an unbounded Gaussian dis-
turbance wf, forcing vehicle states to be unbounded. Equa-
tion 6 defines the total risk bound A as the upper bound on
the probability that any individual chance constraint fails.

Preliminaries
We will briefly describe IRA and the decomposition of the
joint chance constraint into individual chance constraints to
provide better context for our approach.



RMPC with individual chance constraints

We cannot easily solve RMPC with a joint chance constraint
because Equation 6 involves the integration of a multivariate
Gaussian distribution. However, this problem can be made
more tractable by decomposing the joint chance constraint
into individual chance constraints using Boole’s inequality
(Pr[A U B] < Pr[A] + Pr[B)).

mUin E[J(X,U)]

s.t. mf“ = Aa:f + Buf + 'wf
Wi min < Uy < Ui max
w; ~ N(0,%,0)
) ~ N (2], %,0)
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Decomposing the joint chance constraint directly reduces
Equation 6 to Equation 7, with Equation 8 constraining the
sum of all (5;»C to be no greater than A.Blackmore, Ono, and
Williams| demonstrate a method to solve this problem that
transforms the stochastic problem into a deterministic prob-
lem. However, their method produces a suboptimal solution

since it fixes all 6;-“ using a uniform allocation of A. In other

words, there may be an allocation of 5;? that produces a more
optimal solution.

Iterative Risk Allocation

IRA is a method that is designed to achieve greater solu-
tion optimality for RMPC problems with joint chance con-
straints. IRA is a two-stage optimization method that uses
risk reallocation to determine the best risk allocation of § j’“
that optimizes the objective function. The innovation of risk
reallocation is in moving risk from inactive constraints to
active constraints to monotonically decrease overall cost.

To determine if a constraint is active or inactive, we must
compare an individual chance constraint’s risk bound to the
probability of constraint satisfaction. This requires the prob-
ability of constraint satisfaction to be reformulated using de-
terministic variables. Recall that an individual chance con-
straint is defined as follows:

P(thar:éC < gf) >1- 5;-“

The lower stage optimization in IRA computes a solution
for aciC using the fixed 5;-“ for each constraint. Then, we can

define a constraint for the acceptable values of 5;? by writing
the probability of constraint satisfaction in terms of a deter-
ministic cumulative distribution function of x¥.

P(RYTzt < gh) = cdf(gh — hTak)
= % >1—cdf(gh — h}"xF)

This result defines the minimum value for 6;? that is re-
quired to satisfy the chance constraint given the current so-
lution for . Active and inactive constraints are determined
by comparing the fixed § Jk to the newly defined § Jk min USINE
a tolerance 7).

5" =1- cdf(g;-C — h?Tmf)

J,min
‘va- | Sk k
Active: |07 — 67 in| <1

e Sk _ sk
Inactive: |07 — 67 i >0

The risk reallocation upper stage reallocates risk from ac-
tive to inactive constraints while respecting the minimum
risk bound. This defines a new risk allocation to be used in
the next iteration of the lower optimization stage. This two-
stage procedure is iteratively run for a fixed number of iter-
ations or until the value of the objective function converges.
Although this method produces excellent results, a central-
ized application of IRA to large multi-vehicle problems is
computationally intensive because the number of avoidance
constraints increases combinatorially.

Avoidance Constraints

Vehicle and obstacle avoidance constraints are defined by
a disjunction of individual chance constraints each repre-
sented as a linear inequality. For a set of individual chance
constraints that comprise an object O to be avoided, the fol-
lowing disjunction of inequalities define a safe zone.

o

V hiTel <gj

J

However, using a disjunction of linear inequalities for ob-

stacle avoidance is insufficient for path-planning because a
vehicle cannot simultaneously be on every side of an ob-
ject at once. Instead, we use a conjunction of the same lin-
ear inequalities and introduce binary variables b), that are
multiplied with an arbitrarily large number M to turn off
boundary inequalities as needed. To ensure that at least one
constraint is turned on, the sum of all binary variables must
be less than the number of individual chance constraints that
comprise O.

O

kT _k k k
ARl < gk + Ml
i

o
be < card(O) — 1
J

This formulation induces a polynomial increase in bi-
nary variables as more objects are considered. Vehicle avoid-
ance constraints are similarly encoded. However, computa-
tion time is more adversely affected by additional vehicles
than additional obstacles. This follows because avoidance
constraints must exist between every vehicle pair, which
grows combinatorially as more vehicles are added. A prob-
lem with N vehicles must include (];] ) vehicle avoidance



constraints over 7' timesteps. This implies that binary vari-
ables for vehicles increase with O(N2T) complexity and

force an O(e¥ 2T) solution time. On the other hand, addi-
tional obstacles increase binary variables with O(NT') com-
plexity, adding only O(e™NT') complexity. This distinction is
important as we will later use a special form of obstacle
called a temporal obstacle to represent vehicles, reducing
RADMPC complexity.

Technical Approach

We propose a three-step approach to produce the result of
a centralized application of IRA to a large vehicle set with
much less computational overhead. We present RADMPC
- a fast, risk-aware path-planner used to approximate cen-
tralized IRA. The RADMPC approximation is evaluated to
identify vehicle pairs with high probability of collision and
decompose the full set of vehicles into smaller vehicle sub-
sets that have only relevant vehicle coupling constraints. Fi-
nally, we apply IRA to the smaller subsets to produce paths
for all vehicles far more quickly than centralized IRA. Fig-
ure 1 depicts the flow of our approach. Figure 2 depicts ex-
ample plots of different stages of our approach. The runtime
of the centralized IRA solution exceeds the combined run-
time of the RADMPC approximation and the runtime of ap-
plying IRA to the two vehicle subsets.

1. Approximate 2. Determine 3. Solve and
Solution Subproblems Recombine
RMPC Approximated ubproblemy, __ /Subprotlem
Problem Solution ! °
!
RADMPC Identify IRA
Couplings

'Subproblem ‘Subproblem
1 P

Approximated
Solution

Figure 1: The three stages of our approach

Algorithm 1 Multi-Vehicle

: procedure MULTI-VEHICLE(V, N, T, A, ¥)
2 X yppr < RADMPC(V, N, T, A)

3 V* < findCouplings(X appr, \IJ)

4 for each coupled set v* in Vx do

5: A* +— A-card(v*)/N
6

7

8:

IRA(w*, N, T, A*)
end for
end procedure

RADMPC

We have developed a novel path-planning algorithm
called Risk Aware Decentralized Model Predictive Control

(RADMPC) to be used as the fast path-planner in our ap-
proach. To be useful, it must be able to closely approximate
centralized IRA. To be practical, it cannot be computation-
ally expensive lest we fail to handle the core issue of solution
time complexity for multi-vehicle path-planning. RADMPC
is an extension of Decentralized Model Predictive Control
(DMPC) as proposed by Richards and How, However, our
approach differs from DMPC by assuming unbounded envi-
ronmental disturbances as opposed to bounded disturbances
and using temporal obstacles to communicate vehicle plans
across subproblems.

RADMPC uses a decentralized path-planning strategy to
quickly plan paths. Given N vehicles, RADMPC decom-
poses the full problem into N subproblems that each opti-
mize the trajectory of a single vehicle. At time k, the sub-
problems are solved in a randomized order. The optimiza-
tion method used to solve each subproblem simply consists
of a single iteration of IRA with a uniform initial alloca-
tion over a risk pool. After a subproblem is solved, the first
control input of the solution is executed and a temporal ob-
stacle is created to bound the vehicle’s subproblem solution.
RADMPC is recursively executed in this way until all vehi-
cles are in their respective goal.

Algorithm 2 RADMPC

1: procedure RADMPC(V, N, T, A)
2: O < initTemporalObstacles(V")

3: A# <« A, N* « N

4: forkin[0...T — 1] do

5: for ¢ in random ordering of [O ...N —1]do
6: X0 —FastRA(V;, 7 k, A#/N*)
7: wf_;r;pr «—x* i

8: if all vehicles in goal then

9: return X .

10: else if V; in goal then

11: N*+ N* -1

12: end if

13: O, <makeTemporalObstacle( X )

14: A# — A#— sum(8*])

15: end for

16: end for
17: end procedure

Risk Pooling A risk pool A* is used to track the total
risk remaining while executing RADMPC. A7 is initialized
to A. Every subproblem is given a uniform risk allocation
over A% /N* where N* is the number of vehicles that are
not in goal. After a subproblem is solved, A# is updated as
follows:

L
A* — A* N5
j=0
This allows RADMPC to be risk-aware by subtracting the
risk that is used at the executed timestep from the risk pool.
The risk pool is then divided among the remaining vehicles
for the next subproblem.
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Figure 2: Left to right: centralized IRA solution, RADMPC approximation, RADMPC solution. Runtime of the RADMPC
approximation and IRA on coupled vehicle sets is generally much faster than runtime of centralized IRA.

Temporal Obstacles We introduce a temporal obstacle
representation for a vehicle’s plan according to its most re-
cently solved subproblem (hereafter referred to as temporal
vehicle obstacles. Temporal obstacles are a simple extension
of static obstacles where the linear inequalities describing
the obstacle boundaries change with respect to time.
Temporal vehicle obstacles are created after a subproblem
is solved for a vehicle 7 using the subproblem solution X} A
temporal vehicle obstacle bounds the 30 confidence region
of a:*f for all timesteps k € [0. .. T for vehicle i. We define
distance d as the radial distance from :E*f bounding the 30
confidence region. As truly circular obstacles are difficult to
represent, d is instead used to compute square coordinates
around :c"‘i~c . Square obstacles are used to represent vehicles
in goal and vehicles at time &k = 0. At other timesteps, the
obstacle is generated by wrapping a convex hull around the

square coordinates generated at w*f and sc*f“.

Using a temporal obstacle representation for vehicles of-
fers a light, yet powerful representation when other vehicles
need to consider their intent while planning. Representing

vehicles as temporal obstacles has O(eNT') computational

complexity as opposed to O(e¥ 2T) complexity otherwise.
This formulation also offers an intuitive way of evaluating
interactions between vehicles planned using RADMPC.

Identifying Couplings

Couplings are determined by evaluating the probability of
collision between vehicles and temporal vehicle obstacles.
For each boundary in a temporal vehicle obstacle that has
an activated linear constraint (i.e. the associated binary vari-
able is 0), the collision probability is computed as follows
(Blackmore, Ono, and Williams 201 1)):

11 N e
P1r[h’?Taci-C > g’?} = - — —erf R
J J 2 2 ORETS | RE

\ A Sk

After a RADMPC subproblem is solved, we record the
collision probabilities between the subproblem vehicle and

the temporal vehicle obstacles at the initial timestep. We
do not record the collision probabilities at other timesteps
because RADMPC replans for the vehicle at the following
timestep.

After RADMPC converges on a solution, the maximum
probability of collision of a vehicle with another temporal
vehicle obstacle provides a direct metric for the probabil-
ity of collision between the vehicle pair. This is used to de-
termine vehicle pairs that have significant interactions and
must be planned together. For every vehicle pair, there are
two candidate maximum collision probabilities since both
vehicles avoid the other’s temporal vehicle obstacle when
planning. The greater of the two probabilities is chosen as
the maximum probability of collision for the vehicle pair. If
the maximum probability of collision for the vehicle pair ex-
ceeds a given threshold W, the vehicle pair must be planned
in a coupled manner.

Distributed Solving

Determining coupled vehicle sets is analogous to deter-
mining the disconnected parts of a graph where vehicles
are nodes and couplings are edges between vehicles. Path-
planning problems are created for each coupled vehicle set.
Applying IRA on every problem and combining the solu-
tions computes the RADMPC solution to the original multi-
vehicle problem.

Computation Time Analysis We now analyze the solu-
tion time of our two-step approach. For ease of notation,
we will factor out runtime due to common factors between
our approach and the centralized approach (e.g. static obsta-
cles used in both approaches). A centralized application of
IRA to a problem with N vehicles over T timesteps uses
O(N?®T) binary variables for vehicle avoidance constraints
between vehicle pairs, causing a O(e™ 2T)
complexity.

The solution time of RADMPC likewise depends on
the number of vehicles in the problem and the number of
timesteps it takes for vehicles to reach their goal in our re-
ceding horizon approach. Since each decentralized subprob-

computational



lem uses temporal vehicle obstacles for vehicle avoidance,
there are O(NT) binary variables that imply O(eNT) com-
putation complexity per subproblem. Using the conservative
assumption that RADMPC requires all 7" timesteps to exe-
cute, there are N decentralized problems over 7' timesteps
giving RADMPC O(NTeNT) total computational com-
plexity.

Let us assume that analysis of the RADMPC approxi-
mation separates the full vehicle set into % coupled vehi-
cle sets with P vehicles each. Applying centralized IRA on

problems covering the coupled vehicle sets has O(%ep 2‘T)
computational complexity. Factoring in RADMPC runtime
indicates O(NTeNT + XeP 2T) complexity. In the optimal
scenario, we would be able to completely separate the prob-
lem into /N subproblems that are each individually solved
with IRA for O(NTeNT + NeT') complexity. In the worst

case, the complexity is O(NTeNT + ¢N°T). However em-
pirical results indicate that RADMPC decouples most ve-
hicle couplings and generally does not exhibit worst case
performance.

Results

In this section, we demonstrate empirical results of the
RADMPC approach. We focus on analyzing the accuracy
of the RADMPC approximation, average runtime of our ap-
proach compared to centralized IRA, and correctness of the
RADMPC solution.

RADMPC Approximations
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Figure 3: Centralized solution on left, RADMPC approxi-
mation on right

Figure [3] demonstrates the RADMPC approximation on
an eight vehicle problem. The RADMPC approximation is
a good approximation of the centralized solution with only
slight disturbances A visual inspection of multiple sample
problems indicates that RADMPC generally approximates
the centralized solution well enough to be useful.

However, the accuracy of the RADMPC approximation
decreases in some cases especially when the complexity of
the multi-vehicle problem increases. This may be because
larger vehicle sets exhibit perturbances where “ripple” ef-
fects in RADMPC cause the displacement of a single vehi-
cle to propagate to the other vehicles. Significant deviations
from the centralized solution could lead RADMPC to make
incorrect determinations of coupled vehicle sets, adversely

affecting the correctness of the RADMPC solution. In gen-
eral, RADMPC works the best in situations where vehicle
interactions are less abundant i.e. situations where the prob-
lem should be decoupled.

Runtime Comparisons

We compare the average runtime of our approach and a cen-
tralized application of IRA by drawing 50 sample problems
for each of N € [2, 8] vehicles and generating random ve-
hicle starts and goals for each sample problem. We use a
simple environment with three regular obstacle and use the
following parameters:

1 0 dt 0 3dt* 0
|01 0 at 0 lar?
A=19g0 1 o B=la 7o
00 0 1 0 dt

T=10 A=0.05 ¥ =0.000001

N T
J(X.U) =" |ui
i=0k=0

Figure [ demonstrates a significant reduction in solu-
tion time when solving complex RMPC problems with the
heuristic, even when RADMPC runtime is included. As the
size of the vehicle set increases, our approach will run faster
by margins that increase with vehicle account. In our largest
experiments involving 8 vehicles, the mean speedup factor
reached 46. Much of this improvement can be attributed
to the observation that most randomly generated complex
problems can be separated into smaller, simpler problems
with one or two vehicles each.

10000

centralized IRA our approach

1000 1

100

Solution time (seconds)

Number of vehicles

Figure 4: Runtime comparison between centralized IRA and
our approach

Simulation

A Monte Carlo simulation is used to verify the correctness
of the RADMPC solution. Our Monte Carlo simulation uses



the sample problems described in the prior section. A suc-
cess rate is computed for each sample problem to express
correctness. A correct solution is a solution that does not
exhibit a probability of collision above the risk bound. To
compute vehicle collisions in the RADMPC solution, every
vehicle state ), in the computed state sequence X is sam-
pled 100,000 times. Vehicle collisions are detected using a
simple computation that ensures that sampled vehicle states
at corresponding time k are not within two vehicle radii of
each other.

1.05

Success rate
o
P I

IS
©

2 3 B 5 6
Number of vehicles

Figure 5: Success rate of our approach with different num-
bers of vehicles

Our approach on average works extremely well for the
range of vehicles we considered for our experimentation.
Howeyver, the success rate decreases as the number of ve-
hicles increases and more deviation from the average suc-
cess rate occurs. This trend can be expected to continue
as the complexity of the problem increases, indicating that
RADMPC is not as well suited for approximating complex
problems with extensive inter-vehicle interaction. Still, the
results presented demonstrate that our approach is useful to
problems that include up to eight vehicles, with possible ex-
tension to more vehicles with further development.

Conclusions

We have presented a method that intelligently decou-
ples computationally expensive chance-constrained multi-
vehicle problems to reduce solution time complexity. We
describe a novel path-planning method called Risk-Aware
Decentralized Model Predictive Control (RADMPC) to de-
termine sets of coupled vehicles that have should be planned
together. Applying IRA to each set generates collision-free
paths in far less time than a centralized application of IRA.

We envision our approach being used to enable more
rapid planning capabilities for vehicle swarms being used
in the field. Although this approach was specifically de-
signed to support autonomous underwater vehicle explo-
ration, fast multi-vehicle path-planning spans a large range
of academic, industrial, and humanitarian applications. Fur-

ther research into fast multi-vehicle path-planning will facil-
itate more rapid integration of large-scale autonomous vehi-
cle solutions in situations where they are sorely needed.
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