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Abstract— In densely-packed robot swarms operating in
confined regions, spatial interference – which manifests itself as
a competition for physical space – forces robots to spend more
time navigating around each other rather than performing the
primary task. This paper develops a decentralized algorithm
that enables individual robots to decide whether to stay in the
region and contribute to the overall mission, or vacate the region
so as to reduce the negative effects that interference has on the
overall efficiency of the swarm. We develop this algorithm in
the context of a distributed collection task, where a team of
robots collect and deposit objects from one set of locations to
another in a given region. Robots do not communicate and
use only binary information regarding the presence of other
robots around them to make the decision to stay or retreat. We
illustrate the efficacy of the algorithm with experiments on a
team of real robots.

I. INTRODUCTION

Swarm robotic systems are being increasingly deployed
in dynamic real-world environments without the need for
a central coordinator overseeing the mission (e.g., see [1],
[2] and references within). As the size of these swarms
increases, robots tend to spend more time and effort avoiding
collisions between each other, thereby hurting the overall
performance of the swarm [3]. This phenomenon—an in-
evitable consequence of the competition for physical space—
is called multi-robot interference and has been studied in a
wide number of contexts (e.g., [4], [5], [6]).

In the context of multi-robot foraging [7], [8] and collec-
tion tasks [9], [10], it has been shown that while adding more
robots to the swarm at intermediate robot densities increases
the total number of objects collected, the increase in per-
formance is sub-linear—caused by a significant decrease in
individual robot performance, e.g., [11], [12]. Owing to the
increased operational cost of deploying large robot teams,
one would like to obtain the desired overall productivity
while utilizing as few robots as possible [13]. Achieving
such a trade-off is especially challenging in situations where
relatively simplistic robots operate in dynamic environments
without a central coordinator.

For a swarm of robots executing a distributed collection
task, this paper develops a decentralized algorithm which
enables individual robots to decide between staying in the
region and contributing to the task, or retreating from the
region when the negative effects of interference outweigh the
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increased productivity of a larger swarm. In order to allow
individual robots to make these decisions, the first part of
this paper develops an analytical model which describes the
fraction of time that a robot spends performing the primary
task as opposed to avoiding collisions with other robots.
This allows us to compute an optimal robot density that
minimizes a cost function in order to achieve a trade-off
between the deployed team size and the overall performance
of the swarm.

We envision a team of robots collecting objects from
randomly scattered “pick-up” points and depositing them at
“drop-off” points. The locations of these points are unknown
to the robots. Such a distributed collection task is of rele-
vance to multi-robot applications such as search & rescue,
mine-clearing, moving waste to recycling stations, transport-
ing passengers to destinations, etc. Furthermore, we assume
(i) a constant influx of robots which join the collection
task, and (ii) no explicit communication between the robots,
thus inspiring the need for a dynamic, yet decentralized
mechanism to regulate interference in the domain.

Entomological studies have shown that many social insect
colonies possess the ability to regulate interference using
decentralized techniques, e.g. [14], [15]. In [16], the authors
study the ability of Solenopsis Invicta ants to regulate den-
sities in narrow tunnels and prevent the formation of flow-
stopping clogs. This is partially attributed to the tendency
of individual ants to reverse out of crowded tunnels thus
reducing the density. Crucially, it has been shown that ants
use inter-ant encounters as the primary sensory mechanism
to regulate density and perform functions like task allocation
and division of labor [17].

Inspired by these observations from biology, we allow
robots to use local inter-robot encounter measurements as
the only sensory mechanism to regulate interference. We
extend the ideas presented in our previous work [18], and
demonstrate that not just physical inter-robot collisions but
local “proximity” encounters can allow robots to infer some-
thing about the swarm. Using the analytical collision model
developed in [19], we allow robots to measure the density
of the swarm by counting interactions.

This paper is organized as follows: Section II discusses the
contributions of this paper in the context of existing litera-
ture. Section III develops analytical models to characterize
the frequency of encountering objects and other robots in the
domain, given a particular robot density. Section IV leverages
these analytical models to compute the optimal density of
robots for achieving a desired trade-off between the size of
the swarm and the overall performance. In Section V, we
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develop an algorithm which allows each robot to leave the
domain if the measured density of robots in the swarm is
above the optimal value. In Section VI, the algorithm is
deployed on a team of real robots. Section VII concludes
the paper.

II. RELATED WORK

The modeling and regulation of interference in swarm
robotic systems is a widely studied topic (e.g., see [8], [20],
[21]). The effects of interference on the efficiency of a swarm
have been studied experimentally e.g., [4], [9], [22], [23],
and by developing analytical models [11], [21]. Techniques
to regulate interference range from performing “aggression”
maneuvers to break deadlocks [4], [24], partitioning robots
among tasks [25], and team size selection before deploying
the swarm [26].

Many biologically inspired techniques allow a group-level
division of labor to emerge in order to enhance the efficiency
of the swarm, e.g., [7], [27], [28]. In the prey-retrieval
task studied in [29], the authors demonstrate via robotic
experiments that allowing robots to modify their tendency to
participate in the primary task leads to reduced interference.
Similar studies predefine participatory tendencies in robots
[28], or allow them to adjust it online [7], demonstrating an
improvement in efficiency by running experiments.

In contrast to these approaches, this paper develops a de-
centralized interference reduction mechanism which allows
the swarm to adaptively achieve the optimal robot density for
a desired trade-off between team size and overall productiv-
ity. Furthermore, we assume no coordination/communication
between the robots and a constant influx of robots joining
the task.

Similar to [30], [31], we use the theory of continuous-
time Markov chains (CTMCs) to compute the distribution
of time spent by robots performing the primary task and in
collision avoidance. The development of a CTMC framework
is borne out of necessity: in order to allow robots to make
decisions at an individual level, we require more than a
mean-field characterization of the effects of interference. In
the next section, we introduce the problem setup and develop
analytical models to describe the interference in the swarm.

III. MOTION AND ENCOUNTER MODELS

We consider a homogeneous team of robots—each with
a circular footprint of radius r and a sensing skirt of total
diameter 2δ around it to detect objects (see Fig. 1). Let v
denote the average speed of the robots as they move through
the domain.

As illustrated in Fig. 1, the domain D ⊂ R2 contains a
set of randomly, but uniformly distributed pick-up locations
(marked as �) and drop-off locations (marked as ×) from
where robots can pick up objects and deliver them, respec-
tively. Each robot picks up or drops off an object if it gets
within the sensing distance δ of the corresponding location.

In this paper, we consider the scenario where picked up
objects do not have a specific destination but can be dropped
off at any of the drop-off locations. A robot picks up only

Fig. 1. Distributed Collection Task: A team of robots pick up objects from
randomly scattered pick-up locations (denoted by �) and deliver them to
drop-off locations (denoted by ×). An object can be delivered to any drop-
off location. Pick-up and drop-off locations are distributed independently
with densities λp and λd, respectively. New robots are stationed outside
the domain and enter the domain at a constant rate λin, symbolized by the
arrows.

one object at a time, and delivers it to a destination before
picking up another object. We assume that the positions of
the pick-up and drop-off points are unknown to the robots,
but they know the corresponding non-zero uniform densities,
denoted as λp and λd. Furthermore, new robots initially
outside domain D join the collection task at a constant rate
λin, as illustrated in Fig. 1. The rest of this section develops
analytical models to characterize the performance of the
swarm and the interference at a particular robot density,
denoted by λ.

A. Motion Model
The robots do not have any prior knowledge of where

the transport locations are, and traverse the domain with
trajectories which are ergodic (e.g., [32], [33]) with respect
to a uniform distribution. The density distribution φ : D → R
corresponding to a uniformly ergodic trajectory is given by
φ(x) = |D|−1, ∀x ∈ D where |D| is the area of the domain.
This ergodicity property allows us to be general about the
motion patterns of the robots—the developed algorithms are
applicable as long as the ergodicity conditions are satisfied.
Under this ergodicity assumption on the motion of the robots,
the distribution of robots will also be uniform in the domain.

B. Inter-Robot Encounters
As robots explore the domain, they cross paths with each

other. We define two robots i and j as having an “encounter”
when they come within each other’s sensing radius, i.e., when
‖pi − pj‖ ≤ 2δ where pi represents the location of robot
i. At this point, each robot executes a collision avoidance
maneuver (e.g., [34], [35]) to resolve the encounter and
continues on its intended path.

The encounters experienced by a robot will depend on its
motion and the motion of all the other robots in the domain.
Similar to our previous work [18], [19], we simplify such
complex interactions by making a mean-field approximation
and assume that all robots are identical under the effects from
other robots in the swarm. There are two relevant questions
which arise in this context: how often does a given robot
encounter other robots in the domain and how long does it
take to resolve an encounter?



Fig. 2. The effective “sensory” area swept by robot i in unit time is depicted
as the shaded region. The expected number of encounters experienced by
the robot in unit time will be equal to the number of other robot centers
that happen to fall in this region [19], [36], whose area is denoted by c.
Accordingly, the robots experiencing an encounter are indicated with dashed
outlines. vr is the average relative speed between the robots, given by (1).

1) Inter-Encounter Time Intervals: Similar to the analysis
conducted in kinetic theory of gases [36] and in [19],
[37], if we assume that all robots except the robot under
study are stationary, then the expected number of encounters
experienced by this robot in unit time will be equal to
the number of robot centers which happen to fall into the
effective “sensory” area swept by the robot (see Fig. 2). This
can be computed as c = 4δv. But, since all other robots are
also moving with an average speed v, the effective speed
of the robot can be replaced by the average relative speed
between the robots, which can be computed as [19],

vr =
4

π
v. (1)

Thus, the effective area swept by the robot is c = 4δvr.
Owing to the ergodic motion model developed in Section
III-A, the density of robots over the domain D is uniform
and is denoted as λ. Thus, the expected number of encounters
experienced by a robot in unit time is given as,

Ωc(λ) = cλ = 4δ
4

π
vλ. (2)

Although this section characterizes the performance of the
swarm for a given robot density λ, the decentralized control
algorithm developed in Section V takes into consideration
the time-varying densities resulting from the entry and exit
of robots.

For a given robot, let τc(λ) be the random variable
denoting the time interval between entering two successive
encounters. Similar to the analysis done in kinetic theory
of gases [36], we make the assumption that inter-robot
encounters are independent events that are not influenced by
each other. This allows us to model τc(λ) as an exponentially
distributed random variable (see [36] for a discussion of this
fact),

τc(λ) ∼ exp(Ωc(λ)). (3)

In Section III-D, we perform simulations to validate the
above developed encounter model for robots moving with
uniformly ergodic trajectories and executing a specific colli-
sion avoidance algorithm.

2) Time Spent Resolving an Encounter: When robots
encounter each other, they execute collision avoidance ma-
neuvers. Let τr be the random variable which denotes the
time it takes for a robot to resolve an encounter with another
robot. τr will depend on a variety of factors such as the
collision avoidance maneuvers used by the robots, velocities
before collision, presence of domain boundaries, congestion,
etc. The uncertainty associated with performing multiple sub-
tasks in robotic/vehicular systems has been modeled using
sums of exponential random variables [31], [38]. Similar
to these formulations, we model τr as an exponentially
distributed random variable with a parameter ρ that will
vary based on the type of robots and collision avoidance
mechanisms used,

τr ∼ exp(ρ). (4)

In practice, the parameter ρ can be estimated by fitting the
empirical encounter resolution times to the distribution in
(4). In Section III-D, we illustrate using simulations that τr
is indeed well-approximated by an exponential distribution
for a given collision avoidance algorithm.

C. Object Pick-Up and Drop-Off

Let λp and λd denote the uniform density of object pick-
up and drop-off locations in the domain, respectively. As
the robots move through the domain, they pick-up/drop-off
objects when they enter within a sensing distance δ of the
respective location. Similar to the analysis done in Section
III-B, the expected number of locations encountered per unit
time will be,

Ωp(λp) = 2δvλp ; Ωd(λd) = 2δvλd, (5)

where Ωp and Ωd correspond to the expectations for pick-
up and drop-off locations, respectively. Furthermore, since
transport locations are uniformly random, the time elapsed
between encountering two such locations can be modeled as
an exponentially distributed random variable. Let τp and τd
denote the time between encountering two successive pick-
up and drop-off locations, respectively,

τp(λp) ∼ exp(Ωp(λp)) ; τd(λd) ∼ exp(Ωd(λd)). (6)

The above developed models play a crucial role in the
development of a decentralized mechanism to regulate in-
terference, which is the ultimate goal of this paper. We
now introduce a simulation setup where the robots solve the
distributed collection task while using a particular collision
avoidance algorithm.

D. Simulation Setup

We validate the theoretical models developed in this paper
using a simulated team of differential-drive robots solving
the distributed collection task while performing a uniformly
ergodic random walk in the domain. The robots deploy
minimally-invasive barrier certificates [35] to compute safe
velocities when they encounter other robots in the domain.

For a set of simulation parameters (λ = 0.99, δ = 0.11,
v = 1), Fig. 3a plots the histogram of the empirically ob-
tained inter-encounter times, alongside the theoretical values
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Fig. 3. Histogram of the inter-encounter time τc and the encounter
resolution time τr for a team of simulated robots performing the dis-
tributed collection task. In 3a, the inter-encounter time distribution is well-
approximated by an exponential random variable with mean given in (2). 3b
shows the best-fit exponential distribution to the encounter resolution times.
Best-fit exponential parameter: ρ = 2.44.

Fig. 4. Each robot can be in four different states when performing the
collection task: free (f ), free and colliding (fc), loaded with an object (l),
loaded and colliding (lc). State transitions are characterized by a continuous-
time Markov chain whose transition rates are illustrated.

corresponding to the same density given by (3). Figure 3b
plots a histogram of the time taken by robots to resolve
encounters and plots that against a best-fit exponential curve
(MATLAB fitdist: ρ = 2.44). As seen in both cases, for
the given choice of collision-avoidance algorithm, the em-
pirical distributions are well-approximated by the developed
encounter models.

IV. CONTINUOUS-TIME MARKOV MODEL

At a particular time t, any robot can be described as
belonging to one of four distinct states defined by V =
{f, l, fc, lc}: free and ready to pick-up an object (f ), free
and colliding with another robot (fc), carrying an object
(l), and colliding while carrying an object (lc). The possible
transitions between states is illustrated in Fig. 4.

Owing to the stochastic nature of the motion of robots and
distribution of transport locations, the transition of a robot
from one state to another will be stochastic. Let X(t) be
the stochastic variable which represents the current state of
a chosen robot at time t. It does not matter which robot
we pick since they are all identical under the mean-field
approximation. The memoryless properties of the inter-robot
encounter and object-transport models developed in (3), (4),
and (6) imply that the stochastic variable X(t) evolves
according to a continuous-time Markov process [39] over
the possible states V = {f, l, fc, lc}.

The probability per unit time of making a transition from
state i → j, i, j ∈ V is characterized by the transition rate
qi→j . Impossible transitions are characterized by qi→j = 0.
The following theorem derives expressions for the transition
rates and computes the fraction of time spent by each robot
in the different states V .

Theorem 1: Consider a team of robots performing the
distributed collection task as defined in Section III-A. Let
X(t) ∈ V be the stochastic variable denoting the current
state of a given robot at time t. Utilizing the collision as
well as object transport models developed in (3), (4), (6),
the fraction of time spent by each robot in a state j ∈ V can
be computed by evaluating the unique stationary distributions

πj = lim
t→∞

Prob(X(t) = j), j ∈ V,

whose expressions are given as,

πf =
λd/λp

1 + λd/λp(1 + cλ
ρ (1 + λp/λd))

,

πl =
λp
λd
πf ; πfc =

cλ

ρ
πf ; πlc =

cλ

ρ
πl,

where c = 4δvr.
Proof: The transition rates characterizing the CTMC

illustrated in Fig. 4 can be defined as follows.
• qf→fc and ql→lc represent the rates at which a free (or

loaded) robot encounters another robot in the domain,
which is given by (2).

• qfc→f and qlc→l represent the rates at which a robot
resolves an encounter when it is either free or loaded.
From (4), this is simply the parameter ρ.

• qf→l and ql→f represent the rate at which a robot picks
up objects and drops them off, respectively, given by (5).

Given the transition rates qi→j , i, j ∈ V , we can compute
the stationary distribution of the CTMC by constructing the
generator matrix G [39], which is given as,

G =


−(cλ+mλp) mλp cλ 0

mλd −(cλ+mλd) 0 cλ
ρ 0 −ρ 0
0 ρ 0 −ρ

 ,
where c = 4δvr and m = 2δv. The stationary distribu-
tion π = (πf , πl, πfc, πlc)

T can be computed by solving
the equation πTG = 0. The uniqueness of the stationary
distribution π follows from the irreducibility and positive-
recurrence properties of the embedded discrete-time Markov
chain corresponding to the CTMC illustrated in Fig. 4.

Since ql→f represents the rate at which robots deliver
objects and become free, the expected number of objects
delivered per robot per unit time, denoted by T , is given as,

T (λ) = ql→fπl = 2δvλdπl(λ).

For the simulation setup introduced in Section III-D, Fig. 5
plots the total number of objects delivered by the robots
per unit time per unit area T (λ)λ, against the density λ
(parameters: v = 0.1, δ = 0.11, λp = 0.82, λd = 0.66,
ρ = 2.44). As seen, the actual productivity of the swarm
closely matches the theoretically expected output, barring de-
viations due to edge effects and the stochastic nature of inter-
robot encounters. This paper is primarily concerned with the
performance of the swarm at intermediate densities—Fig. 5
does not consider very large densities where complete robot
jamming can be expected, e.g., [4].
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Fig. 5. The theoretical evolution of T (λ)λ as the density of robots
(measured in robots/m2) increases is closely matched with the values
obtained from simulations with robots employing barrier certificates for
collision avoidance. As seen, beyond a certain density, the total output of the
swarm increases sub-linearly with the robot density since individual robots
spend more time avoiding collisions than transporting objects. This paper is
primarily concerned with the performance of the swarm at intermediate
densities—the catastrophic jamming occurring at higher densities is not
discussed.

Inspired by the sub-linearity in the total output of the
swarm at intermediate densities (see Fig. 5), we would like
to compute the optimal density of deployed robots so as
to achieve a balance between the swarm size (characterized
by λ) and the total output of the swarm (characterized by
T (λ)λ). Such a trade-off can be encoded in the following
optimization problem,

argmin
λ≥0

J(λ) =
C

T (λ)λ
+ λ,

where λ is the density of robots deployed in the domain, and
C is chosen to trade-off the cost of deploying robots and the
effectiveness of the swarm at performing the task. Setting
the gradient of J(λ) to zero and solving analytically, we get
the optimal density of robots,

λ∗ = argmin
λ≥0

J(λ) =

√
C(1 + λd

λp
)

2δvλd
. (7)

In the next section, we allow a robot swarm to autonomously
regulate its density to the optimal value by enabling individ-
ual robots to retreat from the domain when they sense a
higher-than-optimal density.

V. DECENTRALIZED DENSITY CONTROL

The primary aim of this section is to develop an algorithm
that allows individual robots to retreat from the domain when
they detect a higher-than-optimal density. The first part of
this section develops an ensemble-level control framework
for reducing the robot density. A decentralized implemen-
tation is later discussed. We also develop an estimation
algorithm that allows each robot in the domain to measure the
time-varying density of robots λ(t). We assume that robots
enter and exit the domain by driving through any section of
the boundary of domain D (as depicted in Fig. 1).

A. Ensemble Closed-Loop Control

Given the density of pick-up and drop-off locations λp
and λd, if the density of robots at time t, denoted as λ(t), is

higher than the optimal λ∗, we would like a certain fraction
of the robots to leave the domain (we ignore the degenerate
case when λ∗ = 0). Let ελ be the number of robots leaving
per unit area per unit time. Then, the population dynamics
in the domain can be expressed as,

λ̇(t) = λin − ε(λ(t))λ(t), (8)

where λin denotes the known and constant number of robots
added to the swarm per unit area per unit time (see Section I).
The following choice of ε feedback-linearizes the above
system while driving the density of the swarm to λ∗ using
a “one-sided” proportional controller,

ε(λ(t)) =

{
1
λ(t) [λin −Kp(λ

∗ − λ(t))], λ > λ∗

0 , otherwise
, (9)

where Kp is an appropriately chosen proportional gain. A
proportional controller was chosen primarily as a simple
demonstration of the control mechanism; in general, based
on the desired performance requirements, any controller can
be used. Applying (9) in (8), we get the ensemble closed
loop population dynamics,

λ̇(t) ≡

{
Kp(λ

∗ − λ(t)), λ(t) > λ∗

λin , otherwise
. (10)

The control parameter ε(λ(t)) can be interpreted as the
probability per unit time with which a robot should leave
the domain as a function of the density λ(t). Thus, in order
for each robot to individually compute ε, it must estimate
the density of robots in the domain.

B. Estimation

The robots performing the distributed collection task are
not equipped with sophisticated sensors, but can detect
encounters with other robots as they move through the
domain, as defined in Section III-A. Let ei(t) denote the
total number of robots currently in an encounter with robot i.
New encounters experienced by robot i can be characterized
by an index variable,

Hi(t) =

{
1, if ∃ t1 < t s.t., ∀x ∈ [t1, t), ei(x) < ei(t)

0, otherwise
.

Denote yiL(t) as the total number of encounters experienced
by robot i in a time interval [t− L, t], t ≥ L,

yiL(t) =

∫ L

t−L
Hi(t)dt. (11)

Given this measurement and the encounter model described
by (3), the Maximum-likelihood Estimate (MLE) [40] of the
swarm density for robot i at time t > L is,

λ̂i(t) =
yiL(t)

4δ 4
πvL

. (12)

The measurement horizon L should be chosen so as to
achieve a trade-off between accuracy of estimate and the
ability of the robot to track changing densities.



C. Decentralized Implementation

Using the maximum likelihood density estimate λ̂i(t),
each robot computes its probability of leaving the domain
ε(λ̂i(t)) using (9). The operations of each robot, executed
every dt seconds in software, is illustrated in the following
algorithm.

Algorithm 1 Voluntary Retreat Algorithm

1: Initialize λ̂i = 0, k = 0
2: Given λp, λd, λin, and C, compute λ∗

3: for each time t = kdt, t > L do
4: Compute yiL(t) from (11) ← detecting encounters
5: Compute λ̂i(t) from (12)
6: Compute ε(λ̂i(t)) from (9)
7: Leave the domain with probability ε(λ̂i(t))dt
8: k = k + 1
9: end for

Before deployment, each robot computes the optimal den-
sity λ∗ using the density of transport locations and influx rate
of robots. After an initial wait of L seconds (during which
time robots are collecting encounter information), each robot
computes the MLE estimate in step 5 and the resulting ε in
step 6. Finally, the robot flips a biased coin to leave the
domain with a probability ε(λ̂i(t))dt.

Each robot i will have a different estimate of the density;
consequently, ε(λ̂i(t)) will vary from one robot to another.
While this implies that robots behave differently from each
other, we demonstrate in the next section that, for a team of
real world robots, the algorithm indeed allows the robots to
regulate the density of the swarm to the optimal value.

VI. EXPERIMENTAL RESULTS

The developed algorithm was deployed on the Robotarium
[41], a remotely accessible swarm robotics testbed. The
experiment was initialized with 8 robots starting inside the
elliptical domain (with 1.2m and 0.8m as the semi-major
and semi-minor axis length) shown in Fig. 6a, deploy-
ing minimally-invasive barrier certificates [35] for collision
avoidance. An additional 4 robots were initially placed
outside and entered the domain at a steady rate. Pick-up (�)
and drop-off (×) locations are marked on the domain.

For the following parameters: λp = 1.32, λd = 1.32, C =
0.03, δ = 0.1, v = 0.1, each robot computes the optimal
swarm density using (7). The robots perform an unbiased
random walk in the domain while encountering other robots.
Using Algorithm 1 (with parameters L = 90, dt = 0.03,
Kp = 0.03, λin = 0.02), each robot flips a biased coin to
decide whether it should stay or retreat.

The experiment was repeated 5 times to average the
results, and demonstrate the consistent performance of the
voluntary retreat algorithm. Figure 6b plots the mean of the
true robot population against the optimal value, along with
the standard deviation (represented by the shaded region).
As seen, the rate at which robots retreat reduces as the true
population approaches the optimal value, in accordance with

(a)

(b)

Fig. 6. Experimental verification of the Voluntary Retreat Algorithm on a
team of 12 real robots operating on the Robotarium. An overhead projector is
used to project additional information onto the robot arena. The experiment
begins with 8 robots inside the elliptical domain seen in 6a. Robots stationed
outside enter at a steady rate λin. Blue and red circles projected around
each robot signify free (f) and loaded (l) robots, respectively. Green circles
indicate that a robot has decided to retreat from the domain. These robots
drive out of the elliptical domain via any section of the boundary. The robot
population data in 6b is averaged over 5 experimental runs to demonstrate
the consistent performance of the algorithm, with one standard deviation
depicted by the shaded region.

the closed-loop dynamics given in (10). Even with variations
in the density estimates of the robots as well as the constant
influx of new robots (indicated with upwards jumps in Fig.
6b), the closed loop algorithm allows the population to settle
around the optimal value.

VII. CONCLUSION

The technique presented in this paper allows a robot
swarm to autonomously curb the negative effects of spatial
interference by enabling individual robots to either stay and
perform the distributed collection task, or retreat so as to
reduce the density. Each robot uses only binary information
regarding the presence of other robots around it to estimate
the density of the swarm, and decides whether to stay or
voluntarily retreat from the domain. We demonstrate that
the swarm regulates the density to an optimal value, which
is analytically computed to achieve a trade-off between
swarm size and overall productivity. Multi-robot experiments
demonstrate the efficacy of the developed algorithm.
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[2] E. Şahin, “Swarm robotics: From sources of inspiration to domains of
application,” in International Workshop on Swarm Robotics. Springer,
2004, pp. 10–20.

[3] D. Goldberg and M. J. Mataric, “Interference as a tool for designing
and evaluating multi-robot controllers,” in Aaai/iaai, 1997, pp. 637–
642.

[4] A. Rosenfeld, G. A. Kaminka, and S. Kraus, “A study of scalability
properties in robotic teams,” in Coordination of large-scale multiagent
systems. Springer, 2006, pp. 27–51.

[5] G. Pini, A. Brutschy, M. Birattari, and M. Dorigo, “Interference
reduction through task partitioning in a robotic swarm,” in Sixth
International Conference on Informatics in Control, Automation and
Robotics–ICINCO, 2009, pp. 52–59.

[6] H. Hamann, “Superlinear scalability in parallel computing and multi-
robot systems: Shared resources, collaboration, and network topology,”
in International Conference on Architecture of Computing Systems.
Springer, 2018, pp. 31–42.

[7] E. Castello, T. Yamamoto, F. Dalla Libera, W. Liu, A. F. Winfield,
Y. Nakamura, and H. Ishiguro, “Adaptive foraging for simulated and
real robotic swarms: the dynamical response threshold approach,”
Swarm Intelligence, vol. 10, no. 1, pp. 1–31, 2016.

[8] D. A. Shell and M. J. Mataric, “On foraging strategies for large-scale
multi-robot systems,” in 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2006, pp. 2717–2723.

[9] R. Beckers, O. E. Holland, and J.-L. Deneubourg, “Fom local actions
to global tasks: Stigmergy and collective robotics,” in Prerational In-
telligence: Adaptive Behavior and Intelligent Systems Without Symbols
and Logic. Springer, 2000, pp. 1008–1022.

[10] A. Martinoli, A. J. Ijspeert, and L. M. Gambardella, “A probabilistic
model for understanding and comparing collective aggregation mech-
anisms,” in European Conference on Artificial Life. Springer, 1999,
pp. 575–584.

[11] K. Lerman and A. Galstyan, “Mathematical model of foraging in a
group of robots: Effect of interference,” Autonomous Robots, vol. 13,
no. 2, pp. 127–141, 2002.

[12] E. Ostergaard, G. Sukhatme, and M. Mataric, “Emergent bucket
brigading,” in Autonomous Agents, vol. 37, 2001, pp. 2219–2223.

[13] A. T. Hayes, “How many robots? group size and efficiency in collective
search tasks,” in Distributed Autonomous Robotic Systems 5. Springer,
2002, pp. 289–298.
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