
Volatile memory forensics for the Robot Operating System
Vı́ctor Mayoral Vilches, Laura Alzola Kirschgens, Endika Gil-Uriarte, Alejandro Hernández

ALIAS ROBOTICS,
Calle Venta de la Estrella 6, Pab 110
01006 Vitoria-Gasteiz, Álava, Spain

Bernhard Dieber
JOANNEUM RESEARCH

Institute for Robotics and Mechatronics
Lakeside B08

9020 Klagenfurt, Austria

Abstract

The increasing impact of robotics on industry and on society
will unavoidably lead to the involvement of robots in inci-
dents and mishaps. In such cases, forensic analyses are key
techniques to provide useful evidence on what happened, and
try to prevent future incidents. This article discusses volatile
memory forensics for the Robot Operating System (ROS).
The authors start by providing a general overview of foren-
sic techniques in robotics and then present a robotics-specific
Volatility plugin named linux rosnode, packaged within the
ros volatility project and aimed to extract evidence from
robot’s volatile memory. They demonstrate how this plugin
can be used to detect a specific attack pattern on ROS, where
a publisher node is unregistered externally, leading to de-
nial of service and disruption of robotic behaviors. Step-by-
step, common practices are introduced for performing foren-
sic analysis and several techniques to capture memory are
described. The authors finalize by introducing some future
remarks while providing references to reproduce their work.

1 Introduction

As robots become widespread and used in a variety of dif-
ferent applications, it is expected that malicious actors will
start compromising robotic systems for their own purposes.
Potential misuse of robots may range from privacy invasion
by unauthorized remote access to sensors (like the camera
of your robot at home) up to causing damage or harm to the
robot’s environment or persons in its vicinity. In an attempt
to diagnose and prevent robot-aided crime, robot forensics
proposes a number of scientific tests and methods to obtain,
preserve and document evidence from robot-related crimes.

Robot forensics are closely connected to computer forensics
as a subgroup of digital forensics, namely summed up as
Digital Forensic Incident Response competences (DFIR).
This entails the interaction of crime, evidence, science and
law. According to Abeykoon and Feng[1], the field of

computer forensics is young and was initiated around 1970
in the United States, in response to the requirement for more
extensive access to solve cyber-criminal activities related
to protocols in a computer. Within the digital forensics
community, there are different areas of interest. Of most
relevance are: a) non-volatile memory forensics, which
includes hard drives and storage peripherals, b) network
forensics and c) volatile (RAM) memory forensics. For the
purpose of robotics, the authors classify these areas in two
subgroups:

• Memory forensics

• Networking forensics

In this article, the authors focus on robot memory forensics
that could become the stepping stone towards the creation
of future Robot-specific Forensics and Incident Response
(RFIR) teams. In particular, volatile (RAM) memory
forensics is studied for its interest in robotics. The goal is
to perform an online analysis of a robot’s memory to detect
potential manipulations in the running system.

RAM forensics aims to use memory management structures
in computers such as arrays, bitmaps, records, linked lists,
hash tables, trees, etc, to extract files or other information
resident in a computer’s physical memory. These files
can later be used to prove that a crime has transpired, or
to trace how it came to pass. In robotics, it is relevant
to note that RAM typically presents all the recent infor-
mation that runs across all devices of the robotic system.
This becomes specially interesting given the popularity
of distributed architectures in robotics. Regardless of the
availability of non-volatile memory, most robot components,
as participants of the robot network, may contain relevant
information in their RAM memory. Specially, most robots
have a dedicated component for computation or cognition.
Such component is in charge of concentrating recent
samples from sensors and actuators to reason and react
accordingly. During this study, the authors will focus on

ar
X

iv
:1

81
2.

09
49

2v
1

 [
cs

.C
R

]
 2

2
D

ec
 2

01
8

such a component, namely on the cognition device of the
robot. Moreover, the focus will be on the study of the Robot
Operating System (ROS)[2], which to many is the most
popular framework for robot application development.

Besides ROS, the authors also restrict themselves to
the study of forensics in Linux-based robotic systems. The
rationale behind this assumption is twofold. First, ROS
was traditionally only supported in Linux, which made the
community grow in that direction. Nowadays, most ROS
robotic systems are powered by Linux or by a POSIX-
compliant Unix variant. Second, a growing number of robot
components run embedded Linux, in which memory-only
file systems are used. Such artifacts are lost when the device
is powered down. Thus, as pointed out by Ligh et al. [3], in
many cases, preserving RAM is the best (and sometimes the
only) method to determine which files an attacker accesses.

The sections below are structured as follows: section 2
provides an overview of prior art in the area of robot
forensics and particularly, robot memory forensics. Section
3 discusses how to perform a memory forensics analysis in
ROS, including memory acquisition, tools, and presenting
a walk-through on several use cases. Finally, section 4
presents the conclusions and future work. In addition,
Appendix A clarifies the differences between forensics and
reversing.

2 Previous work

There are very few studies that aim to perform forensic
research in robots. However, as they are digital systems,
much of the existing literature applies to them too. Within
previous work, a large share of attention has been paid to
analyze non-volatile media such as hard drives or storage
peripherals, also present in robots. More recently, the
rise of networks has created an interest in the study of
network-based evidence. Both of these subjects have
existing, extensive bodies of knowledge, as exemplified by
Luttgens et al.[4] and Cichonski et al.[5].

This is not the case of RAM memory. Few studies fo-
cus on volatile memory forensics and even less are relevant
or applicable to robotics. Some of the most interesting
include the talk given by Mariusz Burdach at Black Hat
2016[6], the popular Android’s memory acquisition and
analysis[7] or [3], where a comprehensive discussion on
forensic techniques for volatile memory is held for different
operating systems.

A recent study on memory forensics for ROS was conducted
by Abeykoon et al.[1], where the authors claim they present
the first methodology and toolset for acquisition and deep

analysis of volatile physical memory from robot operating
system devices. This article presents certain information on a
somewhat interesting manner, but lacks on formal methods,
and the content presented is not useful for the expert reader.
Within the text, the Robot Operating System is presented
as a relatively new concept, although ROS was launched
first in 2007. At the time of writing, the commonly cited
ROS article, published in 2009, has received about 4959
citations. The ROS community has spread across countries
and events dedicated to ROS are appearing in different
geographical areas. Regardless of certain discrepancies with
the understanding of ROS, Abeykoon et al. provide a nice
introduction to the field of forensics and make use of popular
forensic tools such as Volatility[8] or LiME[9]. The authors,
however, do not present any novel contribution that justi-
fies their claims, nor any description to reproduce their work.

In an attempt to provide a foundational path for the
growth of robot forensics, and specifically aimed at volatile
memory, the content below presents a study on ROS volatile
memory forensics. The authors introduce common practices
for performing forensic analysis in robots powered by ROS
and describe several techniques to capture memory. They
discuss the tools employed, introduce their contributions,
and explain how to use them through a study case that
provides a walk-through on the forensics of a ROS system.
To finalize, the authors introduce some remarks and insights
for future research and provide references to reproduce their
work.

3 ROS volatile memory forensics

3.1 Volatile memory acquisition in robots

As pointed out before, several techniques from traditional
digital forensics will be useful for robots. Among them,
memory acquisition for robots can be performed in a simi-
lar manner. The following subsections will describe some of
the most popular techniques applicable to robots:

3.1.1 Using /dev/mem

/dev/mem provides access to the physical memory of a run-
ning system. According to Ligh et al.[3], /dev/mem was the
most popular interface for memory acquisition before being
disabled in most Linux distributions for security reasons.
Currently, its access remains restricted[10] in popular distri-
butions like Ubuntu through the CONFIG STRICT DEVMEM

kernel option.

Still, with the right privileges, a forensics analyst should
be able to get the right level of permission. Unfortunately,
this interface only allows to access the first 896MB of RAM

2

memory with commands like the ones in Listing 1. The
limitation of this interface gave birth to other methods.

1 sudo dd if=/dev/mem of=/home/vagrant/robot.dd

2 bs=1MB count=10

Listing 1: Command line to capture volatile memory with
/dev/mem

3.1.2 Using ptrace

ptrace is the userland debugging interface that Linux
provides and, according to [3], it is not suitable for robust
memory acquisition. It can acquire pages from running
processes without any changes required in the kernel. This
makes the process of acquiring memory less aggressive
and simplified in certain robots. However the information
acquired keeps solely restricted to process-related pages.

An interesting tool to capture memory in this manner
is https://github.com/citypw/lcamtuf-memfetch.
Similar to what is described in [3], this repository offers an
applications that, when compiled and executed, reads the
starting and ending addresses of process’ memory ranges
from /proc/<pid>/maps and then uses ptrace to dump
each page to disk.

The previous two methods were widely used on 32-bit
systems, yet with the growth of 64-bit devices, new acquisi-
tion methods appeared that made use of kernel modules to
access the complete range of RAM memory. The following
two are, as of today, the most popular in the Linux world.

3.1.3 Using /dev/fmem

/dev/fmem was created as an extension of /dev/mem. The
character device appears by loading a kernel driver and it
exports physical memory for other programs to access while
providing a number of advantages as described at [3]. Listing
2 shows how to install the character device and 3, how to use
it to acquire memory.

1 git clone https://github.com/NateBrune/fmem

2 cd fmem && make

3 sudo ./run.sh

Listing 2: Installing /dev/fmem character device for mem-
ory acquisition

1 sudo dd if=/dev/fmem of=memory.dump

2 bs=1MB count=1000

Listing 3: Command line to capture volatile memory with
/dev/fmem

3.1.4 Using the Linux Memory Extractor (LiME)

LiME is often presented[3] as the latest Linux memory
acquisition tool. It is operated by loading a kernel driver
that, instead of creating a userland accessible character
device (like /dev/fmem above), fetches the memory from
the kernelspace. This enhances the accuracy of the resulting
samples due to the removal of context switches between
kernel and user spaces for transferring data.

LiME allows to capture memory in different formats.
Listing 4 shows how to install LiME in the $HOME directory,
5 how to use it and 6 how to remove the kernel module to
cleanup after the memory capture. LiME will be the tool
used throughout the analysis.–

1 cd $HOME && git clone https://github.com/504ensicsLabs/LiME

2 cd $HOME/LiME/src && make

3 cd $HOME/LiME/src && cp lime-*.ko lime.ko

4 cd $HOME/LiME/src && sudo mv lime.ko /lib/modules/

Listing 4: Installing LiME in the $HOME directory for mem-
ory acquisition

1 sudo insmod /lib/modules/lime.ko

2 "path=/home/vagrant/robot.lime

3 format=lime"

Listing 5: Command line to capture volatile memory with
LiME through the kernel module

3.2 Volatility and the ros volatility plugins
The Volatility framework [8] is an open collection of tools
for the extraction of digital artifacts from volatile memory
(RAM) samples. It is written in Python, licensed under
GPLv2 and provides a wide variety of algorithms that run
in Linux, Mac OS or Windows. The framework consists of
several subsystems that work together to provide a robust set
of features. Among these subsystems is the plugin system.

3

https://github.com/citypw/lcamtuf-memfetch

1 sudo rmmod /lib/modules/lime.ko

Listing 6: Command line to remove LiME’s kernel module

Plugins allow you to extend the Volatility framework with
new capabilities. For example, an address space plugin
could introduce support for operating systems that run on
new CPU chipsets. Volatility is indeed a fantastic tool.
However, currently and according to its README, its
support in Linux is limited, and only kernels up to 3.6,
which imposes certain limitations for robots running modern
kernels.

The authors will be using Volatility and extend it with
a new set of plugins named ros volatility1 that have been
developed to analyze the memory of ROS-related artifacts.
At the time of writing ros volatility presents only a single
plugin:

• linux rosnode: A basic class used to fetch all ROS
nodes from memory. It extends the linux pslist class to
obtain all processes and filters according to those that
make use of the typical ROS libraries. In addition, it
checks the sockets of each one of the nodes and verifies
whether the node was or wasn’t registered in the ROS
network.

Additional plugins are being developed and contributed to
analyze memory and determine issues in topics and other ab-
stractions of the ROS ecosystem.

3.3 A Study case: Unauthenticated registra-
tion/unregistration of ROS Nodes

Described by Dieber et al.[11], the ROS Master API2

requires no authentication capabilities to register and un-
register publishers, subscribers and services. This leads to
a reported vulnerability3 that can easily be exploited with
off-the-shelf penetration testing tools, provided an attacker
has access to the internal robot network. Based on this,
possible exploits range from eavesdropping via denial of
service up to injection of false data.

To assess the severity of the vulnerability, the authors
of this paper have used the Robot Vulnerability Scoring
System (RVSS)[12] under the following assumptions:

• Vectors of attack come from within the internal network
of the robot. As discussed by Mayoral et al.[13], most
robots separate their networking setup in two different
networks: an internal one, where the software and hard-
ware components operate and an external one, meant to

access the robot from the outside world. This assump-
tion is not entirely true, given recent discoveries[14].
Still, provided some basic security awareness and tak-
ing a conservative approach, the authors assume that
this vulnerability should apply only to those with access
to the robot internal network, where the ROS Master is
operating.

• Attack complexity is low given the availability of off-
the-shelf penetration testing tools that can exploit this
flaw.

• No safety implications have been considered since the
vulnerability affects ROS, what can be classified as a
(software) component and not a complete robot system
by itself. It should be noted, however, that a robotic
system using a vulnerable ROS setup could easily cause
human harm and thereby imply environmental or even
human safety hazards.

Following this conservative approach, the vector of the
vulnerability is RV SS : 1.0/AV : IN/AC : L/PR : N/UI : N/Y :
T/S : U/C : H/I : N/A : H/H : N. Altogether, and as stated
by Mayoral et al., this vulnerability scores with 7.6 out of
10, which implies a High degree of severity according to the
classification proposed.

The following section will show how an attack can exploit
this vulnerability and cause selected nodes to be unregistered
from the robot network.

ROS Master /publisher /listener roschaos

Unregister publisher ”P”

Publisher ”P” unregistered, terminate connection

Publisher ”P” unregistered, terminate connection

Figure 1: Sequence diagram of an unauthenticated unregis-
tration attack in ROS.

3.3.1 Attacking ROS

To simulate the attack in an artificial robotic system, the
authors made use of the Robotics CTF[15] public resources4

and constructed an scenario with a robotic system as
described in Figure 2. Besides the simulated robot, the
scenario also contains different robot penetration testing
tools. Mainly ROSPenTo5 and roschaos6. ROSPenTo is a
.NET-based tool that allows for analyzing and manipulating
a ROS-network on a very fine-grained level with a high
degree of stealthiness. Roschaos is meant for high-impact

4

Figure 2: Robot subject of the study case 1: Unauthenticated
registration/unregistration of ROS Nodes

attacks aiming at causing more damage in a single step.

The application contains two nodes, a /publisher node
running in a process called ’talker’ and a /listener node
running in a process with that name. Along with that, ROS
starts also the roscore process, which contains the ROS
master. There is also a ROS node named /rosout that is part
of the ROS core. The attack is described in listing 7 and the
resulting status in listing 8:

1 root@655447dc534c:/# rosnode list

2 /listener

3 /publisher

4 /rosout

5

6 root@655447dc534c:/# roschaos master unregister

7 node --node_name /publisher

8 Unregistering /publisher

Listing 7: Unauthenticated unregistration attack on ROS
Master API

As it can be seen when introspecting the ROS Master
through the rosnode list command, the /publisher node has
disappeared while the process talker is still running (line
13 of listing 8) and consuming resources. What happens
under the hood here is that the ROS master will now notify
all subscribers of the /publisher node that it is no longer
available.

The authors ask themselves: How can we determine
whether our system has been subject of the unauthenticated
unregistration attack? How can we identify at which point
our robotic system was compromised? What are the affected
subsystems? The following section will explore some
of these questions by researching the volatile memory
landscape of the presented simulated robot.

1 root@655447dc534c:/# rosnode list

2 /listener

3 /rosout

4

5 root@655447dc534c:/# ps -e

6 PID TTY TIME CMD

7 1 pts/0 00:00:00 launch_script.b

8 31 pts/0 00:00:00 roscore

9 42 ? 00:00:01 rosmaster

10 55 ? 00:00:01 rosout

11 72 pts/0 00:00:00 bash

12 78 pts/1 00:00:00 bash

13 90 pts/0 00:00:00 talker

14 108 pts/0 00:00:01 listener

15 174 pts/1 00:00:00 ps

Listing 8: Status after unauthenticated unregistration attack
on ROS Master API

3.3.2 Forensic study

The study of this vulnerability will be conducted using the
ros volatility plugin set. In particular, the linux rosnode
plugin which locates ROS nodes from memory and reports
information about them. The authors will base their research
on memory captures made through the LiME utility installed
in their robotic system. In an untampered system, the plugin
operates as follows:

1 vagrant@vagrant-ubuntu-trusty-64:~$ vol.py

2 --plugins=/vagrant/ros_volatility

3 --profile LinuxUbuntu14045x64

4 -f robot.lime linux_rosnode

5 Volatility Foundation Volatility Framework 2.6

6 rosout

7 talker

8 listener

Listing 9: Output of running the linux rosnode plugin be-
fore the unauthenticated unregistration attack on the Master
API

Listing 9 shows the result of running the linux rosnode plu-
gin on the ROS setup, prior to the exploitation of an unau-
thenticated unregistration attack on the Master API. Listing
10 displays the result of running linux rosnode after the at-
tack (described previously in Listing 7). Note that the talker
node has been identified as unregistered. The plugin deter-
mines this aspect by analyzing all the sockets available in
memory for each one of the ROS nodes detected, and infers
that those publishers with a socket in the same port both in

5

‘LISTEN‘ and ‘CLOSE WAIT‘ status were likely unregis-
tered. The code that implements this detection is revealed at
Listing 11.

1 vagrant@vagrant-ubuntu-trusty-64:~$ vol.py

2 --plugins=/vagrant/ros_volatility

3 --profile LinuxUbuntu14045x64

4 -f robot_hacked.lime linux_rosnode

5 Volatility Foundation Volatility Framework 2.6

6 rosout

7 talker (unregistered)

8 listener

Listing 10: Output of running the linux rosnode plugin after
the unauthenticated unregistration attack on the Master API

By using the linux rosnode plugin, a researcher is able to
determine that the talker ROS node has been unregistered
and thereby, the system, likely, compromised. A complete
walk-through on the forensic study of this vulnerabil-
ity is available at https://github.com/vmayoral/

basic_robot_cybersecurity/tree/master/robot_

forensics/tutorial1.

The authors now know that the system has been tam-
pered and the talker unregistered, but what was the cause?
To answer this question, one of the default volatility plugins
will be used.

Results are displayed in Listing 12. Lines 23 and 24
show that it was the roschaos tool what exploited the
unauthenticated unregistration vulnerability in the ROS
Master.

1 # The following assumption is made for detecting

2 # unregistered nodes:

3 #

4 # a publisher having a socket in the same

5 # port both in `LISTEN` and `CLOSE_WAIT`

6 # status was likely unregistered

7 #

8 # WARNING: this assumption was validated for a simple

9 # scenario. Further

10 # research needs to be executed to validate it in

11 # multi-topic and multi-nodes scenarios.

12 listen_ports = [] # ports with LISTEN state

13 close_wait_ports = [] # ports with CLOSE_WAIT state

14 for ents in t.netstat():

15 if ents[0] == socket.AF_INET:

16 (_, proto, saddr, sport, daddr, dport,

17 state) = ents[1]

18 if state == 'LISTEN':

19 listen_ports.append(sport)

20 elif state == 'CLOSE_WAIT':

21 close_wait_ports.append(sport)

22

23 unregistered = False

24 for p in close_wait_ports:

25 if p in listen_ports:

26 unregistered = True

Listing 11: Detection of unregistered nodes, snipped of code
from linux rosnode plugin

6

https://github.com/vmayoral/basic_robot_cybersecurity/tree/master/robot_forensics/tutorial1
https://github.com/vmayoral/basic_robot_cybersecurity/tree/master/robot_forensics/tutorial1
https://github.com/vmayoral/basic_robot_cybersecurity/tree/master/robot_forensics/tutorial1

1 vagrant@vagrant-ubuntu-trusty-64:~$ vol.py

2 --plugins=/home/vagrant/volatility-plugins/linux

3 --profile LinuxUbuntu14045x64

4 -f robot_hacked.lime linux_bash

5 1583 bash 2018-11-01 17:58:12

6 UTC+0000 rosnode list

7 1583 bash 2018-11-01 17:58:18

8 UTC+0000 roscore &

9 1583 bash 2018-11-01 17:58:28

10 UTC+0000 rosrun scenario1 talker &

11 1583 bash 2018-11-01 17:58:32

12 UTC+0000 rosrun scenario1

13 listener > /tmp/listener.txt &

14 ...

15 1583 bash 2018-11-01 18:09:19

16 UTC+0000 rosnode list

17 1583 bash 2018-11-01 18:09:33

18 UTC+0000 sudo insmod /lib/modules/lime.ko

19 "path=/home/vagrant/robot.lime format=lime"

20 1583 bash 2018-11-01 18:09:38

21 UTC+0000 sudo rmmod /lib/modules/lime.ko

22 1583 bash 2018-11-01 18:09:46

23 UTC+0000 roschaos master unregister node

24 --node_name /publisher

25 1583 bash 2018-11-01 18:09:50

26 UTC+0000 sudo insmod /lib/modules/lime.ko

27 "path=/home/vagrant/robot_hacked.lime format=lime"

Listing 12: The linux bash volatility plugin recovers a his-
tory of commands, exploit discovered

4 Discussion and future work

In an attempt to provide a foundational path for the growth of
robot forensics, and specifically, aimed at volatile memory,
the authors presented the first steps towards reproducible
robotic volatile memory forensic analyses with a focus on
Linux and ROS, the de facto standard in robotics. Common
practices were introduced and a walkthrough for a simulated
attack was illustrated step-by-step. Through the forensic
analysis presented, the readers should be able to answer
several of the proposed questions and determine the specific
cause of the attack by solely looking at RAM memory.

Contributions have been presented in the form of a plugin
to the Volatility framework. It should be noted however that
due to restrictions in the framework, only (Linux) kernels
below version 3.6 are supported. Future work will address
this limitation and look into more elaborated forensic stud-
ies, involving more complicated attacks. Additional plugins
are being developed for ros volatility to detect other attacks.
Eventually, the authors hope that unknown robotic attack

patterns could get identified. Beyond detecting attacks, it
would be of special interest the future extension of the ROS
robotics framework with memory introspection tools that
running side-by-side with the application, could perform
real-time analyses at regular intervals to detect attacks such
as the one just reported.

Another area of future work to approach robot foren-
sics that could serve as a natural extension of the work
presented here is the use of a dedicated tamper-proof storage
device to securely store the results of the analyses done at
run-time (commonly called a b̈lack box)̈. Recently, a con-
cept and prototype for such a device especially tailored for
modern robots (and their threat profile) has been presented
in [16]. While currently this device needs to be specially
considered within the robot application, using memory
forensics to generate its input data would make it much
easier applicable in existing robot software. No changes to
a ROS application or the ROS core would be necessary, but
still, meaningful forensic evidence on the robot system’s
execution could be collected.

A Robot forensics and reversing

Opposed to forensics, which focuses on recovering data to
establish who committed the crime[3], reverse engineering
(commonly known as reversing) is concerned with the pro-
cess of extracting knowledge or design blueprints from the
system[17]. As described by Eilam, reverse engineering is
usually conducted to obtain missing knowledge, ideas, and
design philosophy when such information is unavailable. In
some cases, the information is owned by someone who is
not willing to share. These two concepts are often mistaken.
When transposed to robotics, we apply the following under-
standing:

• Robot forensics: the process to obtain, preserve and
document evidence (typically data) from robot-related
crimes.

• Robot reversing (or robot reverse engineering): the
process of extracting information about the design el-
ements in a robotic system.

B Acknowledgments

This research has been partially funded by the Basque Gov-
ernment, in particular, by the Business Development Basque
Agency (SPRI) through the Ekintzaile 2018 program. Spe-
cial thanks to BIC Araba and the Basque Cybersecurity Cen-
ter (BCSC) for their support. This work has been supported
by the programme ”ICT of the Future”, managed by the Aus-
trian Research Promotion Agency (FFG), under grant no.
861264.

7

C Availability

All source code to reproduce the work presented here has
been made publicly available. Further extensions will also
be published into the same repositories to raise community
interest. The authors of the paper encourage other security
researchers to contribute with their own ideas an extensions.
A walkthrough on the forensic study presented in this paper
is also available from

https://github.com/vmayoral/basic_robot_

cybersecurity/tree/master/robot_exploitation/

tutorial11

additional information on the vulnerability exploited can be
obtained from

https:

//github.com/aliasrobotics/RVDP/issues/87

finally, the extensions to Volatility to perform forensic stud-
ies can be downloaded from

https:

//github.com/aliasrobotics/ros_volatility

References

[1] I. Abeykoon and X. Feng, “A forensic investigation
of the robot operating system,” in Internet of Things
(iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data
(SmartData), 2017 IEEE International Conference on.
IEEE, 2017, pp. 851–857.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-
source robot operating system,” in ICRA workshop on
open source software, vol. 3, no. 3.2. Kobe, Japan,
2009, p. 5.

[3] M. H. Ligh, A. Case, J. Levy, and A. Walters, The art
of memory forensics: detecting malware and threats
in windows, linux, and Mac memory. John Wiley &
Sons, 2014.

[4] J. T. Luttgens, M. Pepe, and K. Mandia, Incident re-
sponse & computer forensics. McGraw-Hill Educa-
tion Group, 2014.

[5] P. Cichonski, P. Millar, T. Grance, and K. Scarfone,
“Computer security incident handling guide (nist sp
800-61 revision 2) 2012.”

[6] M. Burdach, “Physical memory forensics,” USA: Black
Hat, 2006.

[7] J. Sylve, A. Case, L. Marziale, and G. G. Richard, “Ac-
quisition and analysis of volatile memory from android
devices,” Digital Investigation, vol. 8, no. 3-4, pp. 175–
184, 2012.

[8] A. Walters, “The volatility framework: Volatile mem-
ory artifact extraction utility framework,” 2007.

[9] J. Sylve, “Lime-linux memory extractor,” in Proceed-
ings of the 7th ShmooCon conference, 2012.

[10] A. Van-de Ven, “x86: introduce /dev/mem restrictions
with a config option.” [Online]. Available: https:
//lwn.net/Articles/267427/

[11] B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass,
and P. Schartner, “Security for the robot operating sys-
tem,” Robotics and Autonomous Systems, vol. 98, pp.
192–203, 2017.

[12] V. Mayoral Vilches, E. Gil-Uriarte, I. Zamalloa Ugarte,
G. Olalde Mendia, R. Izquierdo Pisón, L. Alzola
Kirschgens, A. Bilbao Calvo, A. Hernández Cordero,
L. Apa, and C. Cerrudo, “Towards an open standard
for assessing the severity of robot security vulnerabili-
ties, the Robot Vulnerability Scoring System (RVSS),”
ArXiv e-prints, Jul. 2018.

[13] V. Mayoral Vilches, L. Alzola Kirschgens, A. Bil-
bao Calvo, A. Hernández Cordero, R. Izquierdo Pisón,
D. Mayoral Vilches, A. Muñiz Rosas, G. Olalde Men-
dia, L. Usategi San Juan, I. Zamalloa Ugarte, E. Gil-
Uriarte, E. Tews, and A. Peter, “Introducing the robot
security framework (rsf), a standardized methodology
to perform security assessments in robotics,” ArXiv e-
prints, Jun. 2018.

[14] N. DeMarinis, S. Tellex, V. Kemerlis, G. Konidaris,
and R. Fonseca, “Scanning the internet for ros: A
view of security in robotics research,” arXiv preprint
arXiv:1808.03322, 2018.

[15] G. Olalde Mendia, L. Usategui San Juan, X. Perez Bas-
caran, A. Bilbao Calvo, A. Hernández Cordero, I. Za-
malloa Ugarte, A. Muñiz Rosas, D. Mayoral Vilches,
U. Ayucar Carbajo, L. Alzola Kirschgens, V. Mayoral
Vilches, and E. Gil-Uriarte, “Robotics CTF (RCTF),
a playground for robot hacking,” ArXiv e-prints, Oct.
2018.

[16] S. Taurer, B. Dieber, and P. Schartner, “Secure data
recording and bio-inspired functional integrity for in-
telligent robots,” in Proceedings of the 2018 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS 2018), 2018.

[17] E. Eilam, Reversing: secrets of reverse engineering.
John Wiley & Sons, 2011.

8

https://github.com/vmayoral/basic_robot_cybersecurity/tree/master/robot_exploitation/tutorial11
https://github.com/vmayoral/basic_robot_cybersecurity/tree/master/robot_exploitation/tutorial11
https://github.com/vmayoral/basic_robot_cybersecurity/tree/master/robot_exploitation/tutorial11
https://github.com/aliasrobotics/RVDP/issues/87
https://github.com/aliasrobotics/RVDP/issues/87
https://github.com/aliasrobotics/ros_volatility
https://github.com/aliasrobotics/ros_volatility
https://lwn.net/Articles/267427/
https://lwn.net/Articles/267427/

Notes
1https://github.com/aliasrobotics/ros_volatility
2http://wiki.ros.org/ROS/Master_API#register.

2BAC8-unregister_methods
3https://github.com/aliasrobotics/RVDP/issues/87
4https://github.com/aliasrobotics/RCTF
5https://github.com/jr-robotics/ROSPenTo
6https://github.com/ruffsl/roschaos

9

https://github.com/aliasrobotics/ros_volatility
http://wiki.ros.org/ROS/Master_API#register.2BAC8-unregister_methods
http://wiki.ros.org/ROS/Master_API#register.2BAC8-unregister_methods
https://github.com/aliasrobotics/RVDP/issues/87
https://github.com/aliasrobotics/RCTF
https://github.com/jr-robotics/ROSPenTo
https://github.com/ruffsl/roschaos

	1 Introduction
	2 Previous work
	3 ROS volatile memory forensics
	3.1 Volatile memory acquisition in robots
	3.1.1 Using /dev/mem
	3.1.2 Using ptrace
	3.1.3 Using /dev/fmem
	3.1.4 Using the Linux Memory Extractor (LiME)

	3.2 Volatility and the ros_volatility plugins
	3.3 A Study case: Unauthenticated registration/unregistration of ROS Nodes
	3.3.1 Attacking ROS
	3.3.2 Forensic study

	4 Discussion and future work
	A Robot forensics and reversing
	B Acknowledgments
	C Availability

