
Rapid Collision Detection for Multicopter Trajectories

Nathan Bucki and Mark W. Mueller

Abstract— We present a continuous-time collision detection
algorithm for quickly detecting whether certain polynomial tra-
jectories in time intersect with convex obstacles. The algorithm
is used in conjunction with an existing multicopter trajectory
generation method to achieve rapid, obstacle-aware motion
planning in environments with both static convex obstacles and
dynamic convex obstacles whose boundaries do not rotate. In
general, this problem is difficult because the presence of convex
obstacles makes the feasible space of trajectories nonconvex.
The performance of the algorithm is benchmarked using Monte
Carlo simulations, and experimental results are presented
that demonstrate the use of the method to plan collision-free
multicopter trajectories in milliseconds in environments with
both static and dynamic obstacles.

I. INTRODUCTION

A key enabler of the use of autonomous systems in
real-world situations is a fast method for generating state
and input feasible trajectories between desired states. This
problem is know as the motion planning problem, and is a
well researched area that includes numerous methods for the
generation of such trajectories. In particular, sampling-based
methods such as rapidly exploring random trees (RRT) [1],
probabilistic roadmaps (PRM) [2], and fast marching trees
(FMT) [3], have been used with great success to construct
collision-free paths between desired states. Such methods
are typically performed by sampling the state space of the
system and attempting to connect feasible sampled nodes
with simple trajectories that do not collide with obstacles.
Performing collision detection on both the sampled nodes
and the trajectories that connect them is often considered the
most computationally expensive step in the motion planning
process, and will be the focus of this paper.

Previous work focusing on the reduction of collision
detection time includes [4], which presents an algorithm
that involves using distance information from previously
sampled nodes to avoid performing explicit node-obstacle
collision detection when possible. In [5] this idea is adapted
to reduce collision detection time for multicopter trajectories
by computing overlapping collision-free spheres around the
trajectory based on the maximum velocity of the vehicle and
distance to the nearest obstacle at each sample point.

Rather than generating a number of multicopter trajecto-
ries and then checking each one for collisions, the authors
of [6] first compute a series of overlapping, obstacle-free
polyhedrons and then generate a series of trajectory segments
that remain inside the polyhedrons. In [7], the authors take
a similar approach by using an octree-based representation

The authors are with the High Performance Robotics Lab, Univer-
sity of California, Berkeley, CA 94703, USA. {nathan bucki,
mwm}@berkeley.edu

of the environment in order to enforce corridor constraints
on each trajectory segment generated. A third approach
to collision avoidance for aggressive flight is explored in
[8], where a dense set of alternative trajectories to some
desired trajectory are precomputed, allowing for one of the
alternative trajectories to be chosen if a collision is predicted
along the desired trajectory. In this case, a collision is
determined by comparing the distance of each point along
the discretized candidate trajectory to the points in a point
cloud generated by a laser scanner.

In contrast to methods concerned only with planning in
static environments, the authors of [9] leverage sequential
convex programming to compute trajectories for multiple
quadcopters that do not collide, allowing for dynamic forma-
tion changes. In [10] a method for dynamic obstacle collision
avoidance is presented that models the obstacles as ellipsoids
and incorporates them as nonconvex constraints in a model
predictive controller.

In this paper we are interested in reducing the compu-
tational time required to find feasible trajectories for mul-
ticopters in order to enable high-speed flight in cluttered,
unknown environments (e.g. when navigating a forest). Fast
trajectory generation is a requirement in these scenarios
due to the limited range of onboard sensors and limited
onboard computational power. For example, obstacles can
often be occluded or unexpectedly change position, requiring
an immediate, agile response to avoid a collision if flying at
high speeds. Furthermore, due to the constrained onboard
computational power of aerial vehicles, efficient algorithms
are often required in order to achieve acceptable perfor-
mance.

To this end, we propose a computationally efficient method
for quickly evaluating whether a candidate trajectory collides
with obstacles in the environment. We limit ourselves to
evaluating multicopter trajectories similar to those described
in [11], which describe the vehicle’s position as a fifth
order polynomial in time. These trajectories result in the
minimum average jerk over the duration of the trajectory,
and are particularly useful because they can be generated and
checked for input feasibility with little computation. Unlike
other collision detection methods that discretize the trajectory
in time and perform a number of static collision checks at
each sample point (e.g. as detailed in [12]), our method
leverages a continuous-time representation of the trajectory
to rapidly perform continuous-time collision detection.

II. SYSTEM MODEL

We follow [11] in modeling the multicopter as a six degree
of freedom rigid body with acceleration ẍ ∈ R3 (written in

ar
X

iv
:1

90
4.

04
22

3v
2

 [
cs

.R
O

]
 1

9
Ju

l 2
01

9

the inertial coordinate frame) and orientation R, where R
represents the rotation matrix that rotates vectors in the body-
fixed frame to the inertial frame. Gravity is denoted g ∈ R3

(written in the inertial frame), and the mass-normalized total
thrust force f ∈ R acts in the e3 direction, where e3 is
the body-fixed thrust direction. We assume that the angular
velocity of the vehicle ω is controlled by a high-bandwidth
low-level controller such that the angular velocity converges
very rapidly to a desired value, and may thus be treated as an
input to the system. The translational dynamics and attitude
dynamics of the multicopter are then

ẍ = Re3f + g, Ṙ = RS(ω) (1)

where S(ω) is the skew-symmetric form of the angular
velocity vector ω so that S(ω)v = ω× v for any vector v.

Using this model, it can be shown that kinematically feasi-
ble polynomial trajectories in time can be generated using the
differential flatness property of multicopter dynamics [13].
Specifically, we plan trajectories by defining the components
of the jerk

...
x(t) as second order polynomials in time between

time t = 0 and t = T . As described in [11], this results in
trajectories that minimize the average jerk over the trajectory.
The thrust f and angular velocity ω are then written as a
function of ẍ and

...
x as follows.

f = ||ẍ− g||2,

ω2

ω1

0

 =
1

f

1 0 0
0 1 0
0 0 0

R−1...
x (2)

where ω1 and ω2 are the components of angular velocity
perpendicular to the thrust direction (i.e. the roll and pitch
rates). Note that the angular velocity in the e3 direction does
not affect the translational motion of the vehicle, and is taken
to be ω3 = 0 for the rest of the paper.

The position and velocity of the multicopter are defined
as x and ẋ respectively, and are both in R3 and written in
the inertial frame. Let x(0), ẋ(0), and ẍ(0) be the position,
velocity, and acceleration of the vehicle at the start of the
trajectory. Because the minimum average jerk trajectory is
achieved when each component of the jerk is a second order
polynomial in time, the trajectories of the states of the system
follow asx(t)ẋ(t)
ẍ(t)

 =

 α
120 t

5 + β
24 t

4 + γ
6 t

3 + ẍ(0)
2 t2 + ẋ(0)t+ x(0)

α
24 t

4 + β
6 t

3 + γ
2 t

2 + ẍ(0)t+ ẋ(0)
α
6 t

3 + β
2 t

2 + γt+ ẍ(0)

(3)

where α, β, γ ∈ R3 are linear functions of x(T), ẋ(T), and
ẍ(T).

A method for quickly checking whether a given trajectory
satisfies bounds on the minimum and maximum thrust f and
the magnitude of the angular velocity ω is given in [11], to
which we refer the reader for further discussion.

III. ALGORITHM FOR STATIC OBSTACLE COLLISION
DETECTION

In this section we describe the collision detection algo-
rithm. All obstacles are assumed to be convex; nonconvex

obstacles may be approximated by defining them as a union
of convex obstacles. In general, the presence of convex ob-
stacles results in the feasible space being nonconvex, making
the trajectory generation and collision detection problem
difficult to perform using traditional optimization methods.

We first review a method used to check whether a polyno-
mial trajectory lies on one side of a plane, which is defined
by a point p and unit normal n (both written in the inertial
frame). The distance of the trajectory from the plane can be
computed as

d(t) = nT (x(t)− p) (4)

Furthermore, the critical points of d(t) can be computed
by differentiating with respect to t and finding the roots of
the resulting equation:

ḋ(t) = nT ẋ(t) = c4t
4 + c3t

3 + c2t
2 + c1t+ c0 (5)

where

c4 = 1
24n

Tα, c3 = 1
6n

Tβ, c2 = 1
2n

Tγ

c1 = nT ẍ(0), c0 = nT ẋ(0)
(6)

The trajectory x(t) is defined only between t = 0 and t =
T , so the critical points of d(t) occur between and include the
start and end of the candidate trajectory. The set of critical
points Tcrit is then defined as

Tcrit = {ti : ti ∈ [0, T], ḋ(ti) = 0} ∪ {0, T} (7)

If the distance d(t) at each critical point is positive, this
indicates that x(t) does not cross the plane. Because ḋ(t) is
a fourth order polynomial in time, its roots can be found in
closed form, meaning that Tcrit can be found with very little
computation.

We now extend this method to detect collisions with
convex obstacles. The given convex obstacle O and poly-
nomial trajectory x(t) are required to have the following
two properties. First, it must be possible to check whether a
specific point x(t0) is inside O. Second, assuming x(t0) /∈
O, it must be possible to define a separating plane between
x(t0) and O (defined with point p unit normal n). Thus,
if x(t) is found to not cross the separating plane, it is
guaranteed to not collide with O.

Algorithm 1 leverages this property to verify whether an
individual segment of a given trajectory is in collision with
a given obstacle. The algorithm begins by checking whether
the end points of the trajectory x(0) and x(T) are inside
the obstacle (lines 4-5), followed by a call to CHECKSEC-
TION, which returns whether the given section is feasible,
infeasible, or whether the feasibility of the section cannot be
determined (line 6). For each call to CHECKSECTION(ts, tf),
a time tsplit between ts and tf is chosen which divides the
trajectory in two. We choose tsplit to be the average of ts
and tf , as it will evenly divide the trajectory into two sub-
trajectories in time (line 8).

For each section checked recursively by CHECKSECTION,
x(tsplit) is first checked for feasibility (line 9), and then the
minimum resolution of the section tmin is checked (line 11).
The parameter tmin serves to terminate the algorithm early

in order to prevent excessive time being spent checking any
particular candidate trajectory, and limits the recursive depth
of the algorithm. This end condition can be reached in the
case where the candidate trajectory passes sufficiently close
to the obstacle, requiring the trajectory to be split into a large
number of sub-trajectories to be checked.

Next, the unit normal n and location p of a separating
plane are found (line 13). Although there are many possible
ways to find a separating plane, in our implementation we
choose p such that it is the minimum distance point to
x(tsplit) located in O. The unit normal of the plane n is
then chosen such that the resulting plane lies on the obstacle
boundary at p and points from p to x(tsplit). The times Tcrit
at which the critical points of the distance of the trajectory
from the resulting separating plane occur are then computed
by solving the corresponding fourth order polynomial given
by (5) (line 15). Once Tcrit is computed, the two sections
of the trajectory occurring before and after tsplit are each
checked for feasibility. Let T (↓)

crit be the elements of Tcrit in
(ts, tsplit) and T (↑)

crit be the elements of Tcrit in (tsplit, tf).
The section of the trajectory between tsplit and tf is

first checked for feasibility by iterating forward in time
over T (↑)

crit and checking whether each critical point of d(t)
lies on the feasible side of the separating plane (lines 17-
18). If a critical point is found to lie on the obstacle
side of the plane, the section between the previous critical
point (already determined to be on the feasible side of the
plane) and tf cannot be guaranteed to be feasible and is
recursively checked with CHECKSECTION (line 19). Finally,
the section of the trajectory between ts and tsplit is checked
for feasibility in a similar manner by iterating backwards in
time over T (↓)

crit (lines 26-28). A graphical representation of
Algorithm 1 is shown in Figure 1.

Note that Algorithm 1 treats x(t) as the trajectory of a
point. In order to detect collisions between O and a real
multicopter, we define a sphere of radius rq that contains the
vehicle, and enlarge O by rq in each direction. Additionally,
because polynomials of order greater than four do not
have closed form solutions except in special cases, greater
computation time would be required to find the critical points
of any higher order position trajectories (e.g. as used in [14]).

IV. PERFORMANCE MEASURES

In this section we provide two simulations used to bench-
mark the performance of the proposed algorithm.1 The
algorithm was implemented in C++ and compiled with GCC
version 5.4.0 with the highest speed optimization settings.
All simulations were ran as a single thread on a laptop with
a 1.80GHz Intel i7-8550U processor.

A. Monte Carlo simulation with random obstacles

First, a Monte Carlo simulation was conducted in order
to characterize the computational time required to perform
collision detection on a single candidate trajectory. The meth-
ods of [11] are used to generate the candidate trajectories and

1An implementation can be found at https://github.com/
nlbucki/RapidQuadcopterCollisionDetection

Algorithm 1 Trajectory Collision Detection
1: input: Candidate trajectory parameters α, β, γ, initial

conditions x(0), ẋ(0) ẍ(0), minimum checking time
tmin, convex obstacle O

2: output: feasible, infeasible, or indeterminable
3: function COLLISIONCHECK
4: if x(0) or x(T) inside obstacle then
5: return infeasible
6: return CHECKSECTION(0, T)
7: function CHECKSECTION(ts, tf)
8: tsplit ← ts+tf

2
9: if x(tsplit) inside obstacle then

10: return infeasible
11: else if tf − ts < tmin then
12: return indeterminable
13: Find plane separating x(tsplit) and obstacle
14: d(t)← distance of x(t) from separating plane
15: T (↑)

crit ← critical points of d(t) from tsplit to tf
16: Sort T (↑)

crit ascending
17: for ti in T (↑)

crit , skipping tsplit do
18: if x(ti) is on obstacle side of plane then
19: result ← CHECKSECTION(ti−1, tf)
20: if result is feasible then
21: break
22: else
23: return result
24: T (↓)

crit ← critical points of d(t) from tsplit to ts
25: Sort T (↓)

crit descending
26: for ti in T (↓)

crit , skipping tsplit do
27: if x(ti) is on obstacle side of plane then
28: return CHECKSECTION(ts, ti−1)
29: return feasible

Fig. 1. A graphical depiction of Algorithm 1. Three sequential calls to
CHECKSECTION (as defined in Algorithm 1) are shown. The red circle
represents the convex obstacle and the solid black line represents the
trajectory in time. In the first call to CHECKSECTION (shown in the left
panel), two critical points (drawn as crosses) of the distance to the separating
plane (drawn as a dashed line) are found. The trajectory is found to cross the
separating plane between tf and the critical points occurring after tsplit,
prompting a recursive call to CHECKSECTION. As shown in the middle
panel, this sub-trajectory is found to not collide with the obstacle because
it lies entirely on the opposite side of the newly computed separating plane.
Next, the original trajectory (left) is again found to cross the separating plane
between ts and tsplit, leading to a second recursive call to CHECKSECTION.
As shown in the right panel, this sub-trajectory is also found to lie entirely
on the opposite side of the newly computed separating plane, proving that
the entire trajectory does not collide with the obstacle.

https://github.com/nlbucki/RapidQuadcopterCollisionDetection
https://github.com/nlbucki/RapidQuadcopterCollisionDetection

TABLE I
AVERAGE COLLISION DETECTION TIME.

Feasible Infeasible Indeterminable
Fraction of trajectories 95.99% 4.01% < 0.01%

Collision detection time 1.44 µs 1.36 µs 11.59 µs

check whether the generated trajectory satisfies some given
input bounds. Any trajectory requiring a mass-normalized
thrust that is not between 5m s−2 and 30m s−2 or that
requires an angular velocity of greater than 20 rad s−1 is
discarded.

Candidate trajectories are generated with a fixed initial
position of x(0) = (0, 0, 0). The final position, initial
and final velocity, and initial and final acceleration along
each axis are generated from uniform distributions over the
intervals (−4m, 4m), (−4m s−1, 4m s−1), and (−4m s−2,
4m s−2) respectively. The length of time of the trajectory
is sampled uniformly at random between 0.2 s and 4 s. A
sphere with radius sampled uniformly at random on (0.1m,
1.5m) and positions sampled uniformly at random on (−4m,
4m) along each axis is used as an obstacle. The minimum
collision detection time per section tmin is chosen to be 2ms.

For 109 such trials, the average time required to detect
collisions was 1.44 µs, and of the candidate trajectories,
95.99% did not collide with the obstacle. Table I shows the
computation time required depending on whether the trajec-
tory was found to be feasible, infeasible, or of indeterminable
feasibility.

B. Monte Carlo simulation with constant obstacles

A second Monte Carlo simulation involving generating
collision free trajectories that bring the vehicle to rest was
also conducted. This scenario is of interest in the case where,
for example, the vehicle must perform an emergency stop-
ping maneuver (e.g. when an unexpected obstacle appears in
the path of the vehicle while flying at high speed). The sim-
ulation is run in batches of 100 candidate trajectories, where
each candidate trajectory starts from the same initial state and
ends at rest at a position sampled uniformly at random along
each axis on (−2.5m, 2.5m). For each batch, the initial
position of the vehicle is constrained to be (−2.5m, 0m,
0m), the initial velocity and acceleration in the x-direction
are sampled uniformly at random on (2m s−1, 8m s−1) and
4m s−2, 10m s−2) respectively, and the initial velocity and
acceleration in the y- and z-directions are sampled uniformly
at random on (−2m s−1, 2m s−1) and (−2m s−2, 2m s−2)
respectively. The length of time of the candidate trajectories
is sampled uniformly at random between 0.5 s and 2 s. The
positions and orientations of the obstacles, represented as
five long rectangular prisms, are fixed as shown in Figure
2, which additionally shows the candidate trajectories of a
single batch.

One million batches were simulated. The average time
required to find the first collision free trajectory was 14.6 µs.
On average, each trajectory required 0.1 µs to generate, 0.5 µs
to check for satisfaction of constraints on the total thrust

x−2
−1

0
1

2

y −2
−1

0
1

2

z

−2

−1

0

1

2

No Collision

Collision

Fig. 2. Visualization of obstacle distribution and stopping trajectories.
Obstacles are represented by blue rectangular prisms. Solid green lines rep-
resent the collision free trajectories from a single batch of 100 trajectories,
and dotted red lines represent the trajectories that would collide with an
obstacle. On average, the first feasible stopping trajectory was found in
14.6 µs.

and angular velocity, and 7.7 µs to detect any collisions with
the five obstacles. For each batch, an average of 60.2% of
generated trajectories were collision free.

V. DYNAMIC OBSTACLE COLLISION DETECTION

In the previous section we showed that our algorithm is
capable of detecting collisions between given quadcopter
trajectories and static convex obstacles in an environment.
This method is easily extended to detect collisions with dy-
namic obstacles whose boundaries do not rotate, and whose
position trajectories are described by fifth order or below
polynomial in time. Example applications of this method
include detecting collisions between two quadcopters with
different trajectories or between a projectile and a moving
quadcopter.

Let xO(t) be the predicted trajectory of the center of a
given obstacle. The relative position of the obstacle and the
quadcopter at any time t is then

x̃(t) = x(t)− xO(t) (8)

where each component of x̃(t) will a polynomial in time if
each component of both x(t) and xO(t) are also polynomials
in time.

Recall that we model the quadcopter as a sphere with ra-
dius rq . A collision between the quadcopter and the dynamic
obstacle occurs if x̃(t) intersects with an obstacle centered
at the origin of the same size as the dynamic obstacle but
enlarged by rq in each direction. Because the boundary of the
obstacle is required to not rotate, the same methods described
in Section III may be used to detect collisions between x̃(t)
and the enlarged obstacle centered at the origin. Obstacles
with boundaries that do rotate may be straight-forwardly
encoded by enclosing them convex shapes with boundaries

that do not rotate (e.g. spheres) at the penalty of introducing
conservatism to the collision detection.

VI. EXPERIMENTAL RESULTS

This section presents experimental results where the pro-
posed algorithm is used to enable a quadcopter to avoid
unexpected static and dynamic obstacles. For the static ob-
stacle case, we interrupt the motion of the quadcopter while
following a trajectory by placing a surface in the path of the
vehicle, forcing it to rapidly plan a new trajectory to avoid
the collision and bring the vehicle to rest. For the dynamic
obstacle case, we throw a projectile at the vehicle while it
is following a trajectory to a goal position, again forcing it
to rapidly plan a new trajectory to avoid the projectile and
then continue to the original goal position. All experiments
can be viewed in the attached video.

The quadcopter has a mass of 685 g, and receives thrust
and angular velocity commands at 50Hz via radio from an
offboard laptop. Collision detection and trajectory generation
is performed using the same laptop as used for benchmarking
in Section IV. The position and attitude of the quadcopter
and obstacles are measured using a motion capture system
at 200Hz.

During each controller time step, we check whether any
collisions are predicted to occur between the quadcopter
and the obstacle used for each experiment. If a collision is
detected, a new trajectory is generated that is not predicted
to collide with the obstacle and ends at rest with zero
velocity and zero acceleration. We sample candidate end
positions for the avoidance trajectory uniformly at random in
a 3.2m×5.2m×1m rectangular space and sample durations
of the avoidance trajectory uniformly at random from 0.5 s to
2 s. While tracking the avoidance trajectory, we continue to
check for predicted collisions and generate a new avoidance
trajectory if necessary.

When searching for feasible trajectories during both ex-
periments, we generate and evaluate candidate trajectories
for 15ms, and at the end of the allocated time choose the
trajectory with the minimum average jerk that satisfies all
state and input constraints. We choose the trajectory with
the minimum average jerk in order to favor less aggressive
trajectories. When evaluating each candidate trajectory, we
first compute the average jerk of the trajectory and reject
it if it has a higher average jerk than any previously found
state and input feasible trajectory. Next, we use the methods
of [11] to check that the total mass-normalized thrust f
remains between 5m s−2 and 30m s−2 and that the max-
imum angular velocity remains bellow 20 rad s−1, as these
are the physical limits of the experimental vehicle. We then
check that the candidate trajectory stays within a box of
3.4m × 5.4m × 3.1m to prevent the vehicle from flying
into the ceiling, floor, or walls. Finally, we check that the
candidate trajectory does not collide with any obstacles using
Algorithm 1 with tmin = 0.002 s.

A. Static obstacle avoidance

For the static obstacle avoidance experiment, we de-
fine the static obstacle as a rectangular prism measuring
1.64m× 1.43m× 0.78m, which includes both the increase
in size in each direction necessary to account for the true
size of the quadcopter and a small buffer to account for
trajectory tracking and estimation errors. The quadcopter
tracks two predefined trajectories that result in a roughly
circular motion with an average speed of 5m s−1, and checks
these trajectories for collisions with the rectangular prism at
each controller time step. The obstacle is then moved by
hand in front of the vehicle about 0.5 s before the vehicle
would pass, causing a collision to be predicted and an
avoidance trajectory to be generated that brings the vehicle
to rest without colliding with the obstacle. Figure 3 shows a
sequence of images from the experiment. For the experiment
shown in Figure 3, 14,610 candidate avoidance trajectories
were evaluated in the allocated 15ms after first predicting
a collision with the obstacle (recall that the controller runs
with a 20ms period).

B. Dynamic obstacle avoidance

For the dynamic obstacle avoidance experiment, we throw
a projectile at the vehicle while it is performing a rest to rest
maneuver from some initial position to some final position
pf . If a collision between the quadcopter and the projectile is
predicted, the quadcopter rapidly plans a trajectory to avoid
the projectile. The projectile is thrown by hand, meaning
that its trajectory can only be predicted by the system
after it has been thrown. The position xp(0) and velocity
ẋp(0) of the projectile at the current controller time step
are estimated using position measurements received from the
motion capture system and a Kalman filter. The position of
the projectile xp(t) is then predicted over a five second time
horizon as a quadratic function of time that depends on xp(0)
and ẋp(0):

xp(t) = xp(0) + ẋp(0)t+
1

2
gt2 (9)

The minimum allowable distance between the center of
mass of the projectile and the center of the quadcopter is
chosen to be 40 cm, which is chosen such that there is at
least 10 cm separation between the quadcopter and projectile
to account for any trajectory tracking and estimation errors.
During each controller time step, we check whether the
projectile is predicted to collide with the quadcopter by
checking whether their relative position x̃(t) ever enters a
sphere of radius 40 cm centered at the origin, and begin
generating an avoidance trajectories if a collision is detected.
While evaluating candidate avoidance trajectories, we not
only check that the avoidance trajectory will not collide
with the projectile during the maneuver, but also check that
the projectile will not collide with the quadcopter after the
quadcopter has reached the end position of the avoidance
trajectory.

While tracking the avoidance trajectory, we try to generate
sample return trajectories at each controller time step that

Fig. 3. A quadcopter avoiding an unexpected surface (top) and a thrown projectile (bottom). The images are from the attached video, and move forward in
time from left to right. The original desired trajectory of the vehicle is shown with a solid blue line, and the position of the surface and predicted trajectory
of the projectile are both shown by a dashed red line. In the first frame a collision is predicted to occur if the quadcopter remains on its current trajectory.
In the second frame, a large number of alternative trajectories are generated (shown as solid cyan lines). Alternative trajectories that do not satisfy state
and input constraints are discarded, and the minimum average jerk trajectory that satisfies all constraints is chosen (shown as a dotted green line). In the
experiments shown, 14,610 and 2,371 candidate trajectories were generated and evaluated in 15ms to avoid the surface and projectile respectively. In the
third frame, the avoidance trajectory is tracked while continuing to detect predicted collisions with the obstacle and replanned if necessary. Finally, the
fourth frame shows the vehicle successfully coming to rest without colliding with the surface (top), and generating and tracking a trajectory that brings
the vehicle to the original desired end position (bottom).

bring the quadcopter from its current state to rest at the
originally desired end position pf . Durations of the candidate
return trajectories are sampled between 0.5 s and 4 s. Once a
feasible trajectory is found that does not collide with the pro-
jectile and ends at pf , the avoidance trajectory is interrupted
and the vehicle begins tracking the return trajectory. Figure
3 shows a sequence of images from the experiment. For the
experiment shown in Figure 3, 2,371 candidate avoidance
trajectories were evaluated in the allocated 15ms after first
predicting a collision with the projectile.

VII. CONCLUSION

In this paper we presented a method for quickly detecting
whether a polynomial trajectory collides with a convex
obstacle. This method can be applied to both static convex
obstacles and dynamic obstacles whose boundaries do not
rotate. We used the proposed algorithm to perform rapid
collision detection of multicopter trajectories, which can be
modeled by fifth order polynomials in time. The ability to
rapidly assess whether a given trajectory will collide with
obstacles allows for a collision-free trajectory to be found
in a short period of time by generating and checking many
candidate trajectories for collisions. Because such a large
number of the candidate trajectories can be generated and
evaluated in such a short period of time, the vehicle is
able to plan collision-free trajectories within milliseconds.
This enables the vehicle to avoid obstacles that suddenly
appear while the vehicle is flying at high speeds and to avoid
projectiles thrown at high speeds.

ACKNOWLEDGEMENT

This material is based upon work supported by the Berke-
ley Fellowship for Graduate Study. The experimental testbed
at the HiPeRLab is the result of contributions of many
people, a full list of which can be found at hiperlab.
berkeley.edu/members/.

REFERENCES

[1] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[2] L. Kavraki, P. Svestka, J. Latombe, and M. H. Overmars, Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
International Transactions on Robotics and Automation, 1994, vol. 12.

[3] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching
tree: A fast marching sampling-based method for optimal motion
planning in many dimensions,” The International Journal of Robotics
Research, vol. 34, no. 7, pp. 883–921, 2015.

[4] J. Bialkowski, M. Otte, S. Karaman, and E. Frazzoli, “Efficient
collision checking in sampling-based motion planning via safety
certificates,” The International Journal of Robotics Research, vol. 35,
no. 7, pp. 767–796, 2016.

[5] B. T. Lopez and J. P. How, “Aggressive 3-D collision avoidance for
high-speed navigation,” in IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2017, pp. 5759–5765.

[6] S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed navigation
for quadrotors with limited onboard sensing,” in IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016, pp.
1484–1491.

[7] J. Chen, T. Liu, and S. Shen, “Online generation of collision-free
trajectories for quadrotor flight in unknown cluttered environments,”
in IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 1476–1483.

[8] J. Zhang, R. G. Chadha, V. Velivela, and S. Singh, “P-cap: Pre-
computed alternative paths to enable aggressive aerial maneuvers in
cluttered environments,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 8456–8463.

[9] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 1917–1922.

[10] T. Nägeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges,
“Real-time motion planning for aerial videography with dynamic
obstacle avoidance and viewpoint optimization,” IEEE Robotics and
Automation Letters, vol. 2, no. 3, pp. 1696–1703, 2017.

[11] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally
efficient motion primitive for quadrocopter trajectory generation,”
IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[12] S. LaValle, Planning algorithms. Cambridge university press, 2006.
[13] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and

control for quadrotors,” in IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2011, pp. 2520–2525.

[14] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research. Springer, 2016, pp. 649–666.

hiperlab.berkeley.edu/members/
hiperlab.berkeley.edu/members/

	I Introduction
	II System model
	III Algorithm for static obstacle collision detection
	IV Performance measures
	IV-A Monte Carlo simulation with random obstacles
	IV-B Monte Carlo simulation with constant obstacles

	V Dynamic Obstacle Collision Detection
	VI Experimental results
	VI-A Static obstacle avoidance
	VI-B Dynamic obstacle avoidance

	VII Conclusion
	References

