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Efficient LiDAR data compression for embedded V2I or V2V data
handling

Paul CAILLET! and Yohan DUPUIS?

Abstract—LiDAR are increasingly being used in intelligent
vehicles (IV) or intelligent transportation systems (ITS). Storage
and transmission of data generated by LiDAR sensors are one of
the most challenging aspects of their deployment. In this paper
we present a method that can be used to efficiently compress
LiDAR data in order to facilitate storage and transmission in
V2V or V2I applications. This method can be used to perform
lossless or lossy compression and is specifically designed for
embedded applications with low processing power. This method
is also designed to be easily applicable to existing processing
chains by keeping the structure of the data stream intact.
We benchmarked our method using several publicly available
datasets and compared it with state-of-the-art LiDAR data
compression methods from the literature.

Index Terms— LiDAR, embedded systems, roadside measure-
ment, compression.

I. INTRODUCTION

Light Detection And Ranging (LiDAR) systems are ef-
fective at mapping their environment quickly and accurately.
Their are robust to various factors that may challenge com-
puter vision based systems. These devices are being used
more and more in various fields such as autonomous vehicles
or roadside measurement units.

IV and ITS success relies on being able to transmit and
share data from sensors that may augment the vehicle or
infrastructure information among vehicle-to-vehicle (V2V),
vehicle-to-infrastructure (V2I) frameworks to improve road
safety and operation. Computing power on roadside mea-
surement units are highly optimized as they require batteries
to deal with power supply instability. Consequently, the
processing power required to interpret complex data is often
deported into the Traffic Monitoring Centre.

One of the biggest challenges in the operation of such
devices is the storage or transmission of the generated data
stream. Modern 3D LiDAR systems are able to generate up
to several millions of points of measure per second. Such a
data stream requires bandwidths that exceed the capabilities
of most modern wireless network technologies.

Severals methods had been proposed to tackle LiDAR data
storage and transmission on embedded platforms that stands
real-time processing.

The American Society of Photogrammetry and Remote
Sensing (ASPRS) created a standardized binary exchange
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format named LAS for practical exchange of LiDAR data
without the limitations of vendor-specific binary formats
[1]. Isenburg presented in 2012 LASzip, a lossless, non-
progressive data compressor for the LAS format [2] which
allow for dynamic decompression of specific parts of the
dataset.

For lossy compression, an intermediate representation of
the point cloud is often used. Tree-like data structure and
depth maps are the most commonly used representations.
Meagher presented in 1982 a way to encode arbitrary 3-
D objects with an arbitrary resolution using an octree [3].
Hornung et al. [5] used an octree to develop a probabilis-
tic mapping framework, which allow for live mapping of
the environment and constant updating of its probabilistic
model. Houshiar et al. [6] used conventional image com-
pression techniques on panorama images generated from
spherical coordinates of measured points. This approach
requires converting LiDAR raw data to images as well as
storing azimuths information in separate images when using
Velodyne LiDARSs. Nenci et al. [7] used the H.264 video
encoder to compress range data streams, allowing for live
transmission of the data. Range measurements are split in
separate channels and re-sampled with shorter integer values.
A video encoding thread is ran for each range channel and
the decompression is done by merging and re-sampling every
channel into one.

In this paper, we address the problem of fast compression
of raw LiDAR data for storage and real time transmission
on embedded devices. Our solution relies on the binary
representation of the data generated by most LiDAR sys-
tems and the unnecessary precision in the encoding of the
measurements. Bit masking is used to quickly re-sample
measurements to a lower number of bits by zeroing least
significant bits. The number of zeroed bits can be tuned
to retain sufficient accuracy while allowing for significant
compression ratios thanks to the redundant patterns generated
in the data.

Our method is designed to be used in embedded appli-
cations with low available processing power. By quickly
compressing the data it allows for real-time data transmission
on low bandwidth networks. This method has also been
designed to be fully compatible with existing processing
chains by keeping the original structure of the data data
stream.

This paper is organized as follows: Section [[I] presents our
method. Section [[V] and Section [V] develops the results we
obtained. We conclude and discuss the results in Section [VIl
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Fig. 1: Bit masking operation, here with 8 bits integer and
2 bits masked. Note the recurrent patterns of zeros in the
resulting sequence

II. METHODOLOGY
A. Data compression using bit masking

Our method operate on the raw LiDAR data stream as
generated by LiDAR sensors. A bit mask is applied on the
raw data packet in order to set to zero the n least significant
bits (LSB) of each measurement, thus creating repeating zero
patterns. A conventional lossless data compression algorithm
is then used to compress the raw data. This method preserves
the structure of the raw data packets, making it very easy to
integrate in an existing tool chain.

B. Measurements representation

Most of the time, LiDAR range measurements are repre-
sented using unsigned integers. Absolute distance is obtained
by multiplying the given integer by a device-specific step size
(e.g. 2 mm). In most cases, this step size is largely inferior
to the accuracy rating given by the vendor (e.g. 2 mm /
43 cm for the Velodyne VLP-16). This gap between the
measurement representation and the accuracy of the device
can be exploited to reduce the size of the data while keeping
the measurements within the accuracy rating given by the
device’s vendor.

C. Bit masking

A binary mask is used to set the n least significant bits of
each measurement to zero (Figure[I)). Each bit of the mask is
set to one except the bits covering the n least significant bits
of the measurements. The mask is then applied to the data
using a logical AND operation, thus conserving the state of
the bits masked by a one and putting the bits masked by a
Zero to zero.

The masking operation can be performed in several other

ways: right shifts followed by left shifts or divisions by two
followed by left shifts. These operations require several CPU
cycles to be performed and makes batch processing more
complicated to implement.
Bit masking has the advantage of being much faster: on most
architectures a logical AND is performed in one CPU cycle
and we can process the data in bulk using a large bit mask.
In our implementation, a bit mask covering the whole data
packet is stored in memory and applied to each incoming
data packet.

(a) Road side unit

(b) Onboard unit

Fig. 2: Experiment dataset overviews

D. Loss of accuracy

The loss of accuracy caused by our method can be
precisely qualified. The bit masked distance d’ is always
smaller or equal to the original distance d.

d <d (1)

Moreover, depending on the number of bits masked n, it
is possible to bind the error err on each measurement d,
knowing the device-specific step size s:

0<lerr| <2"xs 2

The maximum error increases exponentially with the num-
ber of bits masked, but the error remains acceptable with n
being reasonably small (n < 6 for 16 bits measurements).

E. Data compression

Once the raw data packets have been bit masked, they
are compressed using conventional lossless data compression
algorithms. This method is not bound to any data compres-
sion algorithm and one can use the algorithm that fits their
needs the best, being computational power limits, storage
space or low latency. Most of the available compression
algorithms can exploit the patterns of zeros produced by the
bit masking and achieve higher compression ratio. In our
experiment detailed later in this paper, we compared four
compression algorithms to demonstrate the efficiency of our
method regardless of the compression algorithm used.

III. EXPERIMENTAL SETUP

The primary goal of our experiment is to demonstrate
the efficiency of our method at compressing a raw LiDAR
data stream while preserving an acceptable accuracy. In our
experiment, we first evaluate the evolution of the loss of
accuracy with different number of zeroed bits. Then, we
measure the gains induced by this operation after the data has



been compressed using several widespread, general purpose,
lossless data compression algorithms. Finally we evaluate
the running time of the whole compression process on a
desktop PC as well as several SoC (System on Chip) boards
to demonstrate the viability of our method for real-time
embedded applications.

A. Datasets

For our evaluation, we used three datasets acquired using
a Velodyne VLP-16 range scanner running at 10Hz. These
datasets present very different features and will demonstrate
the robustness of our method.

The first dataset is a still recording of our office space, with
mostly short distances, flat surfaces (walls) and with some
distant patches visible through the windows. The second
dataset (Figure is a still recording on the side of the road
at our test tracl? Several vehicles passes by the sensor and
most of the scene is noise from the forest in the background.
The last dataset (Figure[2b) is a mobile recording of an urban
area taken from a car. This data set is from the sample data
provided by Velodyne with the VLP-16 sensor and publicly
availableﬂ The first dataset has a duration of 53s, 103s for
the second dataset and 133s for the third dataset.

B. Compression algorithms

We used several widespread, general-purpose lossless
compression algorithms to outline the viability of our method
independently of the compression algorithm used. We tested
GZIP [8], BZIP2 [9], LZMA [10] and LZ4 [11] each with
the implementation available on public Linux repositories.
These compression algorithms offer several compression
presets, allowing the user to adjust the compression level
and computing time. We have not used these settings and
kept them to their default values.

C. Test machines

The running time evaluation has been performed on a
desktop computer equipped with an Intel Xeon E5-2620 CPU
(6-core, 2.0GHz) as well as on two SoC boards: a Raspberry
Pi 3 and an Odroid XU, both using quad-core ARM CPUs.
We ran the tests either using only one thread or using all the
available CPU cores. This way, we can precisely evaluate
the computational workload as well as the viability of our
method in real world embedded applications. All data have
been stored in RAM when possible to eliminate any latency
due to disk I/O and the full benchmark was run 3 times to
average the running times.

The desktop computer and the Odroid are running Ubuntu
16.04, the Raspberry Pi is running Raspbian Stretch. For
compression, we used the implementations available from
each distribution’s package repository. The bit-masking pro-
gram was written in C, compiled with GCC on each com-
puter with the -O3 flag and no further optimization.

IData available upon request
2 Available at https://velodynelidar.com/downloads.html

IV. EXPERIMENTAL RESULTS
A. Accuracy of the compressed measurements

For our evaluation, we define the error of a measurement
as the absolute difference between the original and the
modified measurement. For each dataset, we computed the
mean error as well as the standard deviation of the error.
Figure [3] also shows the maximum error, represented by the
red line. The maximum error for n = 8 bits (510 mm) is not
shown on the graph as it would make the graph less readable
around meaningful values.
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Fig. 3: Evolution of the error according to the number of
masked bits

With n < 4 masked bits the measured and maximum error
remains within the confidence interval given by the vendor
(£3 cm). With n > 4 masked bits the measured error is
greater than the confidence interval and the retained accuracy
may not fit all use cases. It is interesting to note the similarity
between the mean error and the standard deviation, with the
standard deviation being slightly smaller than the mean error.
This behavior can be explained by the systematic under-
evaluation of the measurements described with equation (I)).

B. Compressed data size

In this section of our experiments, we measured the
efficiency of our method at compressing raw capture files.
We ran each compression algorithms on the raw capture files
as well as on the masked ones to get a reference point for
each dataset.

Without modifying the capture files, we can see that loss-
less compression algorithms are quite capable at compressing
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Fig. 4: Relative file size according to the number of zeroed
bits

raw LiDAR data, with all datasets being reduced to at most
50% of their original size after being compressed by the
LZMA algorithm (Figure [). The file sizes decreases almost
linearly as more bits are masked. This evolution is similar
for each dataset independently of the compression algorithm
used. Absolute compression ratios are very heterogeneous
and are ultimately tied to the dataset. The test track dataset
which is very noisy presents low compression ratios up to the
point (n = 4 bits masked) where the noise becomes smaller
than the step size. In contrast, the office dataset present a
high compression ratio with no bits masked but the gains
are marginally smaller.

Overall, bit masking proves to be effective and enables
compression algorithms to reach much higher compression
ratios, but the absolute attainable compression ratio depends

office dataset
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Fig. 5: Normalized running time on several architectures,
using one or all available CPUs. A normalized time inferior
to one (blue) means the data can be processed in real-time

on the dataset and the compression algorithm used.

C. Running time

Figure [5] shows the running time of the compression chain
relative to the duration of the recording. The first column
represents the time taken for the bit masking operation alone,
while the other columns represents the time taken by the bit
masking operation plus the compression using each column’s
respective algorithm. A value inferior to one (in blue) means
that the time taken by the bit masking operation plus the data
compression is inferior to the duration of the dataset, making
it possible to store or transmit compressed data in real time
without data loss. The masking operation takes on average
3.8 % 107 seconds per packet, with the LiDAR producing
a packet every 1.33 * 1073 seconds. Most of the time is
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Fig. 6: H.264 performance. The video compression is lossless (QP = 0)

effectively spent compressing the data with the bit masking
taking a negligible amount of time.

Overall, the same pattern appear across all the datasets,
with every tested computer being able to run the compression
in real time, except the LZMA algorithm, which is much
slower. It is important to note that compression time can
fluctuate significantly depending on the data. The compres-
sion time with the LZMA algorithm is a great illustration:
using all CPUsg, it is possible to compress the test track data
set in real time on every tested computer, while it is not
possible with the office dataset.

V. COMPARISON WITH OTHER METHODS

We compared our method to some of the methods pre-
sented in section I. Some solutions were quickly pushed
away as they did not fit our goal of real-time processing
on embedded hardware.

For the comparison, we defined two indicators: RPT =
processing time / dataset duration and RFS = compressed
file size / dataset size

A. Octomap

We used the ROS (Robot Operating System [12]) distribu-
tion of the Octomap framework for our tests. We could not
achieve real-time processing of our datasets while keeping

a decent resolution (grid size of 10cm) even on desktop
hardware.

B. PNG compression

We generated a series of panorama images from the
LiDAR data and compressed it with the PNG algorithm. The
compression is lossless, all distance measurements are kept
with their original 16 bits resolution. The intensity is encoded
on another set of 8 bits gray images. The running time has
been measured on a desktop computer, constrained to a single
thread. For comparison, we included in Table [[| and Table
the result obtained using BZIP2 on the raw capture files.

Dataset PNG BZIP2
office 475 % | 55.1 %
test track 642 % | 72.6 %
Velodyne sample | 48.3 % | 63.1 %

TABLE I: Relative file size

The PNG image format is efficient at compressing Li-
DAR data, with performances comparable to a lossless
compression algorithm. We believe it is a good alternative
to our method for lossless compression of LiDAR data.
However, PNG being a lossless file format, it cannot achieve
compression ratios as high as other lossy methods.



(a) Original

(b) n = 4 bits

(c) n = 8 bits

Fig. 7: Sample view for different quality presets

Dataset PNG BZIP2
office 241 % | 152 %
test track 21.0% | 174 %
Velodyne sample | 194 % | 152 %

TABLE II: Relative processing time

Dataset u (mm) | o (mm) | RFS (%) | RPT (%)
Office 13.6 9.7 30.7 14.7
Test track 14.1 9.6 48.6 16.9
Velodyne Sample 11.0 10.3 45.7 15.3

(a) Our approach (4 zeroed bits + bzip2)

Dataset w (mm) | o (mm) | RFS (%) | RPT (%)
Office 14.8 9.8 35.1 105
Test track 15.0 9.6 63.8 120
Velodyne Sample 11.8 10.6 63.7 128

(b) H.264 [7] with 16 channels

TABLE III: Performance Comparison with state-of-the art
method

C. Video compression

We benchmarked the method presented in [7] using the
implementation provided by the authors on the three datasets
presented previously, with the process being bound to a
single CPU on the desktop computer. The video compression
is always lossless (QP = 0) (Figure [6).

The evolution of the error with the video compression
method is similar to the one obtained with our method (3).
Doubling the number of channels roughly divide the error
and standard deviation by two. The file size shows a similar
evolution, with the file size decreasing as the number of
channels decreases. The biggest difference comes from the
processing time. Adding channels means more H.264 streams
to encode, which increases the processing time.

The approach presented in [7] can be compared to our
approach when the number of channels is a power of two. In
fact, 2¢ channels of 256 bits is able to store 2618 distinctive
values. Our approach actually stores 216~ distinctive values,
with n the number of zeroed LSB. Table [LII] compares the
performance for c =4 and n = 4.

Our method present better results for each criteria. By
choosing a number of zeroed bits and a number of channels
producing a similar error, compression ratio and the pro-
cessing times are better using our method. The processing
time difference between both methods is significant. Our
tests showed that running the video compression method on

embedded hardware is roughly 2 to 3 times slower than on
a desktop computer, which makes this method not suited for
embedded applications.

VI. CONCLUSIONS

We proposed in this paper an efficient method for com-
pressing raw LiDAR data streams in embedded applications.
This method can be used for real-time transmission, greatly
reducing the bandwidth required for the data transfer, or
for data archiving, reducing the storage space required. It is
possible to perform lossy compression, allowing for higher
compression ratios with a fine control on the error induced
by the alteration of measurements. We performed a series
of test on several heterogeneous datasets and different types
of computer to demonstrate the efficiency of our method,
especially in real-world conditions. We also compared our
method to several other methods to further demonstrate
its efficiency. Future works include benchmarks on other
LiDARs.
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