arXiv:1908.11069v3 [cs.CV] 2 Dec 2019

StarNet: Targeted Computation for
Object Detection in Point Clouds

Jiquan Ngiam**, Benjamin Caine*', Wei Han', Brandon YangT,
Yuning Chai?, Pei Sun*, Yin Zhout, Xi Yi, Ouais Alsharif*, Patrick Nguyen,
Zhifeng Chen', Jonathon Shlens’, Vijay Vasudevan'
fGoogle Brain, *Waymo
{ingiam, bencaine}@google.com

Abstract

Detecting objects from LiDAR point clouds is an impor-
tant component of self-driving car technology as LiDAR
provides high resolution spatial information. Previous work
on point-cloud 3D object detection has re-purposed convo-
lutional approaches from traditional camera imagery. In
this work, we present an object detection system called Star-
Net designed specifically to take advantage of the sparse
and 3D nature of point cloud data. StarNet is entirely point-
based, uses no global information, has data dependent an-
chors, and uses sampling instead of learned region propos-
als. We demonstrate how this design leads to competitive
or superior performance on the large Waymo Open Dataset
[1] and the KITTI []3] detection dataset, as compared to
convolutional baselines. In particular, we show how our
detector can outperform a competitive baseline on Pedes-
trian detection on the Waymo Open Dataset by more than
7 absolute mAP while being more computationally efficient.
We show how our redesign—namely using only local infor-
mation and using sampling instead of learned proposals—
leads to a significantly more flexible and adaptable system:
we demonstrate how we can vary the computational cost of
a single trained StarNet without retraining, and how we can
target proposals towards areas of interest with priors and
heuristics. Finally, we show how our design allows for in-
corporating temporal context by using detections from pre-
vious frames to target computation of the detector, which
leads to further improvements in performance without ad-
ditional computational cost.

1. Introduction

Detecting and localizing objects forms a critical compo-
nent of any autonomous driving platform [13, 6]. As a re-
sult, self-driving cars (SDC) are equipped with a variety of
sensors such as cameras, LiDARSs, and radars [8, 39], which
the perception system must use to create an accurate 3D

representation of the world. Due to the nature of the driving
task, the perception system must operate in real-time and
in a highly variable operating environment [19]. LiDAR is
one of the most critical sensors as it natively provides high
resolution, accurate 3D data about the environment. How-
ever, LIDAR based object detection systems for SDCs look
remarkably similar to systems designed for generic camera
imagery.

Object detection research has matured for camera images
with systems evolving to solve camera-specific challenges
such as multiple overlapping objects, large intra-class scale
variance due to camera perspective, and object occlusion
[15, 14, 35, 25, 26]. These modality-specific challenges
make the task of localizing and classifying objects in im-
agery uniquely difficult, as an object may occupy any pixel,
and neighboring objects may be as close as one pixel apart.
This necessitates treating every location and scale in the
image equally, which naturally aligns with the use of con-
volutional networks for feature extraction [15, 14]. While
convolutional operations have been heavily optimized for
parallelized hardware architectures, scaling these methods
to high resolution images is difficult as computational cost
scales quadratically with image resolution.

In contrast, LiDAR is naturally sparse; 3D objects have
real world scale with no perspective distortions, and rarely
overlap. Additionally, in SDC perception, every location
in the scene is not equally important [50, 4, 2], and that
importance can change dynamically based on the local en-
vironment and context. Despite large modality and task-
specific differences, the best performing methods for 3D
object detection re-purpose camera-based detection archi-
tectures. Several methods apply convolutions to discretized

* Denotes equal contribution and authors for correspondence. JN pro-
posed the idea and implemented the model. BC, JN, BY, YC, ZF and VV
developed the infrastructure and experimented with the model. WH, VYV,
PS, JS built the evaluation framework. XY, YZ, PN and OA developed
early pieces of infrastructure and the dataset. JS, JN, VV, BC and others
wrote the manuscript.

representations of point clouds in the form of a projected
Birds Eye View (BEV) image [47, 28, 46, 22], or a 3D voxel
grid [53, 45]. Alternatively, methods that operate directly
on point clouds have re-purposed two stage object detec-
tor design, replacing feature extraction operations but still
adopting the same camera-inspired region proposal stage
[48, 38, 31].

In this paper, we revisit the design of object detection
systems in the context of 3D LiDAR data, and propose a
new framework which better matches the data modality and
the demands of SDC perception.

We start by recognizing that 3D region proposals are fun-
damentally distinct. Every reflected point must belong to an
object or surface. In this setting, we demonstrate that effi-
cient sampling schemes on point clouds — with zero learned
parameters — are sufficient for generating region proposals.
In addition to being computationally inexpensive, sampling
has the advantage of implicitly exploiting the sparsity of the
data by matching the data distribution of the scene.

Departing from the trend of increasing use of global con-
text, we process each proposed region completely indepen-
dently. This independence, and non-learned proposal mech-
anism also allows us to inject priors into the proposal pro-
cess, which we show the value of by leveraging temporal
context in the form of seeding sampling with the previous
frames detections. Finally, we entirely avoid any discretiza-
tion procedure and instead featurize the native point cloud
[32, 33] in order to classify objects and regress bounding
box locations [35, 36].

The resulting detector is as accurate as the state of the
art at lower inference cost, and more accurate at similar in-
ference costs. In addition, these design decisions result in
several key benefits. First, the model does not waste compu-
tation on empty regions because the proposal method natu-
rally exploits point cloud sparsity. Second, one can dynami-
cally vary the number of proposals and the number of points
per proposal at inference time since the model operates lo-
cally. This feature permits a single trained model to operate
at different computational budgets. Third, the model can
easily leverage contextual information (HD maps, tempo-
ral context) to target computation. For example, detection
outputs from preceding frames can be used to inform the
current frame’s sampling locations.

In summary, our main contributions are as follows:

e Introduce a flexible, local point-based object detec-
tor geared towards SDC perception. In the process
we demonstrate that cheap proposals on point clouds,
paired with a point-based network, results in a system
that is competitive with state-of-the-art performance
on self-driving car benchmarks.

e Demonstrate the computational-flexibility of our
model through showing how a single model designed
in this fashion may adapt its inference cost. For in-

stance, a single trained pedestrian model may exceed
the predictive performance of a baseline convolutional
model by ~ 48% at similar computational demand; or,
the same model without retraining may achieve similar
predictive performance but with ~ 20% of the compu-
tational demand.

e Demonstrate the ability of the model to selectively tar-
get specific locations of interest. We show how tempo-
ral context (using only the outputs of previous frames)
can be used with the model to improve detection mAP
scores by ~ 40%.

2. Background
2.1. Object detection in images

Early object detection systems consist of two stages:
first, to propose candidate detection locations, and next, to
discriminate whether a given proposal is an object of in-
terest [12, 10, 37, 40]. The advent of convolutional neural
networks (CNN) [21, 24], showed that a CNN-based featur-
ization may provide superior proposals as well as improve
the second discriminative stage [15, 36, 14]. Modern CNN-
based detection systems maximize prediction performance
by densely sampling an image for all possible object loca-
tions. This requires a computationally-heavy first stage fea-
turization to provide high quality bounding box proposals
[15, 14]. In addition, the second stage of an object detector
will need to be run on each proposal within a single image.
These heavy computational demands are prohibitive in con-
strained environments (e.g. mobile and edge devices) such
that speed versus accuracy trade-offs must be considered
[1&].

To address these concerns, recent work has focused on
one stage object detectors that attempt predict bounding box
locations and object identity in a single inference operation
of a CNN [27, 34]. Although single-stage systems pro-
vide faster inference, these systems generally exhibit worse
predictive performance than two-stage systems [18]. That
said, recent advances in redesigning the loss functions have
mitigated this disadvantage significantly [26, 51, 23]. The
speed and reduced complexity advantages associated with a
one stage model do however come with an associated cost:
by basing the inference procedure on convolutions which
densely sample an image, the resulting model must treat all
spatial locations equally. In the context of self-driving cars,
this design decision hampers the ability to adapt computa-
tion to the current scene or latency requirements.

2.2. Point cloud featurization

Raw data arising from many types of sensors come in the
form of point cloud data (e.g. LIDAR, RGB-D). A point
cloud consists of a set of N 3-D points {Z;} indexed by 4

which may contain an associated feature vector { ﬁ }. The

oNeighborhood points
° = Lo
o
600 0l o
° o o0
o o |
o>
o Ro ' o
o
o
o o o |
o
o o

Sample centers Gather and featurize cells

~
Box .
""" Predicted
Classifier \ Box Boxes
Suppression and
Box / Scores
Regressor

Project to anchor offsets

Figure 1: StarNet overview.

set of points are unordered and may be of arbitrary size de-
pending on the number of reflections identified by a sen-
sor on a single scan. Ideally, learned representations for
point clouds aim to be permutation invariant with respect to
7 and agnostic to the number of points /V in a given example
[32, 33]. On-going efforts have attempted to design models
that operate directly on point cloud data, some of which are
derived to mimic convolutions [41, 49].

2.3. Object detection with point clouds

Object detection in point clouds has started with porting
ideas from the image-based object detection literature. By
voxelizing a point cloud (i.e. identifying a grid location for
individual points Z;) into a series of stacked image slices de-
scribing occupancy, one may employ traditional CNN tech-
niques for object detection on the resulting images or voxel
grids [47, 53, 45, 28, 46, 52, 29].

VoxelNet partitions 3-D space and encodes LiDAR
points within each partition with a point cloud featuriza-
tion [53]. The result is a fixed-size feature map, on which a
conventional CNN-based object detection architecture may
be applied. Likewise, PointPillars [22] proposes an object
detector that employs a point cloud featurization, providing
input into a grid-based feature representation for use in a
feature pyramid network [25]; the resulting per-pillar fea-
tures are combined with anchors for every pillar to perform
joint classification and regression. The resulting network
achieves a high level of predictive performance with min-
imal computational cost on small scenes, but its fixed grid
increases in cost notably on larger scenes and cannot adapt
to each scene’s unique data distribution.

LaserNet [29] opts to work on the Range Image repre-
sentation of the LiDAR instead of a point cloud or a vox-
elized view. The range image data takes on a dense perspec-
tive view that LaserNet applies convolutions to. While this
method has the advantage of working on a dense represen-
tation, it also faces challenges (similar to camera images) of
having a perspective effect on the scale objects. Objects in
a range image may have a large variance in scale.

In the vein of two stage detection systems, PointRCNN
[38] employs a point cloud featurizer [33] to make propos-

als via an expensive per-point segmentation network into
foreground and background. Subsequently, a second stage
operates on cropped featurizations to perform the final clas-
sification and localization. Other works propose bound-
ing boxes through a computationally intensive, learned pro-
posal system operating on paired camera images [48, 31],
with the goal of improving predictive performance by lever-
aging a camera image to seed a proposal system to maxi-
mize recall.

3. Methods

Our goal is to construct a detector that better aligns with
the requirements of a SDC perception system, taking advan-
tage of the sparsity of the data, allowing us to target where
to spend computation, and operating on the native data. To
address these goals, we propose a sparse targeted object de-
tector, termed StarNet (Figure 1): Given a sparse sampling
of locations in the point cloud, the model extracts a small
(random) subset of neighboring points. The model featur-
izes the point cloud [32], classifies the region, and regresses
bounding box parameters. The object location is predicted
relative to the selected location and only uses local infor-
mation. This setup ensures that each spatial location may
be processed by the detector independently.

The structure of the proposed system confers two advan-
tages. First, inference on each cell proposal occurs com-
pletely independently, enabling computation of each loca-
tion to be parallelized to decrease inference latency. Sec-
ond, contextual information information [4, 46] may be
used to inform importance of each proposal.

The rest of this section describes the architecture of Star-
Net in more detail.

3.1. Center selection

We propose using an inexpensive, data-dependent algo-
rithm to generate proposals from LiDAR with high recall.
In contrast to prior work [47, 22, 45], we do not base pro-
posals on fixed grid locations, but instead generate propos-
als to respect the observed data distribution in a scene.

Concretely, we sample N points from the point cloud,
and use their (z,y) coordinates as proposals. To avoid

Figure 2: Example of random uniform sampling (left) and
farthest point sampling (right) with the same number of
samples. Red indicate selected centers. Green indicate
pedestrians. Note that random uniform sampling biases to-
wards high density regions, while farthest point sampling
evenly covers the space. Neither place any proposals in
empty space.

sampling regions on the ground, we follow previous works
[45,22] and only allow sampling of points between a certain
z-dimension range. For KITTI [13] this is z € [—1.35, inf],
and for the Waymo Open Dataset [1] we calculate the 10"
and 90%" percentile of the center z location of all objects.
Note that these points are only excluded for sampling, and
will be present in later stages.

In this work, we explore three sampling algorithms: ran-
dom uniform sampling, farthest point sampling (FPS), and
a hybrid approach of seeding FPS with preceding frame de-
tections (Figure 2, Section 4.4). Random uniform sampling
provides a simple and effective baseline because the sam-
pling method biases towards densely populated regions of
space. In contrast, farthest point sampling (FPS) selects in-
dividual points sequentially such that the next point selected
is maximally far away from all previous points selected,
maximizing the spatial coverage across the point cloud. Fi-
nally, in Section 4.4, we show how to leverage the previous
frame detection outputs as seed locations for FPS. We show
that this is a light-weight and effective way to leverage tem-
poral information.

3.2. Featurizing local point clouds

After obtaining a proposal location, we featurize the lo-
cal point cloud around the proposal. We randomly select K
points within a radius of R meters of each proposal center.
In our experiments, K is typically between 32 to 1024, and
R is 2-3 meters. All local points are re-centered to an ori-
gin for each proposal. LiDAR features associated with each
point are also used as part of the input. We experimented
with several architectures for featurizations of native point
cloud data [33, 42] but most closely followed [44]. The
resulting architecture is agnostic to the number of points
provided as input [33, 42, 44].

StarNet blocks (Figure 3) take as input a set of points,

e A
(# points, 64)

BN - Linear - ReLU

(# points, 256)

BN - Linear - ReLU

|
|
|
|
|
|
|
|
|
|
(# points, 128) :
|
|
|
|
|
|
|
|
|
|

e e e

Figure 3: StarNet Block. We annotate edges with tensor
dimensions for clarity: (# points, 64) represents a point
cloud with # points, where each point has an associated 64-
dimensional feature.

(# points, 64) ,—>
| |

(384)

(# points, 64)
Linear - ReLU

(# points, 3 + 1‘]NY)

Figure 4: StarNet point cloud featurizer. StarNet blocks
are stacked, where each block’s output is read out using
mean aggregation. The readouts are concatenated together
to form the featurization for the point cloud.

where each point has an associated feature vector. Each
block first computes aggregate statistics (max) across the
point cloud. Next, the global statistics are concatenated
back to each point’s feature. Finally, two fully-connected
layers are applied, each composed of batch normalization
(BN), linear projection, and ReLU activation. StarNet
Blocks are stacked to form a 5-layer featurizer (Figure 4)
that outputs a 384-dimensional feature.

The StarNet point featurizer (Figure 4) stacks multiple
StarNet blocks, following ideas from graph neural networks
[44]. We experimented with different choices network ar-

100 —
e e
7.8
80
S
~ 60
]
o
I
¢ 40
o
o
20 .
—@— random uniform
—@— farthest point
0

32 64 128 256 512 10242048 4096
Number of Centers

100
87.3 88.1 88.3 88.4
80.8 —e — @& — 0
80
9
< 60
9]
o)
o
¢ 40
)
o
20)
—@— random uniform
e —@— farthest point
0

32 64 128 256 512 10242048 4096
Number of Centers

Figure 5: Simple sampling procedures have good coverage over ground truth bounding boxes. The coverage of proposals
for cars and vehicles is plotted against the number of samples on KITTI (left) and Waymo Open Dataset (right). Error bars

(not shown) range from 0.5%-3.0%. See text for details.

chitectures and found that using max aggregation, concate-
nate combination, and mean readout performed well. By
design, the same trained network can be used with varying
number of input points, giving it a large degree of flexibility.

3.3. Constructing final predictions from bounding
box proposals.

For each cell center, a grid of G x G total anchor offsets
are placed relative to each cell center, where each offset can
employ different rotations or anchor dimension priors. We
emphasize that unlike single-stage detectors [22, 45], the
anchor grid placement is data-dependent since it is based
on the proposals.

For each grid offset, we compute a D dimensional fea-
ture vector using a learned linear projection from the cell’s
384-dimensional feature; each offset has a different projec-
tion. The D dimensional feature is shared across the rota-
tions and dimensions at the grid offset. From this feature,
we predict classification and regression logits. The bound-
ing box regression logits predict dx, dy, §z corresponding
to residuals of the location of the anchor bounding box;
0h, dw, §l corresponding to residuals on height, width and
length; and a residual on the heading orientation §6.

We use a smoothed-L1 loss on each predicted variate
[45,22,52]. For the rotation loss, We use a direction invari-
ant loss SmoothL1(sine(d0 —d6y)) for all experiments, ex-
cept for models where we report heading accuracy weighted
average precision (mAPH). For direction aware models, we
use SmoothL1(WrapAngle(60 — 66,)), where WrapAn-
gle ensures the angular difference is between —7 to 7. The
classification logits are trained with a focal cross-entropy
loss on the class label [26].

Ground truth labels are assigned to anchors based on
their intersection-over-union (IoU) overlap [45, 22]. We
compute the IoU for each anchor and ground truth label and

assign labels to foreground if JoU > 0.6 or background if
IoU < 0.45. Anchors with IoU matches between the two
thresholds are ignored. We also perform force-matching if
an object is not assigned as foreground to any anchor: we
assign the object as foreground to its highest matching an-
chor if (a) the highest matching anchor is not assigned to
foreground of any object and (b) the IoU with the matching
anchor is greater than zero. Final predictions use an ori-
ented, multi-class non-maximal suppression (NMS) [15].

Pedestrians

©
N

o
o

o
&)

©
i

o
W

e
N]

I
il

—@— StarNet (Farthest Point Sampling)
#— StarNet (Random Uniform)

mean average precision (mAP)

o
o

>

> O
© ~V

2] > ®
NPT AR T AV
Number of centers

Figure 6: Adaptive computation with a single trained
model. Waymo Open Dataset Validation set mAP on pedes-
trians of a single StarNet model trained with 1024 propos-
als, evaluated with 64 to 1024 proposals.

4. Results

We present results on the KITTI object detection bench-
mark [13] and the Waymo Open Dataset [1]. We train mod-
els using the Adam [20] optimizer with an exponentially-
decaying learning rate schedule starting at le-3 and de-

. Car Pedestrian Cyclist
3D detection
Easy | Mod. | Hard Easy | Mod. | Hard Easy | Mod. | Hard
VoxelNet [53] 77.47 | 65.11 | 57.73 || 39.48 | 33.69 | 31.5 61.22 | 48.36 | 44.37
SECOND [45] 83.13 | 73.66 | 66.20 || 51.07 | 42.56 | 37.29 || 70.51 | 53.85 | 46.90
PointPillars [22] 79.05 | 74.99 | 68.30 || 52.08 | 43.53 | 41.49 || 75.78 | 59.07 | 52.92
StarNet 81.63 | 73.99 | 67.07 || 48.58 | 41.25 | 39.66 || 73.14 | 58.29 | 52.58

Table 1: Results on the KITTI test object detection benchmark for object detection systems using 3-D evaluation. All
detection results and comparisons based only on LIDAR data. mAP calculated with an IOU of 0.7, 0.5 and 0.5 for vehicles,

cyclists and pedestrians, respectively.

caying over 650 epochs for KITTI, and 75 epochs for the
Waymo Open Dataset. We perform some hyper-parameter
tuning on the validation set and perform final evaluations
on the corresponding test datasets. Full hyperparameters
can be found in our already open-sourced code (http:
//github.com/tensorflow/1lingvo).

4.1. Sampling strategies for point cloud detections

We first investigate sampling strategies for center selec-
tion, evaluating on KITTI and Waymo Open Dataset. We
explore two strategies for naively sampling point clouds:
random sampling and farthest point sampling (Section 3.1).
We observe that random sampling samples many centers in
dense locations, whereas farthest point sampling maximizes
spatial coverage of the scene.

To quantify the efficacy of each proposal method, we
measure the coverage as a function of the number of pro-
posals. Coverage is defined as the fraction of annotated
objects with 5+ points that have IoU > 0.5 with the our
sampled anchor boxes. Figure 5 plots the coverage for each
method for a fixed IOU of 0.5 for cars in KITTI [13] and
the Waymo Open Dataset [1]. All methods achieve mono-
tonically higher coverage with greater number of proposals
with coverage on KITTI exceeding 98% within 256 sam-
ples. Because random sampling is heavily biased to regions
which contain many points, there is a tendency to oversam-
ple large objects and undersample regions containing few
points. Farthest point sampling (FPS) uniformly distributes
samples across the spatial extent of the point cloud data (see
Methods). We observe that FPS provides uniformly better
coverage across a fixed number of proposals and we employ
this technique for the rest of the work.

4.2. KITTI Dataset

When evaluating StarNet on the KITTI dataset, we found
that data augmentation important to obtain good perfor-
mance. We employed standard data augmentations for point
clouds and bounding box labels [47, 53, 45, 28, 46, 22].
We found that the gains in predictive performance due to
data augmentation (up to +18.0, +16.9 and +30.5 mAP on
car, pedestrian and cyclist respectively) were substantially
larger than gains in performance observed across advances

in detection architectures. Additionally, we found check-
point selection to be extremely important due to the small
size of the dataset, and submission filtering (e.g. remov-
ing detections where the 2D projected height of our 3D
bounding box predictions were smaller than 25 pixels so
they are not erroneously labeled as false positives) unique
challenges to the KITTI benchmark.

We take our best system for 3-D object detection with
the same data augmentations and compare the efficacy of
this model to previously reported state-of-the-art systems
that only operate on point cloud data [53, 45, 22, 46]. Table
1 reports the 3-D detection results on the KITTI test server.
StarNet provides competitive mAP scores on car, pedestrian
and cyclist to other state-of-the-art methods, exceeding sub-
sets of each category strata.

We found that decisions apart from model design play a
significant role in KITTI test set performance: this included
data augmentation, checkpoint selection, post process filter-
ing, among others. Since we are interested in determining
the efficacy of our modeling approach, we focus the major-
ity of our following experiments on the larger Waymo Open
Dataset, which is annotated with high quality labels.

4.3. Waymo Open Dataset

We now focus on the performance of StarNet on the
Waymo Open Dataset [1], which is substantially larger and
exhibits tremendous diversity.

To demonstrate the relative merits of StarNet, we trained
models on pedestrians and vehicles and compared the rela-
tive performance of each model to a family of baseline mod-
els. Data augmentation was not used in these experiments.
We employed PointPillars as a baseline model', training 5
different grid resolutions of this model for each class and
validated accuracy on all annotated bounding boxes with
5+ LiDAR points. Each version employs a different in-
put spatial resolution for the pseudo-image (128, 192, 256,
384, and 512 pixel spatial grids), with 16K to 32K non-
zero featurized locations (pillars). In slight deviation from
the original PointPillars paper [22], we use an output stride

I'We note that our custom implementation of PointPillars achieves 74.5,
57.1, and 59.0 mAP for for cars, pedestrians, and cyclists, respectively on
KITTI validation at moderate difficulty. This is slightly lower than [22].

http://github.com/tensorflow/lingvo
http://github.com/tensorflow/lingvo

Model Directional? || mAP | mAPH Model Directional? || mAP | mAPH
PointPillars* [22] v 60.0 47.3 PointPillars* [22] v 62.2 61.7
StarNet - 70.1 35.6 StarNet - 64.7 45.5
StarNet v 67.8 59.9 StarNet v 61.5 61.0
StarNet - 72.1 37.0 StarNet - 65.0 45.6
(with temporal context) (with temporal context)

(a) Pedestrian Detection

(b) Vehicle Detection

Table 2: Waymo Open Dataset Test set results on the LEVEL_I category (> 5 points) for StarNet versus a reimplemented

PointPillars [

] baseline model. Directional indicates a directional aware heading loss was used. Temporal context models

use the top 512 highest confidence detected locations from the previous frame as anchor centers, with the remaining 512

centers drawn using Farthest Point Sampling.

Pedestrians

e
~

o
o

o
e

o
IS

o
[

mean average precision (mAP)

o StarNet (64 pts)
0.2 —e— StarNet (128 pts)
—e— StarNet (256 pts)
0.1 —e— StarNet (384 pts)
—=— PointPillars

o
o

0.0 05 1.0 15 2.0 2.5 3.0 3.5 4.0
floating point operations (hundreds of billions)

Vehicles

o
N

o
o

o
e

o
»

o
w

StarNet (64 pts)

StarNet (128 pts)
—e— StarNet (256 pts)
—e— StarNet (384 pts)
—=— PointPillars

©
[N)

o
-

mean average precision (mAP)

o

0
0.0 05 1.0 1.5 2.0 25 3.0 3.5 4.0
floating point operations (hundreds of billions)

Figure 7: Flexible computational cost of detection for (left) pedestrians and (right) vehicles. Across 5 separately-trained

PointPillars models [

], computational cost grows quadratically with increased spatial resolution for the LiDAR pseudo-

image. All curves for StarNet arise from a single set of saved model weights. Each curve traces out StarNet accuracy on the
Validation set for a fixed number of point cloud points. Points along on a single curve indicate 64 to 1024 selected centers.

Model Pedestrian mAP | Vehicle mAP
PointPillars* [22] 62.1 57.2
Multi View Fusion [52] 65.3 62.9
StarNet 66.8 53.7

Table 3: Waymo Open Dataset Validation set results of
LEVEL._1 difficulty for comparison with Multi-View Fu-
sion [52] and a reimplemented PointPillars [22].

of 1 for both vehicles and pedestrian models, as it exhibits
substantially higher performance. We hypothesize that a
single-stage object detector would exhibit trade-offs in de-
tecting small objects based on the resolution of the image
projection. Indeed, we observe in Figure 7 (black points)
that higher spatial resolutions achieve higher precision for
pedestrians and vehicles, but with a computational cost that
grows quadratically.

We also examined the performance of a single StarNet
model across two strategies for altering computational de-
mand: varying the number of proposals, and varying the

number of points supplied to the model per proposed re-
gion. Each blue curve in Figure 7 traces out the computa-
tional cost versus predictive performance for a given num-
ber of points per region, while varying the number of pro-
posals from 64 to 1024. Many of these points lie above
the baseline model indicating that StarNet provides favor-
able performance. In particular, the same pedestrian de-
tection model (e.g., StarNet-128 with 1024 centers) may
achieve ~ 48% relative gain in predictive performance for
a similar computational budget as the baseline pillars model
(~ 100G F'lops); or, the same model achieves similar pre-
dictive performance as the most accurate Pillars model but
with ~ 20% of the computational budget. We emphasize
that all StarNet points arise from a single trained model,
showing how to use a single trained StarNet in a flexible
manner through manipulations at inference time.

Finally, we took the highest performing StarNet and
PointPillars [22] models from Figure 7, and evaluated them
on the Waymo Open Dataset[] Test set. These results are
summarized in Table 2, with full numbers including range

° |]
H |-
o (/o]
t t+1

© FPS center X Predicted bbox center

Figure 8: Leveraging previous proposals. Using the high-
est confidence predicted centers from the previous frames
can help improve detection mAP in the next frame.

based breakdowns available in Appendix A. StarNet is com-
petitive on Vehicle detection to our PointPillars [22] base-
line, and significantly outperforms it for Pedestrians. If a
directional loss is used, we outperform PointPillars by 7.8
mAP and 12.6 mAPH, and 10.1 mAP if a directionless loss
is used. Note that forcing the network to learn directionality
slightly hinders mAP. Additionally, using temporal context,
detailed next, further improves performance. We also com-
pare to Multi-View Fusion [52] in Table 3, showing valida-
tion set results as the Multi-View Fusion method does not
yet report test set numbers.

4.4. Targeting computation with temporal context

One design benefit of StarNet is the ability to target com-
putation. We now show how using the outputs of the previ-
ous time-step can significantly improve mAP over a single
frame, while keeping the computation cost unchanged.

Intuitively, high-confidence bounding box proposals out-
put on previous time-steps in 3D are a good prior on the
location of objects in the current frame since objects have
limited ranges of motion. Hence, one natural approach is
to leverage these priors when sampling centers, combining
them with random or farthest-point sampling. StarNet per-
mits us to use the locations of the K highest-confidence
bounding box predictions from the previous frame quite
easily (Figure 8): we can replace the last K farthest-point-
sampled (or random) center proposals for the current frame
using the pose-corrected locations of the previous top K de-
tection bounding boxes from the prior frame.

We apply this method to Pedestrian detection (Table 4).
When using just 32 of the high-confidence predicted bound-
ing box centers from the previous frame and a total of 384
centers, detection mAP on the validation set increases by
over 10 absolute mAP, matching the (single frame) perfor-
mance of sampling a total of 512 centers. When we seed the
384 sampled centers with the top 192 detects from the previ-
ous frame, detection mAP improves by nearly 17 absolute

Previous Frame | # Total Centers | Detection mAP
Detection Centers Pedestrians
0 384 41.8
32 384 53.2
192 384 58.0
0 1024 66.8
512 1024 69.7

Table 4: Previous frame detection centers are good cen-
ters to use in the current frame. StarNet enables using
data-dependent centers from the detection outputs of the
previous frame to improve detection performance in the cur-
rent frame. Results reported on the Validation set.

mAP, or 40% higher. Surprisingly, when using 1024 total
centers, using the best 512 previous detection centers im-
proved mAP by about 3 mAP (2 mAP on the test set), show-
ing that there is room for improvement even when sampling
already covers much of the scene.

This experiment demonstrates that using StarNet enables
research into smarter and efficient detection and tracking
systems. One could employ the use of a tracker to estimate
the velocity of detected objects in order to more precisely
predict where to “look” in the next frame.

5. Discussion

In this work, we presented a non-convolutional detection
system that operates on native point cloud data. The goal of
the proposed method is to better match the sparsity of point
cloud data, and also allow the system to be flexibly targeted
across a range of computational priorities. We demonstrate
that the resulting detector is competitive with state-of-the-
art detection systems on the KITTI object detection bench-
mark [13], and can outperform a competitive convolutional
baseline on the large-scale Waymo Open Dataset.

The system allows for targeted computation, enabling
the use of temporal context from detection outputs of prior
frames. We show up to a 40% relative improvement in mAP
using prior frames to inform where to target computation for
the current frame. We further demonstrate how in principle
the detection system can target spatial locations without re-
training nor sacrificing the prediction quality. For instance,
depending on evaluation settings, a single trained pedestrian
model can exceed the predictive performance of a baseline
convolutional model by ~ 48% at a similar FLOPS; or, the
same model may achieve the same predictive performance
but with ~ 20% of the FLOPS.

We foresee multiple avenues for further improving the
fidelity of the system including: multi-sensor fusion with
cameras [48, 31, 30], employing semantic information such
as road maps to spatially target detections [46], or restoring
global context by removing conditional independence from
each proposal [43]. While we have focused this first work
on relatively simple sampling methods for proposals, more

expensive or learned methods may further improve the sys-
tem [35]. For example, one could learn a ranking function to
order the relative importance of proposals for a self-driving
planning system [9, 5, 7]. Finally, we are particularly in-
terested in studying how this system may be amenable to
object tracking [3, 17, 16] as we suspect that because of the
design, the computational demands may scale as the differ-
ence between successive time points as opposed to operat-
ing on the entirety of the scene [11].

Acknowledgements: We wish to thank Tsung-Yi Lin,
Chen Wu, Junhua Mao, Henrik Kretzschmar, Drago
Anguelov, George Dahl, Anelia Angelova and the larger
Google Brain and Waymo teams for support and feedback.

References

[1] Waymo open dataset: An autonomous driving dataset, 2019.
1,4,5,6,7

[2] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauf-
feurnet: Learning to drive by imitating the best and synthe-
sizing the worst. arXiv preprint arXiv:1812.03079, 2018. 1

[3] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea
Vedaldi, and Philip HS Torr. Fully-convolutional siamese
networks for object tracking. In European conference on
computer vision, pages 850-865. Springer, 2016. 9

[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016. 1, 3

[5] Christopher Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Gregory N Hullender.
Learning to rank using gradient descent. In Proceedings
of the 22nd International Conference on Machine learning
(ICML-05), pages 89-96, 2005. 9

[6] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan,
Giancarlo Baldan, and Oscar Beijbom. nuscenes: A mul-
timodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027,2019. 1

[7]1 Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang
Li. Learning to rank: from pairwise approach to listwise ap-
proach. In Proceedings of the 24th international conference
on Machine learning, pages 129-136. ACM, 2007. 9

[8] Hyunggi Cho, Young-Woo Seo, BVK Vijaya Kumar, and
Ragunathan Raj Rajkumar. A multi-sensor fusion system
for moving object detection and tracking in urban driving
environments. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 1836—1843. IEEE,
2014. 1

[9] William W Cohen, Robert E Schapire, and Yoram Singer.
Learning to order things. In Advances in Neural Information
Processing Systems, pages 451-457, 1998. 9

[10] Thomas Dean, Mark A Ruzon, Mark Segal, Jonathon Shlens,

Sudheendra Vijayanarasimhan, and Jay Yagnik. Fast, accu-
rate detection of 100,000 object classes on a single machine.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1814-1821, 2013. 2
Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.
Detect to track and track to detect. In Proceedings of the
IEEFE International Conference on Computer Vision, pages
3038-3046, 2017. 9

Pedro F Felzenszwalb, Ross B Girshick, David McAllester,
and Deva Ramanan. Object detection with discriminatively
trained part-based models. [EEE transactions on pattern
analysis and machine intelligence, 32(9):1627-1645, 2010.
2

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231-1237,
2013. 1,4,5,6,8

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440-1448,
2015. 1,2

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580-587,2014. 1,2, 5

Daniel Gordon, Ali Farhadi, and Dieter Fox. Re®: Real-time
recurrent regression networks for visual tracking of generic
objects. IEEE Robotics and Automation Letters, 3(2):788—
795,2018. 9

David Held, Sebastian Thrun, and Silvio Savarese. Learn-
ing to track at 100 fps with deep regression networks. In
European Conference on Computer Vision, pages 749-765.
Springer, 2016. 9

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu,
Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wo-
jna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy
trade-offs for modern convolutional object detectors. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 7310-7311, 2017. 2

Junsung Kim, Hyoseung Kim, Karthik Lakshmanan, and
Ragunathan Raj Rajkumar. Parallel scheduling for cyber-
physical systems: Analysis and case study on a self-driving
car. In Proceedings of the ACM/IEEE 4th international
conference on cyber-physical systems, pages 31-40. ACM,
2013. 1

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097-1105, 2012. 2

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast en-
coders for object detection from point clouds. arXiv preprint
arXiv:1812.05784,2018. 2,3,4,5,6,7, 8, 12

Hei Law and Jia Deng. Cornernet: Detecting objects as
paired keypoints. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 734-750, 2018. 2

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. nature, 521(7553):436, 2015. 2

Tsung-Yi Lin, Piotr Dolldr, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2017. 1,3

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollér. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980-2988, 2017. 1,2, 5

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21-37. Springer, 2016. 2
Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furious:
Real time end-to-end 3d detection, tracking and motion fore-
casting with a single convolutional net. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3569-3577, 2018. 2,3, 6

Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-
Gonzalez, and Carl K. Wellington. Lasernet: An effi-
cient probabilistic 3d object detector for autonomous driv-
ing. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2019. 3

Ming Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel
Urtasun. Multi-task multi-sensor fusion for 3d object detec-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019. 8

Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J
Guibas. Frustum pointnets for 3d object detection from rgb-
d data. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 918-927, 2018. 2, 3,
8

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 652—660,
2017. 2,3

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Infor-
mation Processing Systems, pages 5099-5108, 2017. 2, 3,
4

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779-788, 2016. 2
Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In Advances in Neural Information
Processing Systems, pages 91-99, 2015. 1,2, 9

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91-99, 2015. 2

Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala,
and Yann LeCun. Pedestrian detection with unsupervised

(38]

(39]

[40]

(41]

(42]

[43]

[44]

(45]

[46]

(47]

(48]

(49]

(50]

(51]

multi-stage feature learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 3626-3633, 2013. 2

Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. PointR-
CNN: 3d object proposal generation and detection from
point cloud. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 770-779, 2019.
2,3

Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp,
David Stavens, Andrei Aron, James Diebel, Philip Fong,
John Gale, Morgan Halpenny, Gabriel Hoffmann, et al. Stan-
ley: The robot that won the darpa grand challenge. Journal
of field Robotics, 23(9):661-692, 2006. 1

Jasper RR Uijlings, Koen EA Van De Sande, Theo Gev-
ers, and Arnold WM Smeulders. Selective search for ob-
ject recognition. International journal of computer vision,
104(2):154-171, 2013. 2

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei
Pokrovsky, and Raquel Urtasun. Deep parametric continu-
ous convolutional neural networks. In Proceedings of the
IEEFE Conference on Computer Vision and Pattern Recogni-
tion, pages 2589-2597, 2018. 3

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. arXiv preprint
arXiv:1811.07246, 2018. 4

Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-
tentional ShapeContextNet for point cloud recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4606—4615, 2018. 8

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018. 4

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 18(10):3337, 2018. 2,
3,4,5,6

Bin Yang, Ming Liang, and Raquel Urtasun. Hdnet: Ex-
ploiting HD maps for 3d object detection. In Conference on
Robot Learning, pages 146-155, 2018. 2, 3,6, 8

Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-
time 3d object detection from point clouds. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7652-7660, 2018. 2, 3, 6

Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Ji-
aya Jia. Ipod: Intensive point-based object detector for point
cloud. arXiv preprint arXiv:1812.05276, 2018. 2, 3, 8
Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Ruslan R Salakhutdinov, and Alexander J
Smola. Deep sets. In Advances in neural information pro-
cessing systems, pages 3391-3401, 2017. 3

Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin
Yang, Sergio Casas, and Raquel Urtasun. End-to-end inter-
pretable neural motion planner. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 8660-8669, 2019. 1

Xingyi Zhou, Jiacheng Zhuo, and Philipp Krihenbiihl.
Bottom-up object detection by grouping extreme and center
points. arXiv preprint arXiv:1901.08043, 2019. 2

[52]

(53]

Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang
Gao, Tom Ouyang, James Guo, Jiquan Ngiam, and Vijay Va-
sudevan. End-to-end multi-view fusion for 3d object detec-
tion in lidar point clouds. In Conference on Robot Learning
(CoRL),2019. 3,5,7,8

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4490-4499, 2018. 2,3, 6

Supplementary Material:
Targeted Computation for Object Detection in Point Clouds

A. Full Waymo Open Dataset Results

Overall 0-30m 30-50m 50m-Inf

PointPillars Pedestrians mAP 60.0/54.0 | 68.9/66.4 | 57.6/52.9 | 46.0/37.0
PointPillars Pedestrians mAPH 47.3/42.5 | 55.8/53.7 | 45.0/41.2 | 33.4/26.8
StarNet Pedestrians mAP 70.1/63.2 | 78.6/75.7 | 67.9/62.7 | 57.2/46.1
StarNet Pedestrians mAPH 35.6/32.1 | 40.3/38.9 | 34.5/31.8 | 28.0/22.6

StarNet (directional) Pedestrians mAP 67.8/61.1 | 76.0/73.1 | 66.5/61.2 | 55.3/44.5
StarNet (directional) Pedestrians mAPH | 59.9/54.0 | 67.8/65.2 | 59.2/54.5 | 47.0/37.8

PointPillars Vehicles mAP 62.2/54.5 | 81.8/80.7 | 55.7/50.1 | 31.2/23.2
PointPillars Vehicles mAPH 61.7/54.0 | 81.3/80.2 | 55.1/49.6 | 30.5/22.7
StarNet Vehicles mAP 64.7/56.3 | 83.3/82.4 | 58.8/53.2 | 34.3/25.7
StarNet Vehicles mAPH 45.5/39.6 | 62.0/61.3 | 35.9/32.5 | 20.5/15.4
StarNet (directional) Vehicles mAP 61.5/54.9 | 82.2/81.3 | 56.6/49.5 | 32.2/23.0

StarNet (directional) Vehicles mAPH 61.0/54.5 | 81.7/80.8 | 56.0/49.0 | 31.8/22.7

Table 5: Waymo Open Dataset Test set results for StarNet versus a PointPillars [22] baseline model. Every table item is
the LEVEL_1/LEVEL_2 mean average precision (mAP) or heading weighted mean average precision (mAPH).

