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Abstract

To safely deploy autonomous vehicles, onboard perception
systems must work reliably at high accuracy across a diverse
set of environments and geographies. One of the most com-
mon techniques to improve the efficacy of such systems in
new domains involves collecting large labeled datasets, but
such datasets can be extremely costly to obtain, especially
if each new deployment geography requires additional data
with expensive 3D bounding box annotations. We demon-
strate that pseudo-labeling for 3D object detection is an
effective way to exploit less expensive and more widely avail-
able unlabeled data, and can lead to performance gains
across various architectures, data augmentation strategies,
and sizes of the labeled dataset. Overall, we show that better
teacher models lead to better student models, and that we
can distill expensive teachers into efficient, simple students.

Specifically, we demonstrate that pseudo-label-trained stu-
dent models can outperform supervised models trained on
3-10 times the amount of labeled examples. Using PointPil-
lars [24], a two-year-old architecture, as our student model,
we are able to achieve state of the art accuracy simply by
leveraging large quantities of pseudo-labeled data. Lastly,
we show that these student models generalize better than
supervised models to a new domain in which we only have
unlabeled data, making pseudo-label training an effective
form of unsupervised domain adaptation.

1. Introduction
Self-driving perception systems typically require sufficient
human labels for all objects of interest and subsequently
train machine learning systems using supervised learning
techniques [48]. As a result, the autonomous vehicle indus-
try allocates a vast amount of capital to gather large-scale
human-labeled datasets in diverse environments [6, 14, 44].

However, supervised learning using human-labeled data
faces a huge deployment hurdle: while the technique works
∗ Denotes equal contribution and authors for correspondence.

Class Geography Baseline Student ∆

Vehicle SF/MTV/PHX 49.1 58.9 +9.8
Ped SF/MTV/PHX 53.4 64.6 +11.2

Vehicle Kirkland 26.1 37.2 +11.1
Ped Kirkland 14.5 27.1 +12.6

Figure 1: Pseudo-labeling for 3D object detection. Top:
Training models with pseudo-labeling consists of a three-
stage training process. (1) Supervised learning is performed
on a teacher model using a limited corpus of human-labeled
data. (2) The teacher model generates pseudo-labels on a
larger corpus of unlabeled data. (3) A student model is
trained on a union of labeled and pseudo-labeled data. Bot-
tom: Summary of key results in 3D object detection per-
formance on Waymo Open Dataset [44] with a PointPillars
model [24]. All numbers report validation set Level 1 dif-
ficulty average precision (AP) for vehicles and pedestrians.
Both baselines and student models only have access to 10%
of the labeled run segments from original Waymo Open
Dataset, which consists of data from San Francisco (SF),
Mountain View (MTV), and Phoenix (PHX). We use no la-
bels from the domain adaptation challenge dataset, Kirkland.

well on in-domain problems, domain shifts can cause the
performance to drop significantly [4, 17, 36, 45]. The re-
liance of self-driving vehicles on supervised learning implies
that the rate at which one can gather human-labeled data
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in novel geographies and environmental conditions limits
wider adoption of the technology. Furthermore, a supervised-
learning-based approach is inefficient: for example, it would
not leverage human-labeled data from Paris to improve self-
driving perception in Rome [50]. Unfortunately, we currently
have no scalable strategy to address these limitations.

We view the scaling limitations of supervised learning as
a fundamental problem, and we identify a new training
paradigm for adapting self-driving vehicle perception sys-
tems to different geographies and environmental condi-
tions in which human-labeled data is limited or unavailable.
We propose leveraging ideas from the literature on semi-
supervised learning (SSL), which focuses on the low label
regime, and boosts the performance of state-of-the-art mod-
els by leveraging unlabeled data. In particular, we employ
a pseudo-labeling approach [26, 30, 39] to generate labeled
data on additional datasets and find that such a strategy leads
to significant boosts in performance on 3D object detection
(Figure 1).

Additionally, we systematically investigate how to struc-
ture pseudo-label training to maximize model performance.
We identify nuances not previously well understood in the
literature for how best to implement pseudo-labeling and
develop simple yet powerful recommendations for how to
extract gains from it. Overall, our work demonstrates a vi-
able method for leveraging unsupervised data – particularly
from other domains – to boost state-of-the-art performance
on in-domain and out-of-domain tasks. To summarize our
contributions:

• We show pseudo-labeling is extremely effective for 3D
object detection, and provide a systematic analysis of
how to maximize it’s performance benefits.

• We demonstrate that pseudo-label training is effective
and particularly useful for adapting to new geographical
domains for autonomous vehicles.

• By optimizing the pseudo-label training pipeline (keep-
ing both the architecture and labeled dataset fixed),
we achieve state-of-the-art test set performance among
comparable models, with 74.0 L1 AP for Vehicles and
69.8 L1 AP for Pedestrians, a gain of 5.4 and 1.9 AP
respectively over the same supervised model.

2. Related Work
Semi-supervised learning. Semi-supervised learning (SSL)
is an approach to training that typically combines a small
amount of human-labeled data with a large amount of un-
labeled data [27, 33, 35, 53]. Self-training refers to a style
of SSL in which the predictions of a model on unlabeled
data, termed pseudo-labels [26], are used as additional train-
ing data to improve performance [30, 39]. Several variants
of self-training exist in the literature. Noisy-Student [52]

uses a smaller, less noised teacher model to generate pseudo-
labels, which are used to train a larger, noised student model,
and the authors suggest performing multiple iterations of
this process. FixMatch [41] combines self-training with
consistency regularization [23, 38], a technique that applies
random perturbations to the input or model to generate more
labeled data. In prior work, self-training has been success-
fully applied to tasks such as speech recognition [20, 34],
image segmentation [7], and 2D object detection in camera
imagery [37, 42, 61] and video sequences [8].

3D object detection. Though several architectural in-
novations have been proposed for 3D object detection
[29, 32, 54, 56, 57, 60], a recent focus has been on tech-
niques that improve data efficiency, or the amount of data
required to reach a certain performance. Data augmenta-
tion designed for 3D point clouds can significantly boost
performance (see references in [9, 28]), and techniques to
automatically learn appropriate data augmentation strategies
have been shown to be 10 times more data efficient than
baseline 3D detection models [9, 28]. Concurrent to our
work, [51] shows gains applying knowledge distillation [18]
to 3D detection, distilling a multi-frame model’s features to
a single-frame model in feature space, whereas we apply
knowledge distillation in label space.

Several recent works also propose improving data efficiency
by using weak supervision to augment existing labeled data:
[46] incorporates existing 3D box priors to augment 2D
bounding boxes, and [31] similarly generates additional 3D
annotations by learning appropriate augmentations for la-
beled object centers. Finally, an automatic 3D bounding box
labeling process is proposed by [55], which uses the full
object trajectory to produce accurate bounding box predic-
tions, though they don’t show training results with these auto
labels.

We view many of the techniques to improve data efficiency
as complementary to our work, as improvements in either
model architectures or data efficiency will provide additive
performance benefits.

SSL for 3D object detection. Two prior works apply Mean
Teacher [47] based semi-supervised learning techniques to
3D object detection [49, 58] on the indoor RGB-D datasets
ScanNet [10] and SUN RGB-D [43]. SESS [58] trains a stu-
dent model with several consistency losses between the stu-
dent and the EMA-based teacher model, while 3DIoUMatch
[49] proposes training directly on the pseudo labels after
filtering them via an IoU prediction mechanism. In contrast,
we forgo a Mean-Teacher-based framework, finding separate
teacher and student models to be practically advantageous,
and we showcase performance on 3D LiDAR datasets de-
signed to train self-driving car perception systems.

Domain adaptation. Robustness to geographies and envi-
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ronmental conditions is critical to making self-driving tech-
nology viable in the real world [48]. Recently, one group
studied the task of adapting a 3D object detection architec-
ture across self-driving vehicle datasets (e.g. [14, 19, 44]),
and reported significant drops in accuracy when training on
one dataset and testing on another [50]. Interestingly, such
drops in accuracy could be attributed to differences in car
sizes and are partially reduced by accounting for these size
differences. In parallel, other recent work reports notable
drops in accuracy across geographies within a single dataset
[44] (see Table 9). However, unlike the former work, those
drops in accuracy in this latter work cannot be accounted for
by differences in car sizes 1. In our work, we experiment on
this single dataset and are able to mitigate drops in accuracy
across geographies.

We focus on one of the open challenges for the Waymo Open
Dataset 2: accurate 3D detection in a new city (Kirkland)
with changing environmental conditions (rain) and limited
human-labeled data. Currently, the state-of-the-art architec-
ture for the Kirkland domain adaptation task [11] employs
a single-stage, anchor-free and NMS-free 3D point cloud
object detector equipped with multiple enhancements includ-
ing features from 2D camera neural networks, powerful data
augmentation, frame stacking, test time ensembling, and
point cloud densification (but no pseudo-labeling). We do
not implement these full set of enhancements, yet our base-
line implementation achieves similar performance to their
baseline architecture [13], instead focusing on accuracy and
robustness gains that can be achieved by leveraging a large
amount of unlabeled data.

3. Methods
Our pseudo-labeling process (Figure 2) consists of three
stages: training a teacher on labeled data, pseudo-labeling
unlabeled data with said teacher, and training a student on
the combination of the labeled and pseudo-labeled data. We
perform and evaluate all of our experiments on the Waymo
Open Dataset (version 1.1) [44] and the domain adaptation
extension. We implement students and teachers as Point-
Pillars [24] models using open-source implementations 3,
which are the baselines used by [9, 15, 32, 44].

3.1. Data Setup

The Waymo Open Dataset [44] is organized as a collection of
run segments. Each run segment is a ∼200 frame sequence
of LiDAR and camera data collected at 10Hz. These run

1We found the average width and length of vehicles in Kirkland and the
Waymo Open Dataset to be quite similar. For instance, in the validation
splits of the Waymo OD and Kirkland datasets, we measured similar average
lengths (4.8m vs 4.6m) and average widths (2.1m vs 2.1m) across O(104)
objects. These discrepancies are markedly less than those described in [50].

2 https://waymo.com/open/challenges
3 https://github.com/tensorflow/lingvo/

Unlabeled 
Kirkland Data

Unlabeled subset 
of Waymo OD

Student

Pseudo-labeled 
Kirkland Data

Pseudo-labeled 
subset of Waymo OD

Labeled subset of 
Waymo OD

Labeled subset of 
Waymo OD

Pseudo-Label

M
od
el
s

D
at
as
et
s

Teacher

Figure 2: Experimental setup. We conduct our experiments
on the Waymo Open Dataset [44], where we artificially di-
vide the dataset into labeled and unlabeled splits. We always
treat run segments from Kirkland as unlabeled (even though
a subset are labeled) and select subsets (e.g. 10%, 20%, ...)
of the original Waymo Open Dataset run segments to train
the teacher. We use the teacher to pseudo-label all unseen
run segments, and then train a student on the union of labeled
and pseudo-labeled run segments. Finally, we evaluate both
teacher and student models on the original Waymo Open
Dataset and Kirkland validation splits.

segments come from two sets: the original Waymo Open
Dataset, which has 798 labeled training run segments col-
lected in San Francisco, Phoenix, and Mountain View, and
the domain adaptation benchmark, which has 80 labeled and
480 unlabeled training run segments from Kirkland. Both
datasets contain 3D bounding boxes for Pedestrian, Vehicle,
and Cyclist, but, due to the low number of Cyclists in the
data, we focus on the Pedestrian and Vehicle classes.

In our experiments, we treat all the Kirkland run segments
as unlabeled data (even though labels do exist for 80 run
segments). Our setup is similar to unsupervised domain
adaptation, where only unlabeled data is available in the
“target” domain, giving us a measure of how well the gains
in accuracy on the Waymo Open Dataset generalize to a new
domain 4. In addition, our setup emulates a common scenario
in which a practitioner has access to a large collection of
unlabeled run segments and a much smaller subset of labeled
run segments.

In order to study the effect of labeled dataset size, we ran-
domly sample smaller training datasets from the Waymo
Open Dataset. Because run segments are typically labeled
efficiently as a sequence, we treat each run segment as either
comprehensively labeled or unlabeled, and we sample based
on the run segment IDs, instead of individual frames. For
example, selecting 10% of the original Waymo Open Dataset
corresponds to selecting 10% of the run segments, i.e. 79

4In addition to geographical nuances, Kirkland has notably different
weather conditions, e.g. clouds and rain, than San Francisco, Phoenix, and
Mountain View.
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run segments, which provides ∼15,700 frames. If we were
to instead randomly select 10% of frames, we would make
the task artificially easier, as neighboring frames would be
highly correlated, especially if the autonomous vehicle is
moving slowly.

3.2. Model Setup

All experiments use PointPillars [24] as a baseline archi-
tecture due to its simplicity, accuracy, and inference speed
(see Appendix 6.1.1 for architecture details). To explore the
impact of teacher accuracy, we use wider and multi-frame
PointPillars models as teachers. To make the models wider,
we multiply all channel dimensions by either 2× or 4×. To
make a multi-frame teacher, we concatenate the point clouds
from each frame with its previous N −1 frames transformed
into the last frame’s coordinate system.

3.3. Training Setup

Our training setup mirrors [9, 44]. We use the Adam opti-
mizer [21] and train with an exponential decay schedule on
the learning rate. All teachers and students are trained with
the same schedule, but the length of an epoch for teacher
and student models differ because the teacher is trained on
less data than the student.

We use data augmentation strategies such as world rotation
and scene mirroring, which showed strong improvement
over not using augmentations. Table 1 provides an ablation
study for these augmentations. Unless otherwise stated, all
other training hyperparameters remain fixed between teacher
and student. See Appendix 6.1.2 for additional details on the
training setup.

3.4. Pseudo-Label Training

Pseudo-label training begins by training a teacher model
using standard supervised learning on a labeled subset of
run segments. Once we train the teacher, we select the best
teacher model based on validation set performance on the
Waymo Open Dataset and use to pseudo-label the unlabeled
run segments. Next, we train a student model on the same
labeled data the teacher saw, plus all the pseudo-labeled run
segments. The mixing ratio of labeled to pseudo-labeled
data is determined by the percentage of data the teacher was
trained on.

We filter the pseudo-labeled boxes to include only those
with a classification score exceeding a threshold, which we
select using accuracy on a validation set. We find a classi-
fication score threshold of 0.5 works well for most models,
but a small subset of models (generally multi-frame Pedes-
trian models, which are poorly calibrated and systematically
under-confident) benefit from a lower threshold. Finally,
we evaluate the student’s performance on the Waymo Open
Dataset and Kirkland validation sets, where we always report
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Figure 3: Better teachers lead to better students. We plot
Level 1 AP on the Waymo Open Dataset validation set for
Vehicles. When controlling for labeled dataset size, archi-
tecture, and training setup between teachers and students,
teachers with a higher AP generally produce students with a
higher AP.

Level 1 (L1) average precision (AP).

4. Results
Using the Vehicle class, we first explore the relationship be-
tween teacher and student performance on the Waymo Open
Dataset for various teacher configurations, and then evalu-
ate generalization to Kirkland. Next, for both Vehicles and
Pedestrians, we distill increasingly larger teachers into small,
efficient student models, yielding large gains in accuracy
with no additional labeled data or inference cost. Finally,
we scale up these experiments with two orders of magnitude
more unlabeled data, further demonstrating the efficacy of
pseudo-labeling. We also describe some negative results
where we discuss some ideas we thought should work, but
did not.

4.1. Better teachers lead to better students.

To understand how teacher performance impacts student
performance, we control the accuracy of the teacher by vary-
ing the amount of labeled data, the teacher’s width, and the
strength of teacher training data augmentations. All exper-
iments in this section are evaluated on Vehicles. In Figure
3, we show student-versus-teacher performance for teacher
and student models with the same amount of labeled data,
equivalent architectures, and equivalent training setups.

In general, higher accuracy teachers produce higher accuracy
students. A relevant question is then, what techniques are
most effective for improving teacher accuracy? To answer
this, we evaluate each modification in turn on the Waymo
Open Dataset. Appendix 6.3 shows the corresponding exper-
iments when evaluating on the Kirkland dataset.
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Amount of labeled data. Compared to adding data augmen-
tations or increasing teacher width, increasing the amount
of labeled data yields the largest improvements. Figure 4
shows that increasing the fraction of labeled data improves
both teacher and student performance, but the student gains
diminish as the amount of unlabeled data decreases.

Note that Figure 4 shows the overall percent labeled (bottom
axis) and unlabeled data (top axis) when we combine the
798 Waymo Open Dataset and 560 Kirkland run segments.
Using 100% of the labeled data from the Waymo Open
Dataset corresponds to having roughly 59% of the overall
data labeled, and we give teachers access to 10%, 20%, 30%,
50% of 100% of the labels in the Waymo Open Dataset in
this experiment, allowing us to evaluate the effect of having
access to x% human labeled and (1-x)% pseudo-labeled data
from the Waymo Open Dataset.

Data augmentation. We find that adding data augmentation
does lead to modest additional gains, mirroring the observa-
tions in [61], as long as it is applied to both the teacher and
the student. In Table 1, we show that one way to generate
stronger teacher models (and thus better students) is through
stronger data augmentations.

Although [52] emphasizes the importance of noising the
student model, we found empirically that pseudo-label train-
ing can show gains even without data augmentation (see
Appendix 6.2 for full results).

Teacher width. An additional way to generate better teach-
ers is through scaling the model size (parameter count). Be-
cause the teacher and student are different models, they can

405060708090
Percent unlabeled data

10 20 30 40 50 60
Percent labeled data
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52.5

55.0

57.5

60.0

62.5

AP

Waymo Open Dataset

Teacher
Student

Figure 4: Pseudo-label training is most effective when
the ratio of labeled to unlabeled data is small. Teacher
and student L1 AP on the Waymo Open Dataset validation
set for the Vehicle class versus overall percent labeled data.

Waymo Open Dataset L1 AP

Teacher Augmentation Teacher Student ∆

None 56.3 62.2 +5.9
FlipY 60.1 63.6 +3.5

RotateZ 61.4 63.3 +2.1
RotateZ + FlipY 63.0 64.2 +1.2

Table 1: Stronger teacher augmentations lead to addi-
tive gains in student performance. We increasing the
strength of teacher augmentations for a 1× width teacher
model trained on 100% of the Waymo Open Dataset, while
fixing the student to be a 1× width model trained with
both RotateZ and FlipY augmentations. We report L1
validation set Vehicle AP on the Waymo Open Dataset.
∆ = Student AP− Teacher AP.

1 2 4
Teacher width

50.0

52.5

55.0

57.5

60.0

62.5

65.0

AP

Waymo Open Dataset

Teacher
Student

10% OD labeled
100% OD labeled

Figure 5: Increasing teacher width leads to better stu-
dents when labeled data is limited. We increase teacher
width while fixing the student width at 1× and compare L1
AP for Vehicle models on the Waymo Open Dataset valida-
tion set. The teacher is trained on labeled data from either
10% or 100% of the original Waymo Open Dataset (bottom
and top points, respectively). When the ratio of labeled to
unlabeled data is small, student accuracy improves as the
teacher gets wider. However, this effect disappears when the
amount of pseudo-labeled data is small.

be of different sizes, architectures, or configurations. One
useful strategy involves distilling a large, expensive offline
model’s performance into a small, efficient production model.
In Figure 5, we vary the teacher width (1×, 2×, or 4×) by
multiplying all its channel dimensions while keeping the stu-
dent width fixed at 1×. We evaluate performance under two
different fractions of available labeled data (10% or 100%
of the original Waymo Open Dataset).

When only 10% of the original Waymo Open Dataset is
labeled, the 1× width students outperform their wider teach-
ers, in contrast to the findings in [52] that require the student
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to be equal or larger than the teacher, suggesting that in the
low labeled data regime, this may not be as important. How-
ever, when 100% of the original Waymo Open Dataset is
labeled, the 1× width student can no longer outperform the
4× width teacher on the original Waymo Open Dataset.

Ratio of labeled to unlabeled data. In our results, we
found that in the setting where the ratio of labeled to unla-
beled data is high – using 100% of the original Waymo Open
Dataset’s labels (798 segments) and only pseudo-labeling
Kirkland’s data (560 segments) – the student gains com-
pared to the teacher diminish, and the student is unable to
outperform a wider teacher.

One hypothesis is that the lack of improvement is due to
the small amount of unlabeled data that the student can
benefit from. We test this hypothesis by using two orders of
magnitude more unlabeled data in Section 4.4.

4.2. Generalization to Kirkland

50 55 60 65
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Figure 6: Pseudo-labeling improves performance on un-
labeled geographic domain. Stronger models on the orig-
inal Waymo Open Dataset are also better on the Kirkland
dataset (where we only have unlabeled data). Moreover, stu-
dent models trained with pseudo-labeling generalize better
to Kirkland than normally supervised teacher models.

In order to measure generalization to new geographies and
environmental conditions, we evaluate all models on the
Kirkland domain adaptation challenge dataset. The weather
in Kirkland is rainier than the weather in the cities that com-
prise the Waymo Open Dataset, which increases the level of
noise in the LiDAR data. We plot the model’s performance
on the Kirkland dataset versus the model’s performance
on the Waymo Open Dataset for both teacher and student
models in Figure 6. We observe a clear linear relationship be-
tween the model’s performance on the Waymo Open Dataset
and the model’s performance on Kirkland, implying that a
model’s accuracy on the Waymo Open Dataset can almost
perfectly predict accuracy on the Kirkland dataset. Overall,
the Kirkland performance is much lower than the Waymo

Open Dataset performance, which we suspect is due to an un-
derlying data distribution difference and the fact that we only
use labeled data from the Waymo Open Dataset in training.

Interestingly, the slope of the linear relationship changes
depending on whether the model is a teacher or student; the
student models have a slightly higher slope than the teacher
models, indicating that the student models are generalizing
better to the Kirkland dataset. We find that the difference
in slope is statistically significant by using an Analysis of
Covariance (ANCOVA) test, which evaluates whether the
means of our dependent variable (Kirkland AP) are equal
across our categorical independent variable (whether the
model is a student or not), while statistically controlling for
accuracy on the Waymo Open Dataset. We find an F-score of
12.9, giving us a p-value less than 0.001, which is lower than
0.05 (the significance level for 95% confidence), leading
us to reject the null hypothesis. Since the student models
have a slightly higher Kirkland AP for a given Waymo Open
Dataset AP, we conclude that the student models are slightly
more robust to the Kirkland distribution shift.

4.3. Pushing labeled data efficiency

For practitioners, an important question is "How do I make
the most accurate model given a fixed inference time bud-
get and fixed amount of labeled data?" We assume that
autonomous vehicle practitioners have more unlabeled than
labeled data due to the relative ease of collecting vs. com-
prehensively labeling data. In our experiment, we show that
better teachers still lead to better students, even as we make
larger, more accurate teacher models, and that distilling an
expensive, impractical offline model into an efficient, prac-
tical production model via pseudo-labeling is an effective
technique. Additionally, we show via strong Kirkland valida-
tion set results (a domain where we use no labeled data) that
pseudo-labeling is an effective form of unsupervised domain
adaptation.

We improve the teacher by both scaling its width to 4×
and concatenating up to four LiDAR frames as input. As
with all of our experiments, our training setup for students
mirrors the teacher except that the student models are always
1× width, 1 frame. Our results are shown in Figure 7 and
summarized in Figure 1.

For Vehicle models, we find that distilling a 4× width, 4
frame teacher model into a 1× width, 1 frame student model,
using only 10% of the original Waymo Open Dataset la-
bels, can match or exceed the performance of an equivalent
supervised model trained with 5× that amount of labeled
data. Our Pedestrian model is even more remarkable: using
only 10% of the original Waymo Open Dataset run segment
labels, our student model outperforms an equivalent super-
vised baseline on Kirkland trained on 10× the amount of

6
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Figure 7: Increasingly large teachers distill into small, accurate students. Increasing the width or number of frames for
the teacher impacts performance on a fixed size student (1× width, 1 frame) in the low label (10% of run segments) regime
for vehicles (top) and pedestrians (bottom). Training a large, expensive teacher model, and distilling the teacher into a small,
efficient student is an efficient tactic. We present results for Waymo Open Dataset (left) and Kirkland (right).

labels from the original Waymo Open Dataset. 5

Our results show that unlabeled data in-domain can be vastly
more effective than labeled data from a different domain.
Additionally, in Appendix 6.4 we show that these results
hold when doubling the amount of labeled data.

4.4. Pushing unlabeled dataset size

We return to our hypothesis that pseudo-labeling works best
when the ratio of labeled data to unlabeled data is low. In
practice, unlabeled self driving data is plentiful, so under-
standing how pseudo-labeling performs as the unlabeled
dataset gets significantly larger is important.

To scales the size of our unlabeled dataset, we were granted
access to >100x more unlabeled data from San Francisco
(one of the three cities in the original Waymo Open Dataset)
and Kirkland. This data contains∼67,000 run segments from
San Francisco and ∼8,000 run segments from Kirkland, as
compared to the original 798 run segments from the original
Waymo Open Dataset and 560 run segments from Kirkland.

5Note that we find that the 4× width, 4 frame Pedestrian models were
systematically under-confident, and lowering the pseudo-label score thresh-
old from 0.5 to 0.3 improved results.

Training OD / Kir OD / Kir OD L1 AP
Method # label # pseudo Veh ∆ Ped ∆

baseline 800 / 0 0 / 0 63.0 – 69.0 –
semi-super 800 / 0 0 / 560 64.2 +1.2 69.8 +0.8
semi-super 800 / 0 0 / 8k 65.1 +2.1 68.8 -0.9
semi-super 800 / 0 67k / 8k 68.8 +5.8 70.5 +1.5

Table 2: Pseudo-labeling increases accuracy in domain.
The number of labels are reported in run segments. All per-
formance numbers report validation set L1 difficulty AP for
the original Waymo Open Dataset with the same 1× width 1
frame network architecture. Only the training method varies
across each experiment. ∆ indicates the difference in AP
with respect to the Baseline model, which is trained only on
the Waymo Open Dataset (OD). Semi-supervised uses a 4×
width, 4 frame teacher model trained on OD labeled data to
provide pseudo-labels and then trains the student on the joint
labeled and pseudo-labeled data. We include Kirkland data
to show that out of domain data also provides gains, but not
as large.

Empirically, we find that explicitly controlling the ratio of la-
beled to unlabeled data becomes important, as our unlabeled
data otherwise overwhelms the labeled data. We train a 4×
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Training OD / Kir OD / Kir Kirkland L1 AP
Method # label # pseudo Veh ∆ Ped ∆

baseline 800 / 0 0 / 0 41.8 – 24.8 –
supervised 800 / 80 0 / 0 45.0 +3.2 30.3 +5.5
semi-super 800 / 0 0 / 560 44.5 +2.7 28.4 +3.6
semi-super 800 / 0 0 / 8k 48.0 +6.2 29.3 +4.5
semi-super 800 / 0 67k / 8k 49.7 +7.9 27.3 +2.5

Table 3: Pseudo-labeling out-of-domain data outper-
forms supervised training on new geographies. We report
validation set L1 difficulty AP for Kirkland with the same 1×
width 1 frame architecture, only varying the training method.
∆ is the difference in AP with respect to the Baseline model.
Baseline model is trained on Waymo Open Dataset (OD)
but tested on a distinct geography (Kirkland). Supervised is
trained on labeled data from OD and the distinct geography
(Kirkland). Semi-supervised uses a 4×width 4 frame teacher
model trained on OD labeled data to provide pseudo-labels,
and trains on the joint labeled and pseudo-labeled data.

width, 4 frame teacher on the original Waymo Open Dataset,
and use this to pseudo-label all ∼75,000 unlabeled run seg-
ments. We then train student models with a mix of all 798
labeled original Waymo Open Dataset run segments and a
subset of these new pseudo-labeled run segments. While we
did not exhaustively sweep the ratio of labeled-to-unlabeled
data, in general we found a 1:5 ratio to work best (except for
our Pedestrian model that used all ∼75,000 run segments,
which worked best with a ratio of 1:1).

Our results show continued gains as we scale the amount
of unlabeled data on both the Waymo Open Dataset (Table
2) and Kirkland (Table 3). Vehicle models significantly
improve, with a +5.8 AP improvement on the Waymo Open
Dataset validation set, and a +7.9 AP improvement on the
Kirkland validation set. For Pedestrians on the validation
set, we see smaller gains of +1.5 AP on the original Waymo
Open Dataset, and +4.5 on Kirkland, and more sensitivity
to where the unlabeled data came from. Our analysis shows
that many scenes, especially in Kirkland, have very few or
zero pedestrians6. We suspect that this introduces biases in
the training process, and leave to future work to explore how
to best choose which pseudo-labeled frames to train on.

We confirm these gains by evaluating on the test sets in Ta-
ble 4, where we achieve state of the art accuracy on both
Vehicles and Pedestrians among all published single frame,
LiDAR only, non-ensemble results available. We reiterate
that we do not change the architecture, model hyperparame-
ters, or training setup of the student; our only change is to
add additional unlabeled data via pseudo-labeling.

6In the labeled validation sets, we found 70% of scenes in the original
Waymo Open Dataset had Pedestrians, with an average of 12.4 per scene,
whereas in Kirkland only 22% of scenes had Pedestrians, with an average
of 0.57 per scene.

Model
Vehicle Pedestrian

L1 AP L1 APH L1 AP L1 APH

Waymo Open Dataset

Second [54] 50.1 49.6 – –
StarNet [32] 63.5 63.0 67.8 60.1

PointPillars† [24] 68.6 68.1 67.9 55.5
SA-SSD [16] 70.2 69.5 57.1 48.8

RCD [3] 71.9 71.6 – –
Ours† 74.0 73.6 69.8 57.9

Kirkland

PointPillars† [24] 49.3 48.8 37.5 29.7
Ours† 56.2 55.7 36.1 28.5

Table 4: Test set results on the Waymo Open Dataset
(top) and Kirkland Dataset (bottom). We compare to
other published single frame, LiDAR-only, non-ensemble
methods. † indicates that both models were implemented,
trained and evaluated by us, and are identical models in train-
ing setup and parameter count; the only difference is that our
model was trained on ∼75k unlabeled run segments.

4.5. Negative results

Finally, we briefly touch on ideas that did not work, despite
positive evidence in the literature for other tasks [52]. First,
we tried two forms of soft labels, neither of which showed a
gain. Second, we performed multiple iterations of training,
which showed a small gain, but we deemed it too time-
consuming to be worth it. Third, we explored whether there
was an ambiguous range of classification scores between
which we should assume the pseudo-object is neither labeled
foreground or background, and anchors assigned to pseudo-
label objects with these scores should receive no loss. We
detail our experiments in Appendix 6.6.

5. Conclusion
Our work presents the first results of applying pseudo-label
training to 3D object detection for self-driving car percep-
tion. We use a simple form of pseudo-labeling that requires
no architecture innovation, yet when deployed in a semi-
supervised learning paradigm, leads to substantial gains over
supervised learning baselines on vehicle and pedestrian de-
tection. Most interestingly, gains persist in the presence
of domain shift and new environments where building new
supervised label datasets has been a barrier to safe, wide de-
ployment. Furthermore, we identify several prescriptions for
maximizing pseudo-label-based training, including the con-
struction of better teacher model architectures and leveraging
data augmentation. To summarize our main results:

• By distilling a large teacher model into a smaller student
model and leveraging a large corpus of unlabeled data,
we use a two year old architecture [24] to achieve state-
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of-the-art results7 of 74.0 / 69.8 L1 AP (+5.4 / +1.9
over supervised baseline) for Vehicles / Pedestrians,
respectively, on the Waymo Open Dataset test set.

• Using only 10% of the labeled run segments, we show
that Vehicle and Pedestrian student models can outper-
form equivalent supervised models trained with 3-10×
as much labeled data, achieving a gain of 9.8 AP or
larger for both classes and datasets.

• On the Kirkland Domain Adaptation Challenge, we
show that pseudo-labeling produces more robust stu-
dent models; our best model outperforms the equivalent
supervised model by 7.9 / 4.5 L1 AP on the Kirkland
validation set for Vehicles and Pedestrians, respectively.

Overall, our work continues a long-standing theme of adapt-
ing unsupervised and semi-supervised learning techniques
to problems in domain adaptation and the low label limit
[1, 2, 5, 40]. A majority of these methods have been tested
on synthetic problems [5, 12] or small academic datasets
[22, 25], and accordingly, such works leave open the ques-
tion of how these methods may fare in the real-world. We
suspect that domain adaptation in self-driving car perception
may present a large-scale problem that may address such
concerns and may help orient the semi-supervised learning
field to a problem of critical importance for self-driving cars.
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6. Appendix
6.1. Model and training details

6.1.1 PointPillars architecture

We use the "Pedestrian" version of the PointPillars architec-
ture for both the Vehicle and the Pedestrian classes, which
uses a stride of 1 for the first convolutional block (instead
of 2). This results in the output resolution matching the
input resolution, which we found important for maintaining
accuracy scaling PointPillars to larger scenes. We adopt a
resolution of 512 pixels, spanning [-76.8m, 76.8m] in both
X and Y, and a Z range of [-3m, 3m] giving us a pixel size
of 0.33m, which is similar to what is used by [59] on the
Waymo Open Dataset. Additionally, on all models, we re-
place hard voxelization, which samples a fixed number of
points per voxel, with a dynamic voxelization [59], which
allows the model to use all the points in the point cloud,
and makes it efficiently able to handle larger point clouds.
Adding dynamic voxelization has negligible effect on accu-
racy.

6.1.2 Training details

We use the Adam optimizer with an initial learning rate
of 3.2e-3. We train for a total of 75 epochs with a batch
size of 64. An exponential decay schedule of the learning
rate starts at epoch 5. For models trained with 10% of the
original Waymo Open Dataset labeled run segments, we
double the training time, so that the total epoch is 150, and
the exponential decay starts at epoch 10. Lastly, on the large
scale experiments in section 4.4, we train for 15 total epochs,
with our exponential decay starting at epoch 2. We apply
an exponential moving average (EMA) decay of 0.99 on all
variables and use L2 regularization with scaling constant
1e-4.

Our anchor box prior corresponds to the mean box dimen-
sions for each class and is [4.725, 2.079, 1.768] and [0.901,
0.857, 1.712] for Vehicles and Pedestrians respectively. Our
anchors have two rotations of [0, π/2], and are placed in the
middle of each voxel. In order to compute the loss function
during training, we assign an anchor to a ground truth box if
its IoU is greater than 0.6 for Vehicles, and 0.5 for Pedestri-
ans, and to background if the IoU is below 0.45 for vehicles,
and 0.35 for pedestrians. Boxes with IoU between these
values have a loss weight of 0, and we use force matching to
make sure every ground truth is assigned at least one box.

Unless specified otherwise, all students and teachers are
trained with two data augmentations: RandomWorldRota-
tionAboutZAxis, and RandomFlipY. For RandomWorldRo-
tationAboutZAxis we choose a random rotation of up to
π/4 to apply to the world around the Z axis. For Random-
FlipY, we flip the Y coordinate, which can be thought of as
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Figure 8: Kirkland evaluation: Better teachers lead to
better students. If the student model has an equivalent ar-
chitecture or training setup compared to the teacher, teachers
with a higher AP produce students with a higher AP. All
numbers are Vehicle models reporting Level 1 AP on the
Kirkland validation split.

mirroring the scene over the X axis, with probability of 0.25.

6.2. Is data augmentation necessary?

Aug.? OD / Kirkland AP

Teach. Stud. Teacher Student ∆

No No 56.3 / 33.6 59.2 / 38.0 +2.9 / +4.4
No Yes 56.3 / 33.6 62.2 / 40.9 +5.9 / +7.4
Yes No 63.0 / 41.8 59.5 / 39.5 -3.5 / -2.3
Yes Yes 63.0 / 41.8 64.2 / 44.0 +1.2 / +2.2

Table 5: Data augmentation is not necessary, but bene-
ficial. While data augmentation is not necessary, the best
student is achieved when both the student and teacher re-
ceive the same advantages. Results are on 1x width, 1 frame
vehicle models where both the teacher and student saw 100%
of the original Waymo Open Dataset labeled run segments.

6.3. Kirkland results

We provide all the corresponding Kirkland validation set
figures on Vehicles for Section 4.1. We show that all of our
results shown for the Waymo Open Dataset still hold when
we evaluate on Kirkland.

Better teachers lead to better students. Similar to Figure
3, Figure 8 shows that improving the teacher accuracy leads
to a corresponding increase in student accuracy.

Amount of labeled data. Again mirroring our results in Fig-
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Figure 9: Kirkland evaluation: Pseudo-label training
is most effective when the ratio of labeled to unlabeled
data is small. Teacher and student L1 AP on the Waymo
Open Dataset validation set for the Vehicle class versus
percent labeled data.

Kirkland L1 AP

Teacher Augmentation Teacher Student ∆

None 33.6 40.9 +7.3
RotateZ 39.7 43.0 +3.3
FlipY 36.9 44.4 +7.5

RotateZ + FlipY 41.8 44.0 +2.2

Table 6: Increasing the strength of teacher augmenta-
tions leads to additive gains in student performance. We
increasing the strength of teacher augmentations for a 1×
width teacher model trained on 100% of the Waymo Open
Dataset. The student model is a fixed 1×width model trained
with both RotateZ and FlipY augmentations. We report L1
validation set Vehicle AP on the Kirkland dataset. ∆ is the
difference in AP between the student model and the teacher
model.

ure 4, Figure 9 shows increasing the amount of labeled data
increases both the teacher and student performance. We also
see similar (though less severe) diminishing returns as the
ratio of labeled to unlabeled data gets larger. Both teachers
and students are 1x width, 1 frame in these experiments.

Data augmentations. We also show the equivalent of Table
6 when evaluating on Kirkland:

Teacher width. Figure 10 shows the effect of increasing
teacher width for teachers trained on either 10% or 100%
of the Waymo Open Dataset. We see the same result as

1 2 4
Teacher width

27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0

AP

Kirkland

Teacher
Student

10% OD labeled
100% OD labeled

Figure 10: Kirkland evaluation: Increasing teacher
width leads to better students. We make teachers wider
while fixing the student width at 1x and report L1 AP for
Vehicle models on the Kirkland validation set. The teacher
is trained on labeled data from either 10% or 100% of the
original Waymo Open Dataset (top and bottom points, re-
spectively). The student is trained on the labeled data seen
by the teacher plus all unlabeled data from the Waymo Open
Dataset and its Kirkland dataset. When the ratio of labeled
to unlabeled data is small, the student accuracy improves
as the teacher gets wider, however this effect disappears
when the amount of pseudo-labeled data is small. We further
investigate this by adding more unlabeled data in Section
4.4.

in Figure 5, where when we hold the student configuration
fixed at 1x width, 1 frame, increasing the teacher width leads
to an increase in student accuracy in the low data regime
(10% of original Waymo Open Dataset run segments). We
see for Kirkland that similar to the original Waymo Open
Dataset, when the ratio of labeled to unlabeled data is large
(100% of original Waymo Open Dataset run segments), this
effect disappears.

6.4. Pushing labeled data efficiency

Here we provide additional results where we push the ac-
curacy of our student models on a limited amount of data
organized as run segments. We replicated the experiment
shown in Figure 7 using 20% of the original Waymo Open
Dataset run segments (so ∼11.4% of the overall run seg-
ments are labeled), and show similar gains. Additionally, we
provide raw numerical values for all data points from these
8 plots in in Table 7 and Table 8, to allow others to compare
against us.
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Figure 11: Increasingly large teachers distill into small, accurate students. Increasing the width or number of frames for
the teacher impacts performance on a fixed size student (1× width, 1 frame) in the low label (20% of run segments) regime
for vehicles (top) and pedestrians (bottom). Training a large, expensive teacher model, and distilling the teacher into a small,
efficient student is efficient tactic. Results presented for Waymo Open Dataset (left) and Kirkland (right).

Model Details OD / Kirkland L1 AP

Teacher Student % OD Labels Teacher Baseline Student ∆ Baseline

1x Width, 1 Frame 1x Width, 1 Frame 10 49.1 / 26.1 49.1 / 26.1 54.6 / 33.5 +5.5 / +7.4
4x Width, 1 Frame 1x Width, 1 Frame 10 52.2 / 28.7 49.1 / 26.1 57.7 / 35.3 +8.6 / +9.2
4x Width, 4 Frame 1x Width, 1 Frame 10 54.1 / 30.4 49.1 / 26.1 58.9 / 37.2 +9.8 / +11.1
1x Width, 1 Frame 1x Width, 1 Frame 20 53.5 / 33.1 53.5 / 33.1 59.0 / 40.1 +5.5 / +7.0
4x Width, 1 Frame 1x Width, 1 Frame 20 58.6 / 38.4 53.5 / 33.1 61.1 / 43.1 +7.6 / +10.0
4x Width, 4 Frame 1x Width, 1 Frame 20 60.0 / 39.8 53.5 / 33.1 61.2 / 44.2 +7.7 / +11.1

1x Width, 1 Frame 30 56.4 / 36.0
1x Width, 1 Frame 50 57.7 / 37.0
1x Width, 1 Frame 100 63.0 / 41.8

Table 7: Vehicle results for single frame, normal width student models trained with increasingly complex (wider, multi-frame)
teacher models. We show how it is advantageous to distill a complex, off-board model into a simple onboard model using
pseudo-labeling. All numbers are on the corresponding Validation set, and are Level 1 difficulty mean average precision (AP).

6.5. Different Teacher and Student Architectures

In the main text we show that the teacher and student archi-
tecture can be different configurations, and in fact using a

larger teacher is an effective way to generate significantly
stronger, small student models. One remaining question is
whether the teacher and student architectures need to be from
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Model Details OD / Kirkland L1 AP

Teacher Student % OD Labels Teacher Baseline Student ∆ Baseline

1x Width, 1 Frame 1x Width, 1 Frame 10 53.4 / 14.5 53.4 / 14.5 58.8 / 19.1 +5.4 / +4.6
4x Width, 1 Frame 1x Width, 1 Frame 10 59.2 / 21.5 53.4 / 14.5 61.4 / 20.9 +8.0 / +6.4
4x Width, 4 Frame 1x Width, 1 Frame 10 64.0 / 27.6 53.4 / 14.5 64.6 / 27.1 +11.2 / +12.6
1x Width, 1 Frame 1x Width, 1 Frame 20 59.2 / 16.0 59.2 / 16.0 61.7 / 20.3 +2.5 / +4.3
4x Width, 1 Frame 1x Width, 1 Frame 20 64.4 / 22.5 59.2 / 16.0 65.4 / 20.4 +6.2 / +4.4
4x Width, 4 Frame 1x Width, 1 Frame 20 68.8 / 30.8 59.2 / 16.0 66.8 / 26.0 +7.6 / +10.0

1x Width, 1 Frame 30 62.3 / 23.3
1x Width, 1 Frame 50 66.6 / 25.3
1x Width, 1 Frame 100 69.0 / 24.8

Table 8: Pedestrian results for single frame, normal width student models trained with increasingly complex (wider, multi-
frame) teacher models. We show how it is advantageous to distill a complex, off-board model into a simple onboard model
using pseudo-labeling. All numbers are on the corresponding Validation set, and are Level 1 difficulty mean average precision
(AP).

Model
Vehicle Pedestrian

L1 AP ∆ L1 AP ∆

Waymo Open Dataset

StarNet 10% Baseline 47.7 - 61.2 -
StarNet Student 55.6 +7.9 66.5 +4.3

Kirkland

StarNet 10% Baseline 26.3 - 6.7 -
StarNet Student 35.2 +8.9 22.2 +15.5

Table 9: Pseudo Labeling is effective across very differ-
ent architectures: We distill a 4× width, 4 frame PointPil-
lars teacher model into a single frame StarNet model and
see large gains in StarNet performance, despite it being an
extremely different architecture.

the same architecture family, or even similar in their data
representation. To test this, we design a very simple experi-
ment where we take our best 10% original Waymo OD run
segment PointPillars teacher model (the exact model used
in Figures 1 & 7), and use it to pseudo label the remaining
Waymo Open Dataset. We then train a StarNet [32] student
model on the union of the 10% labeled run segments, and
the remaining data pseudo labeled by PointPillars. We chose
StarNet because it’s a purely point-cloud based, convolution
free object detection system, which differs significantly from
PointPillars convolution-based architecture. Results are sum-
marized in Table 9, which shows strong gains in StarNet
accuracy when using a PointPillars teacher.

6.6. Negative result details

In this section, we provide some more details about our
negative results.

Soft-labels: We explored two forms of soft labels, one of

which was to use the post-sigmoid score bounded between
[0, 1] as the target, the second was to use the logit itself.
In object detection, because the outputs are passed through
Non-Maximum Suppression (NMS), we only have scores
and logits for foreground locations, therefore background
anchors all were assigned a score or logit of 1. We found
both techniques resulted in slightly worse performance than
simply using hard labels.

Multiple iterations: We tried multiple iteration training,
where we used the best student checkpoint to re-pseudo-label
the unlabeled data, and use that updated pseudo-labeled data
to train a new student. While our trend thus far has shown
better teachers lead to better students, its challenging to
combat the overfitting that will naturally occur. Its our un-
derstanding that this is one of the main reasons one wants
to heavily noise the student [52], but we found it difficult to
find a noise level (via augmentations) that did not hamper
model performance enough such that the second iteration
was not worse. With default settings using the same augmen-
tations for both the teacher, the first student, and the second
student, we found a small gain in performance using 10% of
the original Waymo Open Dataset run segments of ∼0.2 AP
on the original validation set, and ∼1.0 AP on the Kirkland
validation set. Because of the small gains compared to the
first iteration, and the time-consuming nature of performing
these experiments, we left further exploration to future work.

Score thresholds: We wondered whether there may be some
classification score range for pseudo-labels for which the
class is ambiguous and we should assign no loss. We allowed
anchors to be assigned a loss of zero if these anchors matched
(via normal IoU matching) pseudo-label objects with scores
between some [lower, upper] range. We then swept these
two values, and found the most effective results were when
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both values were [0.5, 0.5], indicating this setting should be
turned off. That said, we think the idea of limiting the noise
induced by bad pseudo-labels merits future investigation.
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