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Abstract

As machine learning models become increasingly prevalent in motion forecasting for autonomous
vehicles (AVs), it is critical to ensure that model predictions are safe and reliable. However, exhaustively
collecting and labeling the data necessary to fully test the long tail of rare and challenging scenarios is
difficult and expensive. In this work, we construct a new benchmark for evaluating and improving model
robustness by applying perturbations to existing data. Specifically, we conduct an extensive labeling
effort to identify causal agents, or agents whose presence influences human drivers’ behavior in any
format, in the Waymo Open Motion Dataset (WOMD), and we use these labels to perturb the data by
deleting non-causal agents from the scene. We evaluate a diverse set of state-of-the-art deep-learning
model architectures on our proposed benchmark and find that all models exhibit large shifts under even
non-causal perturbation: we observe a 25-38% relative change in minADE as compared to the original. We
also investigate techniques to improve model robustness, including increasing the training dataset size and
using targeted data augmentations that randomly drop non-causal agents throughout training. Finally,
we release the causal agent labels as an additional attribute to WOMD and the robustness benchmarks to
aid the community in building more reliable and safe deep-learning models for motion forecasting 1.

1 Introduction

Machine learning models are increasingly prevalent in trajectory prediction and motion planning tasks for
autonomous vehicles (AVs) [5, 6, 7, 10, 38, 30, 20, 16, 31, 39, 23, 18, 21]. To safely deploy such models, they
must have reliable, robust predictions across a diverse range of scenarios and they must be insensitive to
spurious features, or patterns in the data that fail to generalize to new environments. However, collecting and
labeling the required data to both evaluate and improve model robustness is often expensive and difficult, in
part due to the long tail of rare and difficult scenarios [22].

In this work, we propose perturbing existing data via agent deletions to evaluate and improve model robustness
to spurious features. To be useful in our setting, the perturbations must preserve the correct labels and
not change the ground truth trajectory of the AV. Since generating such perturbations requires high-level
scene understanding as well as causal reasoning, we propose using human labelers to identify irrelevant
agents. Specifically, we define a non-causal agent as an agent whose deletion does not cause the ground truth
trajectory of a given target agent to change. We then construct a robustness evaluation dataset that consists
of perturbed examples where we remove all non-causal agents from each scene, and we study model behavior
under alternate perturbations, such as removing causal agents, removing a subset of non-causal agents, or
removing stationary agents.

Using our perturbed datasets, we then conduct an extensive experimental study exploring how factors such
as model architecture, dataset size, and data augmentation effect model sensitivity. We also propose novel
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(a) Original Scene (minADE 0.282m) (b) Perturbed Scene (minADE 4.17m)

Figure 1: Trajectory prediction is sensitive to removing non-causal agents. We show a top-down view of a
scene from the WOMD (left) and a perturbed version of the scene where we delete all non-causal agents (right). The
AV and its predicted trajectories via the Scene Transformer model [25] are shown in blue, the ground truth trajectory
of the AV is grey, and the ground truth of other agents is green. The perturbation causes a large shift in minADE
because the model fails to predict the ground truth mode (a right turn), which indicates the brittleness of the model
to such perturbations.

metrics to quantify model sensitivity, including one that captures per-example absolute changes between
predicted and ground truth trajectories and another that directly reflects how the model outputs change under
perturbation via IoU (intersection-over-union) without referring to the ground truth trajectory. The second
metric helps to address the issue that the ground truth trajectory is one sample from a distribution of many
possibly correct trajectories. Additionally, we visualize scenes with large model sensitivity to understand why
performance degrades under perturbations.

Our results show that existing motion forecasting models are sensitive to deleting non-causal agents and
can have pathological behavior dependencies on faraway or distant agents. For example, Figure 1 illustrates
an original (left) and perturbed (right) scenes with non-causal agents removed. In the perturbed example,
the model’s prediction misses the right-turn mode, which corresponds to the ground-truth trajectory. Such
brittleness could lead to serious consequences in autonomous driving systems if we rely on deep-learning
models without further safety assurance from other techniques such as optimization and robotics algorithms.
The main contributions of our work are as follows:

1. We contribute a new robustness benchmark for the WOMD for evaluating trajectory prediction models’
sensitivity to spurious correlations. We release the causal agent labels from human labelers as additional
attributes to WOMD so that researchers can utilize the causal relationships between the agents for
robustness evaluation and for other tasks such as agents relevance or ranking [29, 37].

2. We introduce two metrics to quantify the robustness of motion forecasting models to perturbations,
including absolute per-example change in minADE and a trajectory set metric that measures sensitivity
without using the ground truth as a reference.

3. We evaluate the robustness of several state-of-the-art motion forecasting models, including Multipath++
[38], Wayformer [24] , and SceneTransformer [25]. We show that the absolute per-example change in
minADE can range from 0.07-0.23 m (a significant 25− 38% change relative to the original minADE).
We find that all models are sensitive to deleting non-causal agents, and the model with the best overall
performance (in terms of regular metrics used to quantify the trajectory prediction performance such as
minADE) is not necessarily the most robust.

4. We show that increasing training dataset size and targeted data augmentations that remove non-causal
agents can help improve model robustness.
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Overall, this is the first work focusing on the robustness of trajectory prediction models to perturbations based
on human labels. Such robustness is critical for models deployed in a self-driving car where the reliability
and safety requirements are of utmost importance. Ultimately, our goal is to provide a robustness benchmark
which can aid the community to better evaluate model reliability, detect possible spurious correlations in
deep-learning-based trajectory prediction models, and facilitate the development of more robust models
or other mitigation techniques such as optimization and traditional robotic algorithms as complementary
solutions to minimize safety risks.

2 Related work

Robustness evaluation on perturbations. Machine learning models are known to have brittle predictions
under distribution shift. Across multiple domains, researchers have proposed robustness evaluation protocols
that move beyond a fixed test set [28, 3, 35, 15, 13, 33, 36]. Evaluation can be broadly categorized into three
types: (i) slicing, i.e. existing test data is sliced over multiple dimensions, (ii) perturbations, i.e. existing
test data is modified via transformations, or (iii) dataset shift, i.e. new test data is drawn from a different
distribution. Our work focuses on perturbations, which have previously been explored in both computer
vision and NLP. In computer vision, researchers perturb images via pixel level noise corruptions [12, 15],
spatial transformations [9, 11], and adversarial modifications [4, 35]. Such synthetic shifts are easy to apply
to arbitrary images, but limited in that they do not test model invariance to more complex modifications such
as deleting or modifying irrelevant parts of the image. In trajectory prediction, perturbations are potentially
more valuable, since the models train on discrete inputs, namely, the agents and the roadgraph. Because of
the structure of the problem, it is easier to reliably construct perturbations that do not modify the ground
truth labels. This situation mirrors that of NLP, where sentences composed of discrete words can be modified
in ways that do not change the prediction task, and indeed, such transformations have proven valuable for
testing the robustness of models and identifying possible biases [8].

Robustness evaluation for trajectory prediction. The three types of robustness evaluation (slicing,
perturbations, and dataset shift) described above also characterize the trajectory prediction literature. Slicing.
The most common approach is to slice model performance along different hyperparameters and buckets, such
as duration of the historical trajectories [26], size of the training data [17, 25], sampling frequency [2], number
of agents in the scene [30, 25], criticality / interactivity of the scenarios [19, 10], and speed of the AV [25].
Perturbations. Another thread of related work focuses on the robustness of the algorithms to perturbations
in both training and test data. For example, [2] introduced synthetic sensor noises into both the training and
test process to evaluate the model’s accuracy against sensor noises. [14] introduced 30% anomalies into the
training data (with extra labels), and evaluated the robustness of the algorithm to anomalies in the training
process. Dataset shift. Less work has focused on dataset shift due to the difficulty of collecting, annotating,
and releasing entirely new data. Examples include training and testing in different locations or routes [32, 34],
weather, time of day, and sensor noise [34].

Unlike prior work, we evaluate trajectory prediction models trained on the original dataset on “non-causal”
domain shifts instead of hard domain shifts (such as weather or locations) since we manually transform
our test set by leveraging the causal relationships among agents in the scene. Because these non-causal
perturbations are closer to the original validation dataset than the hard domain shifts, the discrepancies we
observe are in some ways a more immediate priority for improving model robustness. We focus on evaluating
models’ sensitivity to agent interactions because that is a complicated component of trajectory prediction
and is crucially important for safety.

Agent relevance for autonomous driving. Since trajectory prediction in autonomous driving systems
must reason about other agents in the scene, researchers have attempted to efficiently rank agents according
to their impact on the AV. The main motivation of this line of work is to determine which agents to allocate
computational resources to for processing in real time. In particular, [1] proposed a driver’s saliency prediction
model which incorporates an attention mechanism to understand salient features for driving context. [29]
approximated an agent’s influence by looking at the difference between two plans (a planner is running in
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simulation) when a given agent is accounted for versus not. However, removing one agent at a time does not
account for certain situations where multiple agents may be influencing the car in the same way i.e. two
pedestrians are blocking the path of the car and removing one of the pedestrians has no influence on the
car. In similar work, [37] quantifies interactivity using a deep learning model which can suffer from the same
robustness issues. More generally, algorithmically defined importance/relevance or interaction scores can be
unreliable, especially in scenes with complex interactions between the AV and surrounding agents. In this
work, we use human labeling to decide which agents are important, and our motivation is to use these labels
to test model robustness. In the future, our causal agent labels can be used to verify algorithmic definitions
of agent importance or relevance.

Causal reasoning in autonomous driving. In a similar line of work, [27] collect causal annotations using
human labelers for the Honda Research Institute Driving Dataset and they slice performance of an object
detector over scenes with varying causal attributes. Our work instead uses causal labels to evaluate model
robustness for trajectory prediction on WOMD, and we provide more fine-grained per-agent measurements of
causality.

3 Methods

3.1 Labeling causal agents in WOMD

The objective of the labeling task is to identify all agents — cars, cyclists, or pedestrians — that are causal
to the AV at any time during a driving segment. Although we are more interested in removing non-causal
agents from each scene, we ask labelers to identify causal agents since there are typically fewer of them and
they tend to be closer to the AV, making them easier for labelers to identify.

Data. We focus on labeling the WOMD validation data because our primary goal is to evaluate the robustness
of models trained on the original dataset. Each example in WOMD is 9.1 seconds in length (91 steps at 10Hz)
and is generated in overlapping windows from a 20-second video segment. We label the 20-second segments
to give labelers access to a longer time horizon and to not waste resources on labeling overlapping scenes.
Moreover, both the regular and interactive WOMD validation sets are generated from the same 20-second
segments of data, hence, our causal labels can be used for both.

Figure 2: Camera images from a randomly chosen scene in the labeling UI. The causal agents are circled.

Labeling policy and UI. Causality is an inherently subjective label since human drivers may vary in their
judgements of which agents in the scene affect their decisions. Therefore, we want to be overly conservative
and identify as many causal agents as possible to maximize the likelihood that removed agents are actually
non-causal. If human labelers are unsure if an agent is causal or not, we instruct them to include it as causal.
We emphasize that false positives (identifying an agent as causal when it is truly non-causal) are acceptable
to a certain extent, but we should avoid false negatives (failing to identify a truly causal agent). (Appendix
A includes the exact instructions given to labelers.) That said, in ambiguous situations, we did not expect
labelers to reason about chained causality relationships. For example, if the AV is driving behind a queue of
5 cars and the first car were to brake, it could eventually cause the car in front of the AV to brake. In this
situation we would only expect the labeler to identify the car directly in front as causal.

The labeling UI is a web-based 3D view of the AV and its surroundings in the 20-second segmented videos.
An example is shown in Fig. 2 where the camera images from a randomly selected scene overlaid with the
causal annotations provided by the human labelers.
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Human annotations. To maximize coverage and avoid false negatives, each scene is annotated by 5 human
labelers and we designate causal agents as all agents that any labeler identified as causal. Appendix B shows
the distribution over causal agents for the number of human labelers who selected the agent as causal. The
majority of causal agents are selected by all 5 labelers, but a significant portion (24%) are selected by only 1
labeler.

3.2 Causal agent statistics

To understand the properties of causal agents, we compute several statistics of causal agents in the WOMD
validation dataset, including the percentage of causal agents (Figure 3a), the distribution of the relative
distance between the AV and the causal agents versus all surrounding agents (Figure 3b), and the breakdown
of causal versus all surrounding agents by agent type (vehicle, pedestrian, or cyclist) (Figure 3c). Figure 3a

(a) Causal agent frequency (b) Distance from AV (c) Agent type

Figure 3: Causal agent statistics. Causal agents are less frequent than non-causal agents (on average 13% of agents
are causal), and, compared to typical agents, they tend to be closer to the AV. Cyclists are relatively more likely to be
causal agents than pedestrians or vehicles.

shows that the majority of agents are actually non-causal: on average, only 13% of the total agents in the
scene are labeled as causal, and 93% of scenes have less than 30% of the agents labeled as causal. Figure
3b shows that causal agents are typically closer to the AV than non-causal agents; causal agents are an
average distance of 28.4m from the AV, compared to an average of 49.4m over all agents. Figure 3c shows the
likelihood that an agent of a given type (Vehicle, Ped, or Cyclist) is causal. Surprisingly, cyclists are more
likely to be causal agents than any other agents, and vehicles are more likely to be causal than pedestrians.
We hypothesize that this is because cyclists usually share the road with the AV and have a strong prior of not
respecting road boundaries like a car, whereas there are many parked cars that are not necessarily interacting
with the AV and similarly pedestrians can be off the road on sidewalks.

3.3 Perturbed datasets

In this work, we consider perturbations that modify the scene by deleting agents. While it is possible to
create more complex perturbations, such as adding noise to the xyz position of the agents, we start with
deletion since it directly reflects the models’ robustness regarding the causal relationships of agents in the
scene. Object track states in the WOMD consist of the object’s states (e.g., 3D center point, velocity vector,
heading), as well as a valid flag to indicate which time steps have valid measurements. To delete an agent
from the scene, we set its valid mask to false throughout all time steps (and we double check for each
model implementation that all agent state is ignored if the valid bit is false). We consider four different
perturbations:

1. RemoveNoncausal: Removes all non-causal agents in the dataset.

2. RemoveNoncausalEqual: Removes an equal number of randomly selected non-causal agents as there
are causal agents in the scene For example, if a scene has 5 causal agents, we randomly remove 5
non-causal agents. RemoveNoncausalEqual is meant to be a less aggressive form of RemoveNoncausal
since it deletes fewer agents and it allows us to compare to RemoveCausal when controlling for the
number of agents deleted.
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3. RemoveStatic: Removes agents whose xyz positions do not change above a certain threshold (e.g.
parked cars). We use a threshold of .1 m on the L2 distance of the agent’s xyz state to account for
sensor noise. Not all static agents are non-causal.

4. RemoveCausal: Removes all causal agents; the complement of RemoveNoncausal.

Among them, we categorize both RemoveNoncausal and RemoveNoncausalEqual as “non-causal” perturbations.
Specifically, to define non-causal perturbations, let us assume X is a scenario representation, Y is the ground
truth trajectory of the AV, and f is the ground-truth model that gives the relationship between X and Y . If
a perturbation ∆X satisfies f(X + ∆X) = f(X) = Y , we define it as non-causal perturbation since it does

not impact the relationship between X and Y . We define a deep learning model f̂ to be robust to non-causal
perturbations if f̂(X + ∆X) = f̂(X) = Ŷ ∀ non-causal ∆X, where Ŷ is the predicted trajectory from the
model. Additionally, we consider RemoveStatic as an important baseline that does not require the human
labels. We can thus apply it to the training dataset, which we explore in Section 4.3. Finally, we include the
RemoveCausal perturbation as a sanity to ensure models are sensitive to deleting causal agents.

3.4 Evaluation

Since we only have camera and LiDAR data from the AV perspective, we only collect causal labels and
evaluate model predictions for the AV trajectory. We report the average minADE (following the definition
from [10]) over 3, 5 and 8 seconds on both the original and perturbed datasets. In all instances, we use the
top 6 trajectories for each model (K=6).

Robustness Metrics. Since we found in our results that the perturbed minADE often improves for a large
fraction of the examples, averaging over examples cancels out some of the effects we would like to measure.
Thus, we introduce a metric to measure the per-example absolute change in minADE:

Abs(∆) =
1

n

n∑
i=1

|perturbed minADE(i)− original minADE(i)| (1)

We report Abs(∆), the standard deviation of Abs(∆), and the the relative percentage change in Abs(∆) with
respect to the original minADE. Finally, since the ground truth may represent only one of several correct ways
to drive, in Section 4.2 we also consider pairwise differences between the original and perturbed predictions
to measure model sensitivity.

Model Architecture Coord. System # Params

MultiPath++ LSTM agent-centric 125M
SceneTransformer factorized attention transformer global 15M

Wayformer early fusion attention transformer agent-centric 42M

Table 1: We evaluate on a diverse set of models.

Models. We select three representative deep learning models for evaluation: MultiPath++ [38], Scene
Transformer [25], and Wayformer [24]. Importantly, we only consider non-ensembled models (Multipath++
reports ensemble results in their paper and on the WOMD leaderboard). Table 1 reviews the architectural
differences and parameter counts of the models. Since we only evaluate on the AV, we typically only train
the models to predict the AV, but for MultiPath++ and SceneTransformer we also train models on all agents
(which we indicate by appending –All to the model name). Additionally, for SceneTransformer–All, we include
both the marginal and joint models (these models are the same when training on only the AV.)
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Figure 4: Model sensitivity to different perturbation types. We plot the per-example perturbed versus original
minADE for all perturbations for the MP++ model. The example frequency is shown with a log color scale where
yellow is the most frequent. The majority of examples show minimal change from the perturbation and lie close to the
y=x axis. However, across all perturbation types, there is a long tail of examples that show relatively large change in
minADE(>1m). Surprisingly, even for the RemoveCausal perturbation, the model performance often improves on
the perturbed examples. Comparing RemoveNoncausal and RemoveNoncausalEqual indicates that the model is more
sensitive to removing larger numbers of non-causal agents).

4 Results

4.1 Model sensitivity to non-causal perturbations

In order to understand model sensitivity on a per-example level, Figure 4 plots the perturbed versus original
minADE across each perturbation for MultiPath++ (see Appendix H for other models). For each perturbation
type, we observe that the majority of examples show minimal change (i.e. are clustered around the y=x
axis), but a long tail of outlier examples experience a large change (>1m). Among perturbation types, the
model is most sensitive to RemoveCausal, which is expected since removing causal agents can change the
correct ground-truth trajectory. Interestingly, models are significantly more robust to RemoveNoncausalEqual
than RemoveNoncausal, which means removing more agents increases model sensitivity. When comparing
RemoveCausal and RemoveNoncausalEqual, which controls for the number of agents removed, we see that
the model is significantly more sensitive to removing causal agents than removing non-causal agents.

Surprisingly, across all perturbation types, including RemoveCausal, the model sees a large portion of examples
where minADE improves: 42.7% of examples show an improvement under the RemoveCausal perturbation,
43.0% for RemoveNoncausal, 49.6% for RemoveNoncausalEqual and 51.0% for RemoveStatic. This finding is
counter-intuitive and motivated us to measure model sensitivity in terms of Abs(∆), defined in Equation 1.
Across all models, the average Abs(∆) is 0.1450 for RemoveCausal, 0.131 for RemoveNoncausal, 0.051 for
RemoveNoncausalEqual, and 0.089 for RemoveStatic. Appendix C reports Abs(∆) for each individual model
and perturbation type.

Comparing models. Focusing on the RemoveNoncausal perturbation, in Table 2, we evaluate each model
architectures and report the original minADE, perturbed minADE, Abs(∆), the standard deviation of Abs(∆),

and Abs(∆)
minADEOri

(see Appendix C for other perturbations.) The SceneTransformer Marginal model shows the
lowest average absolute sensitivity to the perturbation, while the MultiPath++–All model shows the lowest
sensitivity relative to original minADE. In general, Abs(∆) decreases with the original minADE, but there is
no clear relationship between relative Abs(∆) and minADE. Unexpectedly, the marginal SceneTransformer is
more robust than the joint (we hypothesize that jointly modeling agents in the scene causes the model to pay
more attention to non-causal agents and thus lead to relatively bad robustness). In Appendix G, we report
aggregate results for minFDE, overlap rate, miss rate, and mAP.

Slicing the robustness metric. We further slice the robustness of the models (Abs(∆)) along several
dimensions: AV’s current speed, the percentage of removed non-causal agents (the number of removed
non-causal agents divided by the number of all context agents), and the minimum distance from the AV to
removed non-causal agents. The full results are given in Figure 12 in Appendix E. We see that, across all
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Model comparison, RemoveNoncausal, minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
minADEOri

(%)

MultiPath++ 0.376 0.395 0.141 ±0.21 37.5%
SceneTransformer Marginal 0.250 0.265 0.067 ±0.12 26.8%
Wayformer 0.393 0.406 0.101 ±0.16 25.7%
MultiPath++-All 0.900 0.945 0.226 ±0.32 25.1%
SceneTransformer-All Joint 0.493 0.504 0.170 ±0.26 34.5%
SceneTransformer-All Marginal 0.305 0.328 0.081 ±0.14 26.6%

Table 2: Model sensitivity to the RemoveNoncausal perturbation. The SceneTransformer Marginal model
shows the lowest average absolute sensitivity to the perturbation, while the MultiPath++–All model shows the lowest
sensitivity relative to original minADE. Original and Perturbed are the average minADE across the whole dataset.
Abs(∆) is the average per-example absolute difference between perturbed and original minADE.

models, model sensitivity increases when we drop a larger fraction of non-causal agents and when the speed
of the AV is greater. We also see that model sensitivity typically decreases when we drop agents that are
farther away from the AV, though the SceneTransformer models have much noisy robustness measurements
when dropping far away agents.

Visualizing examples. We also visualize some examples with the largest output changes under the
RemoveNoncausal perturbation in Appendix E. The findings are discussed in Section 5.

4.2 Sensitivity via an IoU-based trajectory set metric
To directly measure the magnitude of model output changes with and without perturbation, in this section
we introduce a simple IoU (intersection-over-union) based metric to compare the sensitivity across models to
different perturbations.

The IoU-based metric. The IoU-based trajectory metric is computed as follows: given two predicted
trajectory sets (with and without perturabtion), we first upsample all predicted trajectories (6 of them in
each set) to 100Hz, and then voxelize them into a 2D top down grid with resolution of 0.5 meters. We then
count the number of voxels both sets occupy, divided by the total number of voxels either output set occupies.
To simplify computation, we explicitly ignore the probabilities and speeds of trajectories. This measure
quantifies ”how geometrically different the trajectories look”. An IoU of 1 means the trajectories did not
meaningfully change, and an IoU of 0 means the trajectories do not overlap at all. While more complicated
versions of this metric could be computed (e.g. earth movers distance), we found this metric intuitive and
useful for finding interesting shifts due to perturbation.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Scenes

SceneTransformer Marginal
RemoveCausal (mIoU = 0.75)
RemoveNoncausal (mIoU = 0.72)
RemoveNoncausalEqual (mIoU = 0.91)

(a) Scene Transformer Marginal

0.0 0.2 0.4 0.6 0.8 1.0
Number of Scenes

Pathformer
RemoveCausal (mIoU = 0.74)
RemoveNoncausal (mIoU = 0.78)
RemoveNoncausalEqual (mIoU = 0.91)

(b) Wayformer

0.0 0.2 0.4 0.6 0.8 1.0
Number of Scenes

Multipath++
RemoveCausal (mIoU = 0.69)
RemoveNoncausal (mIoU = 0.65)
RemoveNoncausalEqual (mIoU = 0.86)

(c) Multipath++

Figure 5: Density distribution of the per-scene trajectory set IoU values for AV-only models under perturbations
(RemoveCausal, RemoveNoncausal, and RemoveNoncausalEqual): models are least sensitive to RemoveNoncausalEqual,
and more sensitive to RemoveCausal and RemoveNoncausal.

Results. The results of three AV-only models under perturbations RemoveCausal, RemoveNoncausal and
RemoveNoncausalEqual are shown in Figure 5. We find that models are least sensitive to RemoveNoncausalE-
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qual, and much more sensitive to RemoveCausal and RemoveNoncausal. This is consistent with our finding
in Section 4.1, indicating the model is more sensitive to large perturbations since there are more non-causal
agents than causal ones in most examples.

4.3 Training with data augmentations improves model robustness

We experiment with two types of data augmentation: 1) data augmentations that use a heuristic definition of
non-causal agents, such as randomly dropping any static context agent2, and 2) robustness-targeted data
augmentations that directly drop only non-causal agents using a labeled portion of the val set.

Heuristic data augmentation. The benefit of using a heuristic definition of non-causal agents for data
augmentations is that it can be applied without collecting causal labels. We implement 2 types of heuristic-
based data augmentation in the training set of WOMD: Drop Context (randomly dropping context agents) as
a baseline, and Drop Static Context (randomly dropping static context agents). We use the MultiPath++–All
model and we set the probability of dropping an agent to 0.1 (the best one among 0.1, 0.5, and 0.8). Table
3 summarizes the results for the RemoveNoncausal perturbation (for the per-scene distribution of model
sensitivity, see Appendix K). Models with data augmentation show less sensitivity to the perturbations,
and, in particular, Drop Static Context shows a significant improvement in minADE and Abs(∆) over Drop
Context. We hypothesize that Drop Static Context does better because the static context agents are less
likely to be causal. Overall, the results for Drop Static Context imply that dropping non-causal agents via
data augmentation in training can improve model robustness to such perturbations at test time.

Heuristic Data Augs, RemoveNoncausal, minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
minADEOri

(%)

MP++-All 0.900 0.945 0.226 ±0.32 25.1%
MP++-All Drop Context 0.948 0.988 0.209 ±0.31 22.0%
MP++-All Drop Static Context 0.819 0.837 0.183 ±0.26 22.3%

Table 3: Heuristic data augmentations. We compare the MP++-All baseline model to the same model trained
with either dropping context agents or dropping static context agents, finding that data augmentations that drop
agents that are more likely to be non-causal can improve robustness.

Non-causal data augmentations. Motivated by our results that dropping static context agents improves
model robustness, we further explore using non-causal perturbations as a data augmentation strategy during
training. We randomly sample approximately 70% of the original validation dataset (i.e. 30k scenes), perturb
multiple copies of them via the causal labels, and add the perturbed versions into the training dataset. We
leave the remaining 30% of the validation set as a holdout for evaluation. We then train a baseline model on
the new training dataset as well as a model that randomly drops non-causal agents (when possible) with
probability 0.1. In Table 4, we see that similarly dropping non-causal agents helps improve minADE as well
as model robustness.

Noncausal Augs, RemoveNoncausal, minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
minADEOri

(%)

MP++ Baseline 0.395 0.408 0.150 ±0.226 38.0%
MP++ Drop Non-causal 0.373 0.389 0.138 ±0.194 37.0%

Table 4: Noncausal data augmentation. We fold a portion of the WOMD validation dataset into the original
training dataset and apply data augmentations that drop non-causal agents. On held-out validation data, we find
significant improvements in model robustness across all three Abs(∆) metrics.

2Context agents are agents for which no prediction is required in the WOMD leaderboard.
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4.4 Larger dataset size improves model robustness

We also evaluate model robustness with increasing training data. We randomly select 10%, 20%, 50%, 80% of
the training dataset and train separate models on each split. We sample three datasets for each split and
average the performance and robustness of each model. Appendix D summarizes the results. As we increase
the training data size, the model performance improves (minADE decreases) and both the absolute and
relative robustness improves. Interestingly, previously when varying model architectures, we found that the
model with the lowest minADE did not always have the best relative robustness. Here, we see a strong trend:
for a fixed model architecture, lowering the minADE by increasing the training data results in lower relative
sensitivity.

5 Discussion

We now discuss a few hypotheses and initial supporting evidence for why models are not robust to the
non-causal perturbations. There may be other reasons we have yet to find strong evidence for, but we hope
future work can utilize the labels to explore these ideas further.

Overfitting. One reason models may fail to generalize to the non-causal perturbations is that they overfit to
spurious correlations in the training data (i.e. features that correlate with certain ground truth trajectories
but fail to generalize). In our experiments, we observe that models that overfit on the original training
dataset (as measured by increasing minADE on the original validation dataset) are more sensitive to the
non-causal perturbations (see Fig. 11 in Appendix E). Thus, the more the model overfits to spurious features
like the number of parked cars in a faraway parking lot, the less well it generalizes to examples where these
features are absent. Data augmentation and increasing dataset size may improve robustness by protecting
against overfitting.

Distribution shift. Models may fail to generalize to perturbations that are significantly different from
any data seen during training. In our results, we observe that the more non-causal agents we remove, the
less robust models are. Perhaps certain types of scenes with few agents are relatively rare in the training
dataset and the model does not generalize well to the distribution shift. By evaluating on the perturbations,
we essentially expose the model to rare scenarios not seen in training. One reason that training with data
augmentations via dropping (static) context agents or non-causal agents improves robustness could be that it
exposes the model to similar scenes during training.

Over-reliance on agents instead of roadmap. A third possible reason that models fail to generalize is
that they utilize the non-causal agents to infer the drivable areas instead of using the mapping information in
the input (we serve high-definition maps and traffic control signals as input features for all models). Our
evidence comes from visualizing examples where dropping non-causal agents creates predictions that disobey
the roadgraph rules (see Fig. 10 in Appendix E).

Data-dependent modes. Finally, many of the state of the art models (e.g. [25, 38]) utilize modes (e.g.
straight, left, u-turn, etc.) learned from the data distribution, where the input data influences how the
model will utilize its K predictions to minimize its loss function. While effective at minimizing minADE-like
metrics, these methods provide no coverage guarantees, and can encourage the model to predict multiple
speed profiles for the same mode instead of diverse modes. When we triage examples (see Fig. 9 in Appendix
E), we find some of the largest failures come from agent deletions that influence which modes the model
predicts, demonstrating a weakness of this approach and the metrics they perform well on.

6 Conclusions

We establish a benchmark and metrics for evaluating the robustness of several state-of-the-art models for
trajectory prediction for autonomous driving. We find that most state-of-the-art models (with different model
architectures and coordination systems) show significant levels of sensitivity to perturbations that remove
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non-causal agents, with higher sensitivity when removing a greater number of them. While most examples
show minimal change in minADE (≤ 0.1 m), there is a long tail of examples that can have large changes
(≥ 1m and sometimes up to 8m). Surprisingly, removing either causal or non-causal agents can cause a
significant fraction of examples to improve their minADE. We also find that increasing dataset size and data
augmentation can help improve the model robustness. Overall, our results indicate that current machine
learning models for trajectory prediction may not be reliable enough on their own, and careful thought needs
to be given to how to integrate such models with non-learning components to make a safe system. Finally,
we will publish the causal agent labels as complementary attributes to the WOMD to aid future researchers
in building more robust models.
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**For review purposes, we provide a copy of the causal labels annotations in the supplementary materials.
The causal agent labels are released as a TFRecord of causal labels protos (see the file ‘causal label.proto‘ in
the supplementary material). The proto maps scenario id to labeler id to a list of agent ids identified by that
labeler.
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A Labeling Policy

Below is the exact text given to labelers to define causal agents:

The objective is to identify all agents - cars, cyclists, or pedestrians - that are causal to
the AV at any time. A causal agent is one whose presence would modify or influence
human driver behavior in any way.
Causality is an inherently subjective label. If you are unsure if an agent is causal or
not, please err on the side of including it. In other words, false positives (identifying
an agent as causal when it is truly non-causal) are okay, but we should avoid false
negatives (failing to identify a truly causal agent).
If the behavior of a human driver would be modified because of a potential action that
an agent is likely to take, then that agent should be causal. On the other hand, if the
human driver would drive the same regardless of whether the agent is there or not, the
agent is non-causal.

The labeling policy also included several examples scenarios with causal agents identified such as Figure 6.

Figure 6: Example from the labeling policy. Causal agents are circled in green and a subset of non-causal agents are
circled in red.
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B Labeler Agreement Statistics

Figure 7: Labeler agreement statistics. We plot the distribution of labeler agreement (i.e. number of labelers
who selected a given agent) across all agents in the WOMD validation set. The majority of agents are selected by
more than one labeler.

C Model sensitivity to various perturbation types

In this section, we summarize the robustness metrics across different model architectures for each of the
perturbation types (RemoveCausal, RemoveNoncausal, RemoveNoncausalEqual, RemoveStatic). We report
the model’s original minADE, perturbed minADE, average absolute difference between perturbed and original
minADE computed per-example (Abs(∆)), standard deviation of Abs(∆), and the relative % change (Abs(∆)
divided by the original minADE). Each table below shows the results for a different perturbation dataset.

RemoveCausal minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
Ori (%)

MP++ 0.376 0.425 0.153 ±0.25 40.6%
ST Marginal 0.250 0.272 0.068 ±0.14 27.1%
Wayformer 0.393 0.423 0.122 ±0.20 31.1%
MP++-All 0.900 0.968 0.231 ±0.34 25.7%
ST-All Marginal 0.305 0.341 0.091 ±0.16 29.7%
ST-All Joint 0.493 0.540 0.207 ±0.31 42.0%

Table 5: Model sensitivity for RemoveCausal, minADE.

RemoveNoncausal minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
Ori (%)

MP++ 0.376 0.395 0.141 ±0.21 37.4%
ST Marginal 0.250 0.265 0.067 ±0.12 26.8%
Wayformer 0.393 0.406 0.101 ±0.16 25.7%
MP++-All 0.900 0.945 0.226 ±0.32 25.1%
ST-All Marginal 0.305 0.328 0.081 ±0.14 26.5%
ST-All Joint 0.493 0.504 0.170 ±0.26 34.5%

Table 6: Model sensitivity for RemoveNoncausal, minADE.
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RemoveNoncausalEqual minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
Ori (%)

MP++ 0.376 0.378 0.062 ±0.12 16.4%
ST Marginal 0.250 0.252 0.023 ±0.05 9.3%
Wayformer 0.393 0.395 0.042 ±0.10 10.6%
MP++-All 0.900 0.907 0.103 ±0.20 11.5%
ST-All Marginal 0.305 0.308 0.025 ±0.05 8.2%
ST-All Joint 0.493 0.495 0.051 ±0.11 10.3%

Table 7: Model sensitivity for RemoveNoncausalEqual, minADE.

RemoveStatic minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
Ori (%)

MP++ 0.376 0.387 0.094 ±0.17 25.0%
ST Marginal 0.250 0.249 0.043 ±0.07 17.3%
Wayformer 0.393 0.400 0.054 ±0.12 13.9%
MP++-All 0.900 0.927 0.161 ±0.23 17.9%
ST-All Marginal 0.305 0.291 0.063 ±0.08 20.8%
ST-All Joint 0.493 0.462 0.118 ±0.18 24.0%

Table 8: Model sensitivity for RemoveStatic, minADE.
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To make it easier to compare across perturbation types, we also report the average Abs(Perturbed - Original)
minADE for each model and perturbation type in Table 9.

Abs(Perturbed - Original) minADE

Model R.Causal R.Noncausal R.NoncausalEqual R.Static
MP++ 0.153 0.141 0.062 0.094
ST Marginal 0.068 0.067 0.023 0.043
Wayformer 0.122 0.101 0.042 0.054
MP++-All 0.231 0.226 0.103 0.161
ST-All Marginal 0.091 0.081 0.025 0.063
ST-All Joint 0.207 0.170 0.051 0.118
Average 0.145 0.131 0.051 0.089

Table 9: Abs(Perturbed-Original) across different perturbation types and models. We report the average
absolute difference between the per-example perturbed and original minADE for each model and perturbation type.
The model sensitivity for RemoveCausal and RemoveNoncausal is similar, with RemoveCausal resulting in a slightly
larger average absolute change. However, when we control for the number of agents and compare RemoveCausal
to RemoveNoncausalEqual, we see that the model is significantly more sensitive to removing causal agents than
non-causal agents.
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D Increasing dataset size

Train %, minADE, RemoveNoncausal, ∆ = Ptb - Ori

Train(%) Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
Ori (%)

10% 1.222 1.309 0.448 ±0.69 37.0%
20% 1.039 1.117 0.386 ±0.53 37.2%
50% 0.947 0.996 0.266 ±0.45 28.0%
80% 0.901 0.925 0.236 ±0.32 26.2%
100% 0.900 0.945 0.226 ±0.32 25.1%

Table 10: Increasing training data improves robustness.
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E Example visualization

E.1 Failure (non-robust) cases under non-causal perturbation

We have triaged several top sensitive examples under the RemoveNoncausal perturbation. Among these
examples, we have found three failure patterns: 1) predictions under the perturbation violate traffic rules,
as shown in Figure 8; 2) predictions under the perturbation missed to capture the ground-truth mode, as
shown in Figure 9; and 3) predictions under the perturbation violates the causality, for instance, unnecessary
slows down when the road becomes more empty due to the removal of non-causal agents, such as the bottom
example in Figure 11. Meanwhile, we also have identified examples where the predictions under the non-causal
perturbation becomes better, as shown in Figure 10.MP++

Figure 8: An sensitive example from MP++ under non-causal perturbation: Left side is inference on the original
validation data, and right side is inference on the RemoveNoncausal data, where all non-causal agents are removed
from the scene, but some of predicted outputs weirdly turn right in the middle of a straight road.

E.2 An evidence example for non-robustness due to overfitting

In this section, we show an example scenario that showcases overfitting is one potential reason for poor
robustness. We have trained the MP++ with 1M iterations, which overfitted at 210k iterations. We then
visualize the predictions of a same example with two different checkpoints, one at 210k iteration and another
at 1M. The results are shown in Figure 11. We can see that the robustness of the model under non-causal
perturbation becomes bad when the model over-fits.
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Figure 9: An example from marginal Scene Transformer under non-causal perturbation: Left side is inference on the
original validation data, and right side is inference on the RemoveNoncausal data, where all non-causal agents are
removed from the scene. It shows a scene where the model performed worse under perturbation, entirely missing the
correct mode.
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Figure 10: An sensitive example from marginal Scene Transformer under non-causal perturbation: Left side is inference
on the original validation data, and right side is inference on the RemoveNoncausal data, where all non-causal agents
are removed from the scene. The model outputs under perturbation actually improved by capturing the ground-truth
mode. The original model missed a mode where it should have driven forward, potentially because of a spurious
correlation with the non-causal agent in front of it. After removing that (and other agents), it correctly predicted that
mode. However, there is one mode showing a too wide right turn under the perturbation, which is highly unlikely in
human driving. This might due to the removal of the static agents from the cross traffic confuses the model about the
drivable area.
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MP++

MP++

Figure 11: An example from MP++ indicating over-fitting is one possible reason for poor robustness: Left side is
inference on the original validation data, and right side is inference on the RemoveNoncausal data, where all non-causal
agents are removed from the scene. The top row shows the performance of the model at 210k iteration, while the
bottom row is for that of 1M where we observe over-fitting based on minADE on the validation set. We can see that
at 1M iteration, the top-1 prediction under the non-causal perturbation unnecessarily slows down. Note that in this
plot, we only visualize the top-1 predictions for better visualization. We also only visualize the predictions of the AV
in the bottom row.
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F Slicing results

We further slice the robustness of the models along several dimensions, including the AV’s current speed,
the percentage of removed non-causal agents (the number of removed non-noncausal agents divided by the
number of all context agents) in the scenarios, and the minimum distance from the AV to removed non-causal
agents. Results are given in Figure 12. We found that:

• Along the percentage of removed non-causal agents, we found all models are more sensitive if a larger
fraction of agents are removed. Across them, ST Marginal and Wayformer are the most robust models.
Compared to Wayformer, ST marginal is less sensitive when more than 40% of the context agents are
non-causal and removed from the data (Figure 12 left).

• Along the AV’s speed, ST Marginal is more robust when the AV’s speed is slower than 45mph (Figure
12 top-left). Note that the high fluctuations at high speed (> 45mph) is because we have fewer examples
there (the count of examples in each bin is provided in Appendix).

• Along the minimum distance between the removed non-causal agents to the AV, Wayformer is the most
robust one, particularly when the minimum distance is larger (i.e., all removed non-causal agent are
relatively far away from the AV, Figure 12 right). Such results indicate that Wayformer learns to not
pay too much attention to far-away non-causal agents. On the contrary, we noticed that ST models
tend to be more sensitive to far-away non-causal agents. We hypothesize that this might be because
the global coordination that ST models are used makes it more sensitive to large coordinate values.

Figure 12: We slice the average Abs(Perturbed - Original) minADE along i) ratio of removed non-causal agents to
context agents (left), ii) AV speed (mph) (middle), and iii) minimum distance (m) between the removed non-causal
agents and the AV (right).
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G Aggregate results for alternate metrics

In this section, we report aggregate results for minFDE, overlap rate, miss rate, and mAP on the RemoveNon-
causal perturbation.

minFDE, RemoveNoncausal

Model Name Original Perturbed
MultiPath++ 0.853 0.895
SceneTransformer Marginal 0.487 0.516
Wayformer 0.848 0.885
MultiPath++-All 1.430 1.551
SceneTransformer-All Joint 1.170 1.176
SceneTransformer-All Marginal 0.622 0.674

Table 11: minFDE RemoveNoncausal results.

Overlap Rate, RemoveNoncausal

Model Name Original Perturbed
MultiPath++ 0.188 0.191
SceneTransformer Marginal 0.211 0.210
Wayformer 0.187 0.194
MultiPath++-All 0.167 0.178
SceneTransformer-All Joint 0.191 0.202
SceneTransformer-All Marginal 0.198 0.206

Table 12: Overlap Rate RemoveNoncausal results.

Miss Rate, RemoveNoncausal

Model Name Original Perturbed
MultiPath++ 0.064 0.067
SceneTransformer Marginal 0.059 0.064
Wayformer 0.059 0.063
MultiPath++-All 0.142 0.157
SceneTransformer-All Joint 0.283 0.280
SceneTransformer-All Marginal 0.098 0.111

Table 13: Miss Rate RemoveNoncausal results.

mAP, RemoveNoncausal

Model Name Original Perturbed
MultiPath++ 0.554 0.524
SceneTransformer Marginal 0.475 0.447
Wayformer 0.546 0.539
MultiPath++-All 0.268 0.243
SceneTransformer-All Joint 0.227 0.223
SceneTransformer-All Marginal 0.395 0.367

Table 14: mAP RemoveNoncausal results.
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H Per-example scatter plots

Figure 13: MP++

Figure 14: ST Marginal

Figure 15: Wayformer

Figure 16: MP++–All
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Figure 17: ST–All Marginal

Figure 18: ST–All Joint

I Comparison across models

Figure 19: Models are sensitive to non-causal perturbations. We plot the distribution of the per-scene difference
between perturbed and original minADE for various models and perturbation types. Models that are less sensitive
to the perturbation have a higher example density at 0 difference. All models show sensitivity to the non-causal
perturbations, which can either increase or decrease the perturbed minADE relative to the original minADE. The
models are more sensitive to RemoveNoncausalAgents than RemoveNoncausalAgentsEqual, implying that removing
more non-causal agents increases model sensitivity. Among the models, Wayformer and Scene Transformer Marginal
show the least sensitivity to the perturbation.

J Comparison across perturbation types

Figure 20 shows the sensitivity of the Wayformer AV Only, ST Marginal AV Only, and MultiPath++ All
Agents models to each of the perturbation types. The perturbation can either increase or decrease the minADE.
On average, it increase the minADE but this depends on the pertubation type (RemoveCausalAgents causes
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the strongest increase; see Appendix C). The models are most sensitive to both the RemoveCausalAgents
and RemoveNoncausalAgents perturbations.

The RemoveCausalAgents has the largest effect on the model, producing the most outliers that increase the
difference between the perturbed and original minADE, followed closely by RemoveNoncausalAgents, then
RemoveStaticAgents, and then RemoveNoncausalAgentsEqual. Surprisingly, the sensitivity of RemoveNon-
causalAgents is close to that of RemoveCausalAgents (exact numbers TODO). However, when we change the
number of non-causal agents removed (in RemoveNoncausalAgentsEqual) to be the same as the number of
causal agents removed (in RemoveCausalAgents), the sensitivity is much less.

Figure 20: Models are sensitive to non-causal perturbations. For three models, we plot the distribution of the
per-scene difference between perturbed and original minADE for various perturbation types. The models are least sen-
sitive the RemoveNoncausalAgentsEqual perturbation, and most sensitive (almost equally so) to RemoveCausalAgents
and RemoveNoncausalAgents.

K Data augmentations

Figure 21: Targeted data augmentations can improve model robustness. Dropping static context agents as
opposed to context agents has a greater effect on reducing model sensitivity to non-causal perturbations.
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L Trajectory Set Metrics (continued)

Since ∆(Ptb-Ori) on minADE only quantifies how the perturbations impact the models’ robustness in terms
of the distance between ground-truth and the closest predicted trajectories, it does not directly reflect the
difference between the two predicted trajectory sets (w/ and w/o perturbations). We thus introduce two
trajectory set metrics to capture such difference: an IoU based metric as given in Section 3.4 in the main
context and a trajectory set minADE defined below. Ideally, a model’s predicted trajectory sets would not
be sensitive to dropping non-causal agents, meaning we expect a low difference on the trajectory set metrics.

minADE between trajectory sets (TS minADE). Let p̂ipert,orig represent the i-th predicted trajec-
tory in the predicted trajectory sets w/ and w/o perturbation, respectively. We define TS minADE =
minL2(p̂iorig, p̂

j
pert), i, j = 1, 2, · · · , N where N is the number of the predicted trajectories of the model.

Hence, a smaller TS minADE means that two predicted trajectory sets are more similar.

The results for all the models are given in Table 15. We can see that most of the models are sensitive to the
RemoveNoncausal perturbation. The Wayformer is least sensitive, which is good. However, it is also least
sensitive to RemoveCausal, which indicate that the model is less sensitive to agent removal in general.

Trajectory set minADE for RemoveNoncausal and RemoveCausal

Model RemoveNoncausal RemoveCausal
MultiPath++ 0.037 0.024

SceneTransformer Marginal 0.103 0.094
SceneTransformer Marginal-All 0.140 0.141

SceneTransformer Joint 0.156 0.195
Wayformer 0.0140 0.0164

MP++ All Agents 0.114 0.114

Table 15: The trajectory set minADE for models evaluated on the perturbations of RemoveNoncausal and Remove-
Causal
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