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Abstract— Widely adopted motion forecasting datasets sub-
stitute the observed sensory inputs with higher-level abstrac-
tions such as 3D boxes and polylines. These sparse shapes are
inferred through annotating the original scenes with perception
systems’ predictions. Such intermediate representations tie the
quality of the motion forecasting models to the performance of
computer vision models. Moreover, the human-designed explicit
interfaces between perception and motion forecasting typically
pass only a subset of the semantic information present in the
original sensory input. To study the effect of these modular
approaches, design new paradigms that mitigate these limi-
tations, and accelerate the development of end-to-end motion
forecasting models, we augment the Waymo Open Motion
Dataset (WOMD) with large-scale, high-quality, diverse LiDAR
data for the motion forecasting task.

The new augmented dataset (WOMD-LiDAR)1 consists of
over 100,000 scenes that each spans 20 seconds, consisting
of well-synchronized and calibrated high quality LiDAR point
clouds captured across a range of urban and suburban geogra-
phies. Compared to Waymo Open Dataset (WOD), WOMD-
LiDAR dataset contains 100× more scenes. Furthermore, we
integrate the LiDAR data into the motion forecasting model
training and provide a strong baseline. Experiments show that
the LiDAR data brings improvement in the motion forecasting
task. We hope that WOMD-LiDAR will provide new opportu-
nities for boosting end-to-end motion forecasting models.

I. INTRODUCTION

Motion forecasting plays an important role for planning in
autonomous driving systems and received increasing atten-
tion in the research community [13], [18], [38], [45], [50],
[44]. The prohibitively expensive storage requirements for
publishing raw sensor data for driving scenes limited the
major motion forecasting datasets [17], [47], [9], [26], [49].
They instead release abstract representations, such as 3D
boxes from pre-trained perception models (for objects) and
polylines (for maps), to represent the driving scenes.

The absence of the raw sensor data leads to the fol-
lowing limitations: 1) Motion forecasting relies on lossy
representation of the driving scenes (Fig. 1). The human
designed interfaces lack the specificity required by the mo-
tion forecasting task. For example, the taxonomy of the
agent types in Waymo Open Motion Dataset (WOMD) [17]
is limited to only three types: vehicle, pedestrian, cyclist.
In practice, we interact with agents who might be hard to
fit into this taxonomy such as pedestrians on scooters or
motor cyclists. Moreover, the fidelity of the input features
is quite limited to 3D boxes that hide many important
details such as pedestrian postures and gaze directions. 2)

*This work was done in Waymo LLC
1https://waymo.com/open/data/motion/

(a) Sophisticated interactions with (left) and without LiDAR (right).

(b) Predicted trajectories with (left) and without LiDAR data (right).

Fig. 1: Human-interpretable labels from the perception sys-
tem provide limited information at the scene level and the
object level. In sophisticated scenes with interaction between
multiple objects, raw sensor data provides rich information
and helps improve the motion forecasting performance. Leg-
ends in the figure: Yellow and blue (highlighted) trajectories
are predictions for different agents. Red dotted lines are
agents’ ground truth trajectories.

Coverage of driving scene representation is centered around
where the perception system detects objects. The detection
task becomes a bottleneck of transferring information to
motion forecasting and planning when we are not sure if
an object exist or not, especially in the first moments of an
object surfacing. We hope for more graceful transmission
of information between the systems that is error-robust.
3) Training perception models to match these intermediate
representations might evolve them into overly complicated
systems that get evaluated on subtasks that are not well
correlated with overall system quality.

The goal of this work is to provide a large-scale, diverse
raw sensor dataset for the motion forecasting task. We aim to
augment WOMD [17] with LiDAR data in a similar format
of WOD [42] for the motion forecasting task, with 100×
more scenes than those available in WOD [42]. To the best
of our knowledge, it is the largest publicly available LiDAR
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INTERACTION Woven Planet Shifts Argoverse 2 nuScenes WOMD-LiDAR

Has LiDAR Data ✓ ✓
# Segments - 170k 600k 250k 1k 104k

Segment Duration - 25s 10s 11s 20s 20s
Total Time 16.5h 1118h 1667h 763h 5.5h 574h

Unique Roadways 2km 10km - 2220km - 1750km
Sampling Rate 10Hz 10Hz 5Hz 10Hz 2Hz 10Hz

# Cities 6 1 6 6 2 6
3D Maps ✓ ✓ ✓

Dataset Size† - 22GB 120GB 58GB 48GB 2.29TB*

TABLE I: Comparison of the popular behavior prediction and motion forecasting datasets. We compare our WOMD-LiDAR
with INTERACTION [49], Woven Planet [26], Shifts [33], Argoverse 2 [47], nuScenes [9]. “-” indicates that the data is not
available or not applicable. †The sizes are cited from [47]. *WOMD-LiDAR dataset size is after ∼ 8× compression.

dataset across perception or motion forecasting tasks (Table
I). To overcome the huge data storage problem and make the
dataset user-friendly for academic research, we adopt state-
of-the-art LiDAR compression technology [51]. It reduces
the LiDAR dataset by ∼ 8×, resulting in the final WOMD-
LiDAR data to be around 2.3 TB.

To demonstrate the usefulness of the new LiDAR data,
we propose a novel and simple motion forecasting baseline,
which leverages raw LiDAR data to boost prediction accu-
racy. Instead of jointly training the perception and prediction
networks, which demands huge memory footprint, we take a
two-stage approach: we first apply a perception model [43] to
extract embedding features from LiDAR data. Then, during
training, we feed these embeddings to a motion forecasting
model, WayFormer [35]. We evaluate the model with same
metrics as WOMD [17]. Experiments show that, with LiDAR
data, the WayFormer model has a 2% mAP increase for
Vehicle and Pedestrian prediction respectively. This indicates
that the WOMD-LiDAR brings useful information and can
further improve motion forecasting models’ performance.

The WOMD-LiDAR data has been made publicly avail-
able to the research community, and we hope it will provide
new directions and opportunities in developing end-to-end
motion forecasting models. Additionally, WOMD-LiDAR
opens the door for new research on detection and tracking
with a very large amount of 3D boxes and tracks.

We summarize the contributions of our work as follows:
• We release the largest scale LiDAR dataset for motion

forecasting with high quality raw sensor data across a
wide spectrum of diverse scenes.

• We provide a baseline that boosts the motion forecasting
performance using the raw data, demonstrating the
efficacy of the sensor inputs.

• We design an encoding scheme that utilizes intermediate
perception representations as a feature extraction utility
for motion forecasting models.

II. RELATED WORK

Motion forecasting datasets. There has been an increasing
number of motion forecasting datasets released [17], [26],
[25], [9], [47], [49], [39], [15], [36], [30], [4], [8], [6]. Table I
shows the comparison for several most relevant motion

forecasting datasets which aim at real-world urban driving
environments. The Woven Planet prediction dataset [26]
processed raw data through their perception system with
over 1000 hours of logs for the traffic agents. nuScenes [9]
is an autonomous driving dataset that supports detection,
tracking, prediction and localization. But both of these [26],
[9] did not explicitly collect or upsample diverse, complex
or interactive driving scenarios. Argoverse [14], [47] mined
for vehicles in various scenarios (e.g. intersections, dense
traffic). The INTERACTION dataset [49] collects some
interactive scenarios (e.g., roundabouts, ramp merging). The
Shifts [33] dataset targets vehicle motion prediction and has
the longest duration. However, many of these long-duration
datasets [26], [49], [33] lack LiDAR data, blocking the
exploration of end-to-end motion forecasting. nuPlan [10], an
ego vehicle’s planning dataset, released only a subset of the
LiDAR sequences. Compared with other autonomous driving
perception datasets [42], [9], [19], [3] that provide LiDAR
frames, WOMD-LiDAR is significantly larger in terms of the
total time, number of scenes and object interactions.

Motion forecasting modeling. A popular approach is to
render each input frame as a rasterized top-down image
where each channel represents different scene elements [13],
[16], [29], [23], [12], [50]. Another method is to encode
agent state history using temporal modeling techniques like
RNN [34], [28], [2], [38] or temporal convolution [31]. In
these two methods, relationships between each entity are
aggregated through pooling [50], [48], [2], [21], [29], [34],
soft attention [34], [50] and graph neural networks [11],
[28], [31]. Recently, some work [35], [41] explore the
Transformer [46] encoder-decoder structure for multimodal
motion prediction. We choose WayFormer [35] as our motion
forecasting baseline: it is a state-of-the-art model, which can
flexibly integrate features from our new LiDAR modality.

LiDAR data compression. Releasing the LiDAR data for
our dataset presents a data storage challenge: without LiDAR
compression techniques, the raw sensor data of WOMD-
LiDAR exceeds 20 TB. As valuable as the data is, the size is
inconvenient for fast distribution in the research community.
Fortunately, in recent years, there is a growing interest in the
LiDAR point cloud compression techniques. For example,
one major stream of work, octree-based methods, which



Fig. 2: Visualization of a range image from the top LiDAR
sensor in WOMD-LiDAR. The three rows are showing range,
(normalized) intensity, and (normalized) elongation from the
first LiDAR return (second return omitted due to brevity).
We crop the range images to only show the front 180◦.

represent and compress quantized point clouds [7], [40], has
been released as a point cloud compression standard [20].
More recently, neural network based octrees squeeze meth-
ods have been proposed, such as Octsqueeze [27], MuS-
CLE [5] and VoxelContextNet [37]. Alternatively, LiDAR
point clouds can be stored as range images. A family of
image-based compression methods have been adapted for the
task. For example, traditional methods such as JPEG, PNG
and TIFF have been applied to compressing range images [1],
[24]. Recently, RIDDLE [51] extends such method by apply-
ing a deep neural network and delta encoding to compress
range images. We adopt the delta encoder of RIDDLE [51]
and reduce the raw sensor data by ∼ 8×.

III. DATASET

In this section, we describe the WOMD-LiDAR dataset
statistics, the LiDAR data format, and the compression
technique used to reduce the storage footprint.

A. Dataset Statistics

To evaluate motion forecasting models, we leverage ex-
isting labels gathered from WOMD [17]. We follow the
WOMD dataset format, and extract 9 second scenarios
containing LiDAR data. WOMD-LiDAR is split into a 70%
training, 15% validation, and 15% test set with the same
run segments in WOMD. For training a motion forecasting
model, it is sufficient to only use the past and current times-
tamps’ LiDAR data, while the future timestamps are used as
ground truth to calculate loss and metrics. We only release
the first 1 second LiDAR data for each scene. This helps
reduce the 87.9% size of the raw LiDAR data. However, it
still reaches ∼20TB data storage. We further apply a LiDAR
compression method to reduce its size (Section III-C).
Datasets comparison: Compared with WOD [42], one of
the largest datasets for the perception task, WOMD-LiDAR
contains 100× more scenes, 80× total hours. nuScenes [9] is
currently the only other LiDAR dataset suitable for the mo-
tion forecasting task. WOMD-LiDAR is significantly larger
than nuScenes, with 104k (100×) segments and 574 hours
(100×) of total time (see Table I).

B. LiDAR Data Format

LiDAR data is encoded in WOMD-LiDAR as range im-
ages ∈ Rh×w×6. Following the format of WOD [42], the
first two returns of LiDAR pulse are provided. Range images

are collected from five LiDAR sensors. For top LiDAR,
h = 64, w = 2650. For other sensors, h = 116, w = 150.
Each pixel in the range images includes the following:

• Range (scalar): The distance between the origin of
LiDAR sensor frame and the LiDAR point.

• Intensity (scalar): It is a measurement describing the
return strength of the laser pulse that produces the
LiDAR point, which is partially based on the reflectivity
of the object struck by the laser pulse.

• Elongation (scalar): The elongation of the laser pulse
beyond its normal width.

• Vehicle pose (∈ R3): The pose of the vehicle when the
LiDAR point is captured.

The range image format is necessary to exploit efficient com-
pression schemes to reduce storage requirements (Section
III-C). Fig. 2 shows the different features that constitute the
range images through mono-chromatic images, one for each
feature. We provide a tutorial2 to show how to decompress
range images and convert them into the features above.

C. LiDAR Data Compression

Storing raw sensory data is prohibitively expensive. There-
fore, we apply the delta encoding compressor proposed
in [51]. We use a non-deep-learning version of the algorithm
for fast compression and decompression. This compression is
lossless under a pre-specified quantization precision. There-
fore, we do not expect to impact end-to-end learning.

The basic idea of the algorithm is to use a previous pixel
value in the range image to predict the next valid pixel (the
closest valid one on its right in the spatial domain). Instead
of storing the absolute pixel values, we store the residuals
between the predictions and the original pixel values. Since
the residuals have a more concentrated distribution (espe-
cially on quantized range images) with lower entropy, they
are compressed to a much smaller size with varint coding
followed by zlib compression.

In our implementation, we quantize the range image chan-
nels with the following precision: range 0.005m, intensity
0.01m, elongation 0.01m, pose translation 0.0001m, pose
rotation 0.001 radians. We leverage the default varint
coding from the publicly available Google Protobuf imple-
mentation (for uint and bool fields). We will release our
compression algorithm together with the dataset.

IV. MOTION FORECASTING MODEL WITH LIDAR

To validate the effectiveness of WOMD-LiDAR, we train
a WayFormer [35] model using LiDAR embeddings as a
baseline. We describe the details of the motion forecasting
model and the LiDAR encoder (Fig. 3) in this section.

A. Motion Forecasting Model

We extend the WayFormer [35] model to incorporate raw
LiDAR data. It adopts a transformer based scene encoder
which is flexible to plug in features from various modalities.
The transformer fuses features from agent history states,

2https://bit.ly/tutorial-womd-lidar

https://bit.ly/tutorial-womd-lidar
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Fig. 3: Model structures of LiDAR encoder (left) and motion forecasting model (right). To encode LiDAR data, we adopt a
pre-trained SWFormer [43] model and extract the embedding features (which can be decoded to produce detection results).
Those features (in the light yellow box) from different scales are concatenated and fed to a WayFormer [35] model as a
new modality feature for the motion forecasting task.

traffic light signals, agent interaction states and road graph
features, We add additional LiDAR modality fed to the scene
encoder. The features of LiDAR modality are generated
from a SWFormer [43] extractor and a LiDAR encoder.
During the training, we freeze the gradients of the SWFormer
feature extractor and update only the LiDAR encoder’s
model parameters. After applying the scene encoder to fuse
multi-modal features, the output embeddings are fed to the
trajectory decoder to produce the final predicted trajectories.

B. LiDAR Encoding Scheme

We adopt a pre-trained SWFormer [43] to extract LiDAR
embeddings. The SWFormer is trained on WOD [42] for
the 3D object detection task. The SWFormer adopts sparse
partition operators and transformer based layers to encode
LiDAR data from different scales. We extract the embedding
features which are used to produce detection results in
the detection heads as the input to the scene encoder of
WayFormer model. These features effectively encode rich
information of objects and context environment from noisy
LiDAR points. To provide context agent information, we
lower the detection confidence threshold to produce more
but less reliable detected objects. This increases the recall of
the detection results but decreases the precision. In addition
to the embedding features, we also pad more features:

• Detected box coordinates: We append the detected
boxes center coordinates to emphasize the potential
detected objects positions.

• Detected box size: The height, width, length of the
boxes provide hints of objects from different categories.

• Foreground probability from the segmentation head:
This helps reduce the noise from detection results.

The output tensor E from SWFormer with padded features
is a N × T × C tensor, where N is the number of detected
boxes, T is the number of input frames, C is the feature
size. To adapt E to be compatible as input for the scene
encoder of WayFormer, we flatten the first two dimensions
as the token dimension. A one-layer Axial Transformer [22]
is applied as a LiDAR encoder to project the output tensor
E to be a fixed M -token tensor E′ ∈ RM×C′

with the same
feature size as other modalities.

V. EXPERIMENTS

A. Experiment Setup

LiDAR Feature Extractor. We train the SWFormer [43]
on WOD [42] as the LiDAR feature extractor. We set batch
size as 4, training 80,000 steps on 64 V3 TPUs. The IOU
thresholds for vehicles and pedestrians are 0.7 and 0.5
respectively. In the original SWFormer inference stage, the
boxes are filtered if the predicted confidence is less than
0.5. To extract feature embeddings, we need more context
information and high recall of the detection results. Thus, we
lower the box confidence threshold τ to be 0.1 (see ablation
study in Section V-D). The extracted embeddings are 128D
vectors. With box coordinates (x, y, z), box size (width,
length, height) and foreground probability, the final LiDAR
features are 135D vectors (C = 135) fed to the scene encoder
of the WayFormer [35]. We set the maximum number of
detected boxes in each frame as 140 (N ≤ 140). If there
are more than 140 detected objects, we discard the detected
objects with low box confidence scores. We set the number
of output tokens of the LiDAR encoder as M = 10 before
sending the embeddings to the scene encoder.
Motion Forecasting Model. We use a batch size of 16 and
train the WayFormer model with 1.2M steps on 16 V3 TPUs.
We project all modalities to the same feature size of 256D
(C ′ = 256), then utilize cross-attention with latent queries to
reduce the number of tokens to 192. The scene encoder has
2 transformer layers. WayFormer encodes the history states
of 1 second (10 steps at 10Hz) and predicts K=6 trajectories
for each agent’s future 8 seconds.

B. Metrics

Given an input sample, a motion forecasting model pre-
dicts K trajectories for N agents in the scene for the future T
steps xk = {xi,t}i=1:N,t=1:T . We denote the corresponding
ground truth trajectories as y = {yi,t}i=1:N,t=1:T . We inherit
the WOMD motion forecasting challenge metrics [17].
minADE. The minimum Average Displacement Error calcu-
lates the ℓ2 distance between the predicted trajectory which
is closest to the ground truth across all time steps:

minADE = min
k

1

NT

∑
i

∑
t

||xk
i,t − yi,t||2 (1)



Set Model Vehicle Pedestrian Cyclist
minADE ↓ MR ↓ mAP ↑ minADE ↓ MR ↓ mAP ↑ minADE ↓ MR ↓ mAP ↑

LSTM [17] 1.34 0.25 0.23 0.63 0.13 0.23 1.26 0.29 0.21

Standard
Validation Wayformer [35] 1.10 0.18 0.35 0.54 0.11 0.35 1.08 0.22 0.29

Wayformer
+ LiDAR 1.09 0.17 0.37 0.54 0.10 0.37 1.06 0.21 0.28

TABLE II: Marginal metrics on the standard validation set. All metrics computed at 8s. We compare baseline
WayFormer [35] and WayFormer trained with LiDAR data on the WOMD-LiDAR standard motion forecasting track.

Miss Rate (MR). MR measures whether the closest pre-
dicted trajectory mink x

k
i,t matches the ground truth yi,t. The

MR at time step t is calculated as:

MRt = min
k

∨i¬IsMatch(xk
i,t,yi,t) (2)

More details of the function IsMatch implementation can
be found in the WOMD dataset [17].
Mean Average Precision (mAP). mAP is similar to the
one for object detection task [32]. It computes precision-
recall curve’s integral area by varying confidence threshold
for the predicted trajectories. The criteria of judging whether
a trajectory is a true positive, false positive, etc. is consistent
with the MR definition in Eq. 2. For each object, only the
trajectory with the highest confidence is used to calculate the
mAP for the corresponding true positive.

C. Baseline Model Performance

We evaluate our baseline model on the WOMD-LiDAR
validation set. The results are shown in Table II. With LiDAR
features, our model performs better than WayFormer for
vehicle, pedestrians and cyclists on the Missing Rate (MR)
metric, with 0.01 decrease in each category respectively.
This indicates LiDAR information provides location hints
for WayFormer. For minADE metrics, the results are roughly
the same. WayFormer with LiDAR inputs also achieves 2%
increase in mAP for vehicle and pedestrian categories. This is
because LiDAR features provide more information about the
object locations, shapes and interactions with other objects.
They help the WayFormer model understand the scene and
predict more accurate trajectories. For cyclists, there is a
minor regression in mAP. It is likely due to the fact that the
LiDAR points are noisy in this category and we may need a
better encoding method to extract useful information.

D. Ablation Study

In the following experiments, we report the average mi-
nADE, MR and mAP across vehicle, pedestrian and cyclist
categories at 3s, 5s and 8s on the validation set.
Threshold of SWFormer to extract embeddings. As de-
scribed in Sec. V-A, we lower the SWFormer threshold τ to
get high recall of detected boxes so that we could get more
context information in the scene. We sweep the threshold of
SWFormer from 0.0 to 0.5 (default value of SWFormer), and

Threshold τ minADE ↓ MR ↓ mAP ↑
0.0 0.5692 0.1401 0.4005
0.1 0.5553 0.1292 0.4191
0.3 0.5623 0.1399 0.4102
0.5 0.5675 0.1410 0.4087

TABLE III: Experiment results of sweeping SWFormer
threshold τ to extract embeddings. The metrics are eval-
uated on WOMD-LiDAR validation set, averaged across
categories, and over results at 3s, 5s, and 8s.

Model minADE ↓ MR ↓ mAP ↑
No boxes coordinates 0.5852 0.1594 0.3947

No boxes sizes 0.5773 0.1476 0.4008
No foreground prob. 0.5601 0.1331 0.4110

Wayformer with LiDAR 0.5553 0.1292 0.4191

TABLE IV: Experiment results of masking out additional
features in LiDAR encoding (Sec. IV-B). The metrics are
evaluated on WOMD-LiDAR validation set, averaged across
categories, and over results at 3s, 5s, and 8s.

generate different training datasets extracted from WOMD-
LiDAR and evaluate the corresponding performance of the
baseline model. When the threshold τ is lower, the number of
predicted boxes from SWFormer becomes larger. This brings
more context information for motion forecasting model while
it also brings more noise in the inputs. As shown in Table III,
the WayFormer’s performance is not so sensitive to τ . When
τ = 0.1, the WayFormer with LiDAR inputs achieves the
best performance. When τ further increases, the number of
detected boxes becomes smaller and may result in loss of
useful information.

Different embedding features. There are three additional
features (Sec. IV-B) included in the embedding output from
the LiDAR encoder: detected box coordinates, size and
foreground probability. We mask out each feature and check
the WayFormer model performance in Table IV. The experi-
ments show that without box coordinates, the minADE, MR,
mAP regress by 0.0299, 0.0302, 0.0244 respectively. This
indicates that aside from the SWFormer embedding features,
the box coordinates play an important role in motion fore-
casting . Compared to masking out box coordinates, masking
out box sizes has a smaller regression, with minADE, MR
increased by 0.022 and 0.0184 and mAP decreased by



(a) (b)

Fig. 4: Visualization of prediction result comparison between WayFormer [35] (sub-figures on the left) and WayFormer with
LiDAR inputs (sub-figures on the right). Fig (a): With LiDAR information the predicted trajectories avoid crashing into
parked cars. Fig (b): The predicted trajectories of cyclists avoid crashing into cars. Legends in the figure: Yellow and blue
trajectories are predictions for different agents, while blue trajectories are highlighted ones. Red dotted lines are labeled
ground truth trajectories for agents in the scene.

# tokens of embeddings minADE ↓ MR ↓ mAP ↑
16 0.6011 0.1702 0.3811
32 0.5888 0.1610 0.3907
64 0.5797 0.1503 0.3998
192 0.5553 0.1292 0.4191

# layers of transformer minADE ↓ MR ↓ mAP ↑
1 0.5711 0.1440 0.3991
2 0.5553 0.1292 0.4191
3 0.5561 0.1325 0.4112

TABLE V: Experiment results of scene encoder’s #tokens
and #transformer layers. The metrics are evaluated on
WOMD-LiDAR validation set, averaged across categories,
and over results at 3s, 5s, and 8s.

0.0183. Foreground probability also contributes slightly to
the overall performance, with regression in the minADE,
MR, mAP as 0.0048, 0.0039, 0.0081 respectively.

WayFormer modeling. We study the WayFormer hyper-
parameters in motion forecasting. Specifically, we conduct
experiments to investigate the impact of number of tokens
and layers of the scene encoder. This is because the scene
encoder provides encoded embeddings for the trajectory
decoder in the prediction stage. The embedding quality plays
an important role for the motion forecasting task. As shown
in Table V, the number of embedding tokens impacts quality
more than the number of scene encoder transformer layers.
When we increase the token size from 16 to 192 (the default
WayFormer setting), the minADE and MR decrease from
0.6011 to 0.5553 and 0.1702 to 0.1292, respectively, and
mAP increases from 0.3811 to 0.4191. This indicates that
when the token size increases, more information will be
encoded in the embeddings for motion prediction.

We also vary the number of transformer blocks from 1
to 3 (Table V). The performance of WayFormer model first
improves (# layers increases from 1 to 2) and then regresses
(# layers increases from 2 to 3). Thus, we set the optimal
value of # layers of the scene encoder as 2.

E. Qualitative Results

We visualize the WayFormer prediction results on
WOMD-LiDAR to check the quality motion forecasting.
Please check the supplementary video for more visual-
ization results.
Visualization of WayFormer prediction results. We visu-
alize some prediction results and conduct analysis on the
prediction quality. As shown in Fig. 4, with LiDAR inputs,
WayFormer model avoids collision into vehicles, pedestrians
and cyclists. Specifically, in Fig 4(a), with LiDAR infor-
mation, the predicted trajectories avoid crashing into parked
cars. In Fig 4(b), the predicted trajectories of cyclists avoid
crashing into cars. We observe more reasonable predicted
trajectories, matching the improved performance in Table II.

VI. CONCLUSION AND FUTURE DIRECTIONS

Conclusion. In this work, we augment WOMD with the
largest scale LiDAR dataset in the community, containing
LiDAR point clouds for more than 100,000 scenes. To re-
solve the huge data storage requirements, we adopt state-of-
the-art LiDAR data compression technology and successfully
reduce the dataset size to be less than 2.5 TB. To evaluate
the suitability of LiDAR to the motion forecasting task,
we provide a WayFormer baseline trained with LiDAR.
Experiments show that LiDAR data brings improvement in
the motion forecasting task.

Limitations and future work. 1) In this work, we only
trained WayFormer and WayFormer + LiDAR models. We
will investigate end-to-end models that can directly encode
LiDAR point clouds with motion forecasting task in mind.
2) The SWFormer detector, which serves as the point cloud
encoder in our model, can only represents object-level infor-
mation. We will look into some approaches that can leverage
scene-level information, that are not sensitive to the detection
prediction thresholds. 3) Another interesting direction is to
explore methods that solely depends on the sensor data to
avoid the dependency on human-defined object interface.
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APPENDIX

VII. SUPPLEMENTARY DATASET DETAILS

Dataset comparison. We provide more details of the dataset
comparison in Table VI. In Table I of the main paper,
“Sampling Rate” is the data collection rate in Hz. “3D Maps”
indicates whether the dataset provided the 3D Map infor-
mation. “Dataset Size” entries were collected by Argoverse
2 [47]. Combining Table VI and Table I of the main paper,
we provide the complete comparison between our WOMD-
LiDAR and other datasets.
Supplementary Details of WOMD-LiDAR. Map data is
encoded as a set of polylines and polygons created from
curves sampled at a resolution of 0.5 meters following [17],
[18]. Traffic signal states is also provided along with other
static map feature types (e.g., lane boundary lines, road edges
and stop signs). We followed [17] to mine the interesting
scenarios in our WOMD-LiDAR.

VIII. VISUALIZATION

Scenario Videos with LiDAR. In Fig. 5, we provide more
visualization of scenarios with not only the bounding boxes
of the agents of interest, but also the released high quality
well calibrated LiDAR data.

We provide some simulated scenes with both LiDAR
and labeled boxes on WOMD-LiDAR. They are formulated
as mov files in the supplementary materials. Each video
clip contains 11 frames in slow motion, with LiDAR data
visualized with the boxes of agents. This is because we only
release the first 11 frames’ LiDAR data in WOMD-LiDAR.
WayFormer + LiDAR prediction visualization. We provide
more visualization results in Fig. 6. From the visualization
results, our WayFormer [35] + LiDAR model tries to avoid
collision into other agents (vehicles, pedestrians and cyclists)
in the motion forecasting task. This is consistent with the
improved performance in Table II.

IX. EXPERIMENTS

Ablation Study of LiDAR Encoder. We provide the ablation
study of LiDAR Encoder described in Section 4.2 in the
submission. Specifically, we study the number of output
tokens M and the number of transformer layers. Experiment
results are shown in the Table VII.

From the Table VII, we find when M increases, the
final performance of WayFormer first increases and then
decreases. We set the optimal value of M as 10 in our
experiments. On the other side, LiDAR encoder is not so
sensitive to the number of transformer layers. There is a
slight regression when the number of layers increases. To
achieve best performance and fast training speed, we set the
number of layers as 1 in our experiments.



Fig. 5: Scenario visualizations with LiDAR. Better viewed in color and zoom in for more details.

INTERACTION Woven Planet Shifts Argoverse 2 nuScenes WOMD-LiDAR

Offboard Perception ✓ ✓
Mined for Interestingness - - - ✓ - ✓

Traffic Signal States ✓ ✓ ✓

TABLE VI: Comparison of the popular behavior prediction and motion forecasting datasets. “-” indicates that the data is not
available or not applicable. “Offboard perception” is checked if the labels were auto-labeled by offboard perception which
can generate high-quality labels. “Mined for Interestingness” is checked if the dataset mined interesting interactions after
the data collection. “Traffic Signal States” is checked if the dataset provided traffic light states.

# output tokens (M ) minADE ↓ MR ↓ mAP ↑ # layers minADE ↓ MR ↓ mAP ↑
5 0.5700 0.1501 0.3999 1 0.5553 0.1292 0.4191

10 0.5553 0.1292 0.4191 2 0.5613 0.1392 0.3998
20 0.5594 0.1313 0.4102 3 0.5610 0.1398 0.4001

TABLE VII: Experiment results of the number of output tokens M and the number of transformer layers in the LiDAR
encoder. The metrics are evaluated on WOMD-LiDAR validation set, averaged across categories, and over results at 3s, 5s,
and 8s.
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Fig. 6: Visualization of prediction result comparison between WayFormer [35] (sub-figures on the left) and WayFormer with
LiDAR inputs (sub-figures on the right). Legends in the figure: Yellow and blue trajectories are predictions for different
agents, while blue trajectories are highlighted ones. Red dotted lines are labeled ground truth trajectories for agents in the
scene. More visualization results are available in the supplementary material. Better viewed in color and zoom in for more
details.


