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Abstract

Many existing motion prediction approaches rely on sym-
bolic perception outputs to generate agent trajectories, such
as bounding boxes, road graph information and traffic
lights. This symbolic representation is a high-level abstrac-
tion of the real world, which may render the motion predic-
tion model vulnerable to perception errors (e.g., failures in
detecting open-vocabulary obstacles) while missing salient
information from the scene context (e.g., poor road condi-
tions). An alternative paradigm is end-to-end learning from
raw sensors. However, this approach suffers from the lack
of interpretability and requires significantly more training
resources. In this work, we propose tokenizing the visual
world into a compact set of scene elements and then lever-
aging pre-trained image foundation models and LiDAR neu-
ral networks to encode all the scene elements in an open-
vocabulary manner. The image foundation model enables
our scene tokens to encode the general knowledge of the
open world while the LiDAR neural network encodes ge-
ometry information. Our proposed representation can effi-
ciently encode the multi-frame multi-modality observations
with a few hundred tokens and is compatible with most
transformer-based architectures. To evaluate our method,
we have augmented Waymo Open Motion Dataset with cam-
era embeddings. Experiments over Waymo Open Motion
Dataset show that our approach leads to significant perfor-
mance improvements over the state-of-the-art.

1. Introduction

In order to safely and effectively operate in complex envi-
ronments, autonomous systems must model the behavior of
nearby agents. These motion prediction models now often
rely on symbolic perception outputs such as 3D bounding
box tracks to represent agent states, rather than directly pro-
cessing sensor inputs. These representations reduce input
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Figure 1. Overview of the proposed motion prediction paradigm.
It fuses symbolic perception output and our multi-modality scene
tokens. While symbolic representation offers a convenient world
abstraction, the multi-modality scene tokens links behavior models
directly to sensor observations via token embeddings.

dimensionality, facilitating computationally efficient model
training. Additionally, since inputs such as 3D boxes are
easily rearranged and manipulated, it is possible to con-
struct many hypothetical scenarios leading to efficient sim-
ulation and testing. Yet in order to continue improving the
accuracy and robustness of behavior models, it may be nec-
essary to feed the models higher-fidelity sensor features.
For instance, pedestrian pose and gaze offer richer cues
than mere bounding boxes for motion prediction. Moreover,
many scene elements like lane markings cannot be well rep-
resented by boxes. Furthermore, scene context (e.g., road
surface conditions, hazardous locations) is difficult to char-
acterize with symbolic representations. Manually crafting
representation for diverse concepts demands considerable
engineering effort in implementation, training, and evalua-
tion. Instead, we want the behavior model to directly access
the raw sensor data and determine what and how to encode.

Deep learning models’ performance generally improves
when we replace hand-crafted features, designed to encode
inductive bias according to expert domain knowledge, with
the directly observed feature as long we scale compute and
data accordingly. But learning to predict complex patterns
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such as agent behavior directly from very high-dimensional
sensor inputs (e.g. many high-resolution LiDAR and cam-
era sensors all operating at high frequency) is an extremely
challenging learning problem. It requires learning to orga-
nize many hundreds of thousands of points and pixels across
time into meaningful representations. Moreover, the inter-
mediate representations of fully end-to-end systems are far
more difficult to validate and inspect.

Rather than choosing strictly between the two ap-
proaches, we instead propose combining existing symbolic
representations with learned tokens encoding scene infor-
mation. We first decompose the scene into a compact set of
disjoint elements representing ground regions, perception-
detected agents and open-set objects, based on ground plane
fitting and connected component analysis. We then leverage
large pre-trained 2D image models and 3D point cloud mod-
els to encode these scene elements into “tokens”. The 2D
image models are trained on Internet-scale data, and show
impressive capabilities in understanding the open visual
world. These tokens encapsulate relevant information for
reasoning about the environment, such as object semantics,
object geometry as well as the scene context. We compactly
represent multi-modality information about ground, agents
and open-set objects into a few hundred tokens, which we
later feed to Wayformer-like network [48] alongside tokens
encoding agent position and velocity, road graph, and traffic
signals. All tokens are processed via a linear projection into
same dimension and self-attention layers.

To evaluate our method, we introduce camera embed-
dings to the Waymo Open Motion Dataset (WOMD) [16].
With LiDAR points [10] and camera embeddings, WOMD
has become a large-scale multi-modal dataset for motion
prediction. On the WOMD, our model, which combines
learned and symbolic scene tokens, brings 6.6% relative im-
provement on soft mAP or 10.3% relative improvement on
minADE. While we obtain the strongest results with the re-
cently released image backbone from [36], other pre-trained
image models [51, 55] also yield considerable gains. We
further analyze the performance of our trajectory prediction
model under challenging scenarios. Notably, we discover
that even in the presence of imperfect symbolic perception
outputs and incomplete road graph information, our model
maintains exceptional robustness and accuracy.

Our contributions are three-fold:
• We have augmented WOMD into a large-scale multi-

modal dataset to support research in end-to-end learning.
Camera embeddings are released to the community.

• We have conducted a thorough study of modeling ideas
of varying complexity to demonstrate the value of those
sensory inputs in motion prediction.

• We have proposed a novel method MoST, which effec-
tively leverages the multi-modality data and leads to sig-
nificant performance improvement.

2. Related Works

Motion Prediction for Autonomous Driving The in-
creasing interest in autonomous driving has led to a sig-
nificant focus on motion prediction [8, 22, 48, 59, 60, 65].
Early methods [1, 4, 6, 7, 13, 20, 27, 47, 52] rasterize the
input scene into a 2D image, followed by processing us-
ing convolutional neural networks (CNNs). However, as
a result of the inherent lossiness in the rasterization pro-
cess, contemporary research has shifted its focus towards
representing road elements, such as object bounding boxes,
road graphs, and traffic light signals, as discrete graph
nodes [19]. These elements are then directly processed us-
ing graph neural networks (GNNs) [5, 21, 35, 39]. Another
stream of research also employs this discrete set representa-
tion for scene elements but processes them using recurrent
neural networks [2, 25, 47, 58, 63, 65], rather than GNNs.
Thanks to the rapid advancement of transformer-based ar-
chitectures in natural language processing and computer vi-
sion, the latest state-of-the-art motion predictors also ex-
tensively incorporate the attention mechanism [32, 48, 49,
59, 60]. More recently, the community has also started to
study interactive behavior prediction, which jointly models
the future motion of multiple objects [45, 61, 62, 64].

End-to-end Autonomous Driving The concept of end-
to-end learning-based autonomous driving systems started
in the late 1980s [53]. Since then, researchers have de-
veloped differentiable modules that connect perception and
behavior [14, 18, 23, 28, 40, 44, 73], behavior and plan-
ning [24, 34, 41, 56, 61], or span from perception to plan-
ning [6, 29, 57, 71]. Building on the inspiration from
[38, 72], Hu et al. introduced UniAD [30], which lever-
ages transformer queries and a shared BEV feature map to
facilitate end-to-end learning of perception, prediction, and
planning [11, 31, 33]. More recently, there has been a grow-
ing interest in achieving end-to-end motion planning using
large language models (LLMs) [46, 67, 69].

Challenges of Existing Methods While substantial ad-
vancements have been achieved in standard motion pre-
diction benchmarks [3, 9, 10, 17, 68], the deployment of
existing behavior models in real-world scenarios remains
challenging. Many motion prediction models heavily rely
on pre-processed, symbolic data from perception mod-
els [19, 54, 74, 75], and therefore are vulnerable to poten-
tial failures. Moreover, the manually-engineered interface
greatly restrict the flexibility and scalability of the models
in handling long-tail and novel categories of objects. In con-
trast, end-to-end learning [11, 26, 30, 31, 33] from raw sen-
sors, while overcoming some limitations, encounters chal-
lenges in interpretability and scaling up batch size due to
computational constraints.
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Figure 2. Overview of the proposed Multi-modality Scene Tokenization. Our method takes as input multi-view camera images and a full
scene point cloud. We leverage a pre-trained image foundation model to obtain descriptive feature maps and decompose the scene into
disjoint elements via clustering. Based on the sensor calibration information between camera and LiDAR, we obtain point-wise image
features. From scene decomposition, we assign each point with a token/cluster id and derive box information for each element. Finally, we
extract one feature embedding for each scene element.

3. Multi-modality Scene Tokenization
We propose a novel method, MoST (Multi-modality Scene
Tokenization), to enrich the information fed to Transformer-
based motion prediction models, by efficiently combining
existing symbolic representations with scene tokens that en-
code multi-modality sensor information. In this section,
we focus on how we obtain these scene tokens, each rep-
resented by a scene element feature enriched with semantic
and geometric knowledge extracted from both image and
LiDAR data. Figure 2 shows an overview of MoST.

3.1. Image Encoding and Point-Pixel Association

We start by extracting image feature maps for each cam-
era and subsequently associating these features to the cor-
responding 3D LiDAR points using sensor calibration in-
formation. At each time step, we have a set of images
{Ik ∈ RHk×Wk×3}k captured by a total number of K cam-
eras, where Hk and Wk represent the image dimensions.
Additionally, we have a LiDAR point cloud Pxyz ∈ RNpts×3,
with Npts denoting the number of points. Using a pre-
trained 2D image encoder Eimg, we obtain a feature map
of each image, denoted as {Vk ∈ RH′

k×W ′
k×D}k. Sub-

sequently, we leverage camera and LiDAR calibrations to
establish a mapping between 3D LiDAR points and their
corresponding 2D coordinates on the image feature map of
size H ′

k×W ′
k. This mapping associates each 3D point with

the corresponding image feature vector. As a result, we ob-
tain image features for all Npts 3D points, represented as
Fpts ∈ RNpts×D. Note that for points projecting outside of
any image plane, we set their image features as zeros and
mark their image features as invalid.

To harness a wider range of knowledge, we utilize large

pre-trained image models trained on a diverse collections
of datasets and tasks, capturing a richer understanding of
the real world. We experiment with several image encoder
candidates: SAM ViT-H [36], VQ-GAN [15], CLIP [55]
and DINO v2 [51]. Different from others, VQ-GAN uses
a codebook to build the feature map. To derive Vk from
VQ-GAN, we bottom-crop and partition each input image
into multiple 256×256 patches. Subsequently, we extract
256 tokens from each patch and convert them into a 16×16
feature map through querying the codebook. Finally, these
partial feature maps are stacked together according to their
original spatial locations to produce Vk.

3.2. Scene Decomposition

Next, our approach groups full scene LiDAR point cloud
into three element types: ground, agents, and open-set
objects (see illustration in Figure 3). We use the term
“scene element” to denote the union of these three ele-
ment types. We denote the number of elements of each
type to be N gnd

elem, N
agent
elem , N open-set

elem respectively, and we de-
fine Nelem = N gnd

elem +N agent
elem +N open-set

elem as the total number
of scene elements.

• Ground elements: These are segmented blocks of the
ground surface, obtained through either a dedicated
ground point segmentation model or a simple RANSAC
algorithm. Since the ground occupies a large area, we
divide it into disjoint 10m× 10m tiles, following [42].

• Agent elements: These correspond to the points within
the bounding boxes of agents, detected by established per-
ception pipelines for a pre-defined set of categories.

• Open-set object elements: These capture the remaining
objects not included in the agent categories. Examples
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Figure 3. Visualization of scene decomposition. We decompose a
scene into agent elements, open-set elements and ground elements.
We also visualize the perception bounding boxes for agents.

include novel categories of traffic participants and obsta-
cles beyond the training data, long-tail instances that a
perception model suppresses due to low confidence. We
extract these elements by first removing ground and agent
elements from the scene point cloud and then using con-
nected component analysis to group points into instances.

Per-point Token ID Based on scene decomposition of
each LiDAR frame, we can assign a unique token id to each
LiDAR point. Points within the same scene element share
one token id. With the point-pixel association, we can scat-
ter each scene token ID to a set of camera pixels and/or
locations on image feature maps. As a result, we can ob-
tain features from both LiDAR and camera for each scene
element. Based on point-wise token id, we can pool per-
point image features into three sets of cluster-wise embed-
ding vectors, i.e., Fgnd

img ∈ RN gnd
elm ×D, Fagent

img ∈ RN agent
elm ×D,

Fopen-set
img ∈ RN open-set

elm ×D.

Scene Element Boxes We propose to encode each scene
element with a combination of image features, coarse-
grained geometry features, and fine-grained geometry fea-
tures. Here we describe how we construct scene element
boxes B to represent coarse-grained geometry. For agent
elements, coarse-grained geometry feature are derived from
perception pipelines, capturing information of agent posi-
tions, sizes, and heading. For open-set object elements,
we compute the tightest bounding boxes covering the point
cluster, and these bounding boxes are also represented by
box centers, box sizes and headings. For ground elements,
we have divided the ground into fixed size tiles and sim-
ply use the tile center coordinates as position information.
These box representations will be further encoded with a
MLP and combined with image features and fine-grained
features. We will dive into this combination in Sec 3.3.

3.3. Scene Element Feature Extraction

We finally extract scene element features with a neural net-
work module. Multi-frame information are first compressed
in an efficient way, then fed into this feature extraction mod-
ule, which generate a single feature vector for each scene el-
ement. The feature extraction module is connected with the
downstream Transformer-based motion prediction models,
formulating an end-to-end trainable paradigm.

3.3.1 Efficient Multi-frame Data Representation

While we’ve compiled valuable information for each ele-
ment within a single-frame scene – LiDAR points, per-point
image features, and a bounding box – collecting this data
across multiple frames leads to a large increase in memory
usage. Considering that self-attention layers have quadratic
complexity with respect to the number of tokens, naively
concatenating tokens across all history frames will also lead
to significantly increased memory usage. We propose an ef-
ficient data representation to reduce the amount of data sent
to the model with the following three ingredients.
Open-set element tracking We compress the representa-
tion of open-set elements by associating open-set elements
across frames using a simple Kalman Filter. For each
open-set element, we only store its box information for
all T frames with a tensor of shape (N open-set

elem × T × 7)
and we apply average pooling across T frames of its im-
age features resulting in an image feature tensor of shape
(N open-set

elem × 1×D).
Ground-element aggregation Instead of decomposing the
ground into tiles for each frame, we apply decomposition
after combining the ground points from all frames.
Cross-frame LiDAR downsampling Directly storing Li-
DAR points for all frames is computationally prohibitive.
Simply downsampling LiDAR points in each frame still suf-
fers from high redundancy over static parts of the scene.
Therefore, we employ different downsampling schemes
for ground elements (which are always static), and open-
set/agent elements (which could be dynamic). For ground
elements, we first merge the ground points across all frames
then uniformly subsample to a fixed number N gnd

pts . For
open-set/agent elements, we subsample them to the fixed
number N open-set

pts and N agent
pts respectively. The final LiDAR

points Npts = N gnd
pts + N agent

pts + N open-set
pts . We also create a

tensor Pind ∈ RNpts×2 that stores the frame id and scene-
element id for each point. Note that in this representation,
the number of points from each frame is a variable, which is
more efficient compared to storing a fixed number of points
for all frames with padding.

3.3.2 Network Architecture

With the efficient multi-frame data representation, the in-
puts to the scene element feature extraction module are
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Figure 4. Scene element feature extraction. Scene-element fea-
ture is derived from a spatial-temporal module that fusing together
image feature, geometry feature and temporal embedding. Image
feature contains pooled feature from large pre-trained image en-
coder, and characterize the appearance and semantic attribute of
the scene element. Geometry feature, on the other hand, character-
izes the spatial location as well as the detailed geometry. Temporal
information is injected through a learned temporal embedding.

summarized as following:
• Fpts ∈ RNpts×D, point-wise image embeddings derived

for all the LiDAR points across T frames.
• B ∈ RNelem×T×7, bounding boxes of different scene el-

ements across time, where Nelem = N gnd
elem + N agent

elem +

N open-set
elm . For ground elements, we only encode the tile

center, leaving the rest four attributes as zeros.
• P = {Pxyz,Pind}, where Pxyz ∈ RNpts×3 collects multi-

frame LiDAR points, and Pind ∈ RNpts×2 stores frame id
and token id for each point respectively.
For each tracked element across T time steps, our net-

work (as shown in Figure 4) will process the previously
listed multi-modality information into one embedding for
each scene element, denoted as Felem.

As shown in the top branch of Figure 4, the network
leverages Pind to group point-wise image embeddings Fpts
according to the token id and frame id, which results in the
image feature tensor for all scene elements across frames,
Fimg. In the bottom branch of Figure 4, we aim to derive
geometry information Fgeo by encoding two pieces of infor-
mation, i.e., fine-grained geometry information from point
clouds Pxyz and coarse-grained shape information from 3D
boxes B. The fine-grained geometry is encoded by first
mapping point xyz coordinates into a higher dimensional
space and grouping high-dimensional features according to
the token id and frame id. The coarse-grained shape encod-
ing is derived by projecting box attributes to the same high
dimensional space. Formally, fgeo is defined as

f igeo = pool by index(MLPf (Pxyz),Pind)[i, :, :]

+ MLPc(B)[i, :, :]
(1)

where i is the token id, function pool by index pools point-

ViT-VQGAN [70] SAM ViT-H [36]

Sensors
8 cameras (front, front left

front right, side left, side right,
rear left, rear right, rear) and LiDAR

Temporal 1.0 s, 11 Frames
Pre-trained

Dataset WebLi [12] SA-1B [36]

Format Token & Embedding Embedding

Table 1. Details of the WOMD camera embeddings.

wise features based on token id and frame id.
Spatial-temporal Fusion Our spatial-temporal fusion
module (Figure 4 right) takes as input the image feature
Fimg, the geometry feature Fgeo, and a trainable temporal
embedding ftemporal ∈ RT×D that corresponds to T frames.
It produces a temporally aggregated feature Felem for all
scene elements. Under the hood, the spatial-temporal fu-
sion module adds up the two input tensors, and then con-
ducts axial attention across the temporal and element axes
of the tensor, which is followed by the final average pooling
across the temporal axis, as listed below:

Felem ← Fimg + Fgeo + ftemporal ∈ RNelem×T×D

Felem ← AttnAlongAxis(Felem, axis = time)
Felem ← AttnAlongAxis(Felem, axis = scene element)
Felem ← mean(Felem, axis = time)

The final Felem uses a single vector to describe each scene
element. This tensor can be fed as the additional inputs to
scene encoding module of transformer-based motion pre-
diction models, such as recently published [48, 60].

4. Experiments
4.1. The Release of WOMD Camera Embeddings

To advance research in sensor-based motion predic-
tion, we have augmented Waymo Open Motion Dataset
(WOMD) [16] with camera embeddings. WOMD contains
the standard perception output, e.g. tracks of bounding
boxes, road graph, traffic signals, and now it also includes
synchronized LiDAR points [16] and camera embeddings.
Given one scenario, a motion prediction model is required
to reason about 1 second history data and generate pre-
dictions for the future 8 seconds at 5Hz. Our LiDAR can
reach up to 75 meters along the radius and the cameras pro-
vide a multi-view imagery for the environment. WOMD
characterize each perception-detected objects using a 3D
bounding box (3D center point, heading, length, width, and
height), and the object’s velocity vector. The road graph
is provided as a set of polylines and polygons with seman-
tic types. WOMD is divided into training, validation and
testing subsets according to the ratio 70%, 15%, 15%. In
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Method Reference Sensor # Decoders minADE↓ minFDE↓ Miss Rate↓ mAP↑ soft-mAP↑
MotionCNN [37] CVPRW 2021 - - 0.7383 1.4957 0.2072 0.2123 -
MultiPath++ [50] ICRA 2022 - - 0.978 2.305 0.440 - -
SceneTransformer [50] ICLR 2022 - - 0.9700 2.0700 0.1867 0.2433 -
MTR [60] NeurIPS 2022 - - 0.6046 1.2251 0.1366 0.4164 -
Wayformer [48] ICRA 2023 - 3 0.5512 1.1602 0.1208 0.4099 0.4247
MotionLM* [59] ICCV 2023 - 1 0.5702 1.1653 0.1327 0.3902 0.4063

Wayformer Reproduced - 1 0.5830 1.2314 0.1347 0.3995 0.4110
MoST-SAM H-6 Ours C+L 1 0.5228 1.0764 0.1303 0.4040 0.4207
MoST-SAM H-64 Ours C+L 1 0.5487 1.1355 0.1238 0.4230 0.4380

Wayformer Reproduced - 3 0.5494 1.1386 0.1190 0.4052 0.4239
MoST-VQGAN-64 Ours C 3 0.5391 1.1099 0.1172 0.4201 0.4396

Table 2. Performance comparison on WOMD validation set. MoST leads to significant performance gain to the Wayformer baselines and
achieves state-of-the-art results in all compared metrics. MoST-SAM H-{6, 64}: our method using SAM ViT-H feature and predicting
based on 6 or 64 queries. MoST-VQGAN-64: our method using VQGAN feature with 64 queries. Bold font highlights the best result in
each metric and underline denotes the second best. For methods with multiple decoders, results are based on ensembling of predictions.
MotionLM* is based on contacting authors for their 1 decoder results, which was not reported in the original publication.

this paper, we report results over the validation set. We’ll
reserve the test set for future community benchmarking.

Due to the data storage issue and risk of leakage of sensi-
tive information (e.g., human faces, car plate numbers, etc.),
we will not release the raw camera images. Instead, the re-
leased multi-modality dataset will be in two formats:
• ViT-VQGAN Tokens and Embeddings: We apply a pre-

trained ViT-VQGAN [70] to extract tokens and embed-
dings for each camera image. The number of tokens per
camera is 512, where each token corresponds to a 32 di-
mensional embedding in the quantized codebook.

• SAM ViT-H Embeddings: We apply a pre-trained SAM
ViT-H [36] model to extract dense embeddings for each
camera image. We release the per-scene-element embed-
ding vectors, each being 256 dimensional.

In the released dataset, we have 1 LiDAR and 8 cameras
(front, front-left, front-right, side-left, side-right, rear-left,
rear-right, rear). Please see details in Table 1.

Task and Metrics Based on the augmented WOMD, we
investigate the standard marginal motion prediction task,
where a model is required to generate 6 mostly likely future
trajectories for each of the agents independently of other
agents futures. We report results for various methods un-
der commonly adopted metrics, namely minADE, minFDE,
miss rate, mAP and soft-mAP [16]. For fair comparison, we
only compare results based on single model prediction.

4.2. Experimental Results

Our MoST is a general paradigm applicable to most
transformer-based motion prediction architectures. Without
losing generality, we adopt a state-of-the-art architecture,
Wayformer [48], as our motion prediction backbone and we

augment it with our new design by fusing multi-modality
tokens. In the following sections, we use Wayformer as the
baseline and show the performance improvement by MoST.
Please refer to appendix for implementation details.

4.2.1 Baseline Comparison

In Table 2, we evaluate the proposed approach and com-
pare it with recently published models, i.e., MTR [60],
Wayformer [48], MultiPath++ [66], MotionCNN [37], Mo-
tionLM [59], SceneTransformer [50]. Specifically, we
study our approach in two settings, 1) using LiDAR + cam-
era tokens with single decoder and 2) using camera tokens
with 3 decoders. During inference, we fit a Gaussian Mix-
ture Model by merging predictions from the decoder(s) and
draw 2048 samples, which are finally aggregated into 6 tra-
jectories through K-means [48]. In both settings, the intro-
duction of sensory tokens leads to a clear performance gain
over the corresponding Wayformer baselines based on our
re-implementation. Moreover, our approach achieves state-
of-the-art performance across various metrics.

Figure 5 illustrates two comparisons between our MoST
and the baseline model. The upper example shows that with
tokenized sensor information, our MoST rules out the pos-
sibility that a vehicle runs onto walls after a U-turn. The
lower example makes a prediction that a cyclist may cross
the street which is safety critical for the autonomous vehicle
to take precaution regarding this behavior.

4.2.2 Ablation Study

We find that applying MoST to the current frame can also
lead to significant improvement over the baseline. For ef-
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Figure 5. Qualitative comparison. The agent boxes are colored
by their types: gray for vehicle, red for pedestrian, and cyan for
cyclist. The predicted trajectories are ordered temporally from
green to blue. For each modeled agent, the models predict 6 trajec-
tory candidates, whose confidence scores are illustrated by trans-
parency: the more confident, the more visible. Ground truth tra-
jectory is shown as red dots. In the upper example, MoST rules
out the possibility that a vehicle runs onto a wall after U-turn; in
the lower example, MoST correctly predicts that a cyclist could
suddenly cross the street.

Image Encoder minADE↓ mAP↑ soft-mAP↑
DINO-v2 [51] 0.5597 0.4154 0.4285
CLIP [55] 0.5590 0.4138 0.4272
VQ-GAN [15] 0.5670 0.4058 0.4192
SAM ViT-H [36] 0.5483 0.4162 0.4321

Table 3. Ablation study of different image features. All these
image features improves the motion prediction performance, while
we observe SAM ViT-H [36] leads to the most improvement. We
uses single-frame multi-modal feature for these study.

ficient experimentation, we perform ablation study by em-
ploying single frame MoST and SAM ViT-H feature.
Effects of Different Pre-trained Image Encoders To in-
vestigate different choices of the image encoder for our
model, we have conducted experiments comparing the per-
formance of using image feature encoders from various
pre-trained models: SAM ViT-H [36], CLIP [55], DINO
v2 [51], and VQ-GAN [15]. As show in Table 3, the SAM
ViT-H encoder yields the highest performance across all be-
havior prediction metrics. We hypothesize that this perfor-
mance advantage likely stems from SAM’s strong capabil-
ity to extract comprehensive and spatially faithful feature

Open-set Agent Ground M-frame minADE↓ soft-mAP↑
✗ ✓ ✓ ✗ 0.5654 0.4112
✓ ✗ ✓ ✗ 0.5520 0.4273
✓ ✓ ✗ ✗ 0.5514 0.4241
✓ ✓ ✓ ✗ 0.5483 0.4321
✓ ✓ ✓ ✓ 0.5487 0.4380

Table 4. Ablation study on how different scene element affects
the performance. The first four rows shows that all types of scene
element brings benefits to the model. The last row shows that ag-
gregating scene element across frame considerably improves the
soft-mAP, though leads to slight regression of minADE.

Perception Camera LiDAR minADE↓ mAP↑ soft-mAP↑
✓ ✗ ✗ 0.5830 0.3995 0.4110
✓ ✓ ✗ 0.5483 0.4118 0.4265
✓ ✗ ✓ 0.5486 0.4040 0.4212
✓ ✓ ✓ 0.5483 0.4162 0.4321

Table 5. Ablation study on different input modality. The first row
corresponds to the setting of Wayformer [48]. The second row
adds camera image feature. The last row further adds LiDAR. We
can see using both Camera and LiDAR yields to the best results.

Sensory Token minADE↓ mAP↑ soft-mAP↑
None (Wayformer) 0.5830 0.3995 0.4110
Image-grid Token (Ours) 0.5495 0.4109 0.4261
Scene Cluster Token (Ours) 0.5483 0.4162 0.4321

Table 6. Comparing variant of scene tokenization strategy with
single-frame sensor data. Both token strategy leads to improve-
ment the vanilla Wayformer [48], which does not use sensor data.

maps, as it is trained with a large and diverse dataset for
the dense understanding task of image segmentation. Other
large pre-trained image models also demonstrate notable
capability, outperforming the Wayformer baseline on mAP
and soft mAP, albeit inferior to SAM.
Ablation on Input Modality To understand how differ-
ent input modalities affect the final model performance, we
conduct ablation experiments and summarize results in Ta-
ble 5 where we remove image feature or remove LiDAR
feature of our single-frame model. We can see image fea-
ture and LiDAR feature are both beneficial, and combining
both modality leads to the biggest improvement.
Ablation on Scene Element To gain deeper insights into
the contribution of each type of scene element, we conduct
ablation studies in Table 4 by removing specific element
types and evaluate the impact on behavior prediction met-
rics. Combining all types of scene elements leads to the best
soft-mAP metric. Note that only associating image features
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Method minADE↓ mAP↑ soft-mAP↑
Wayformer [48] 0.9002 0.2312 0.2382
MoST-SAM H-64 0.8720 0.2615 0.2677

Table 7. Evaluation on hard scenarios. We curate a set of hard
scenarios based on the performance of MoST and Wayformer on
them. MoST consistently shows improved performance.

to agents give the smallest improvement. We hypothesis the
reasons to be two-fold: 1) in most cases, the agent box is
sufficient to characterize the motion of the object; 2) there
are only a handful of agents in the scene and very few image
features are included in the model.
Alternative Scene Tokenizer We use SAM ViT-H in this
experiment. We design another baseline tokenizer, denoted
as Image-grid token, which tokenizes each image feature
as 16 × 16 = 256 image embeddings by subsampling 4X
along column and row axes. The feature from all camera
images are flattened and concatenated to form scene tokens.
In Table 6 we can see the Image-grid tokenizer also leads to
improvement compared to Wayformer baseline, though in-
ferior to our cluster-based sparse tokenizer which utilizes
point cloud to derive accurate depth information and lever-
ages the intrinsic scene sparsity to get compact tokens.

4.2.3 Evaluation on Challenging Scenarios

While the improvement shown above demonstrates overall
improvement across all driving scenarios, we are also inter-
ested in investigating the performance gain in the most chal-
lenging cases. Here we present how our model performs in
challenging scenarios, specifically on (a) a mined set of hard
scenarios, (b) situations where perception failures happen,
and (c) situations where roadgraph is inaccurate.
Mined Hard Scenarios To assess the effectiveness of our
method in complex situations, we have curated a set of hard
scenarios. We conduct a per-scenario evaluation through-
out the entire validation set, identifying the 1000 scenar-
ios with the lowest minADE across vehicle, pedestrian, and
cyclist categories for the baseline and MoST-SAM H-64,
respectively. In this way, we ensure the mining is sym-
metric and fair for both methods. Then we combine these
6000 scenarios, resulting in 4024 unique scenarios, form-
ing our curated challenging evaluation dataset. As shown
in Table 7, MoST demonstrates more pronounced relative
improvement in mAP and soft-mAP, i.e., 13.1% and 12.4%
respectively, compared to the baseline in these hardest sce-
narios, confirming its effectiveness of enhanced robustness
and resilience in complex situations. We also find that im-
proving minADE in these hard scenarios is still a challenge.
Perception Failure Most motion prediction algorithms [48,
59] assume accurate perception object boxes as inputs. It is
critical to understand how such a system will perform when
this assumption breaks due to various reasons, such as long-

Failure type Failure rate minADE↓ soft-mAP↑
None 0% 0.5515 0.4396

10% 0.5560 0.4302
Perception 30% 0.5625 0.4235

50% 0.5712 0.4164
10% 0.5647 0.4217

Roadgraph 30% 0.6020 0.4010
50% 0.6707 0.3499

Table 8. Evaluation on simulated perception and roadgraph failure.
We vary the ratio of miss detected agent boxes and miss detected
roadgraph segments in scenes as 10%, 30% and 50%, respectively.
With multi-modal features, MoST performs on par with baselines
even with 50% perception or 30% roadgraph failure.

tail and novel categories of object beyond training supervi-
sion, occlusion, long-range, etc. Thus, we propose to addi-
tionally evaluate our method against the baseline method in
the case of perception failure. Concretely, we simulate per-
ception failure of not detecting certain object boxes by ran-
domly removing agents according to a fixed ratio of agents
in the scene. The boxes dropped out are consistent for
MoST-SAM H-64 and the baseline. As shown in Table 8,
MoST shows robustness against perception failures: even
when failure rate raises to 50%, our model still performs on
par with the Wayformer baseline (soft mAP 0.4121).
Roadgraph Failure Motion prediction models often ex-
hibit a strong reliance on roadgraphs, leading to potential
vulnerabilities in situations where the roadgraph is incom-
plete or inaccurate. Our proposed model, MoST, tackles
this issue by incorporating multi-modality scene tokens as
additional inputs, thereby enhancing its robustness against
roadgraph failures. We demonstrate this advantage by sim-
ulating various levels of roadgraph errors, similar to the
aforementioned perception failure simulation. Specifically,
we evaluate MoST-SAM H-64 under scenarios with 10%,
30%, and 50% missing roadgraph segments in the valida-
tion set. Notably, as showcased in Table 8, even with a 30%
of the roadgraph missing, MoST performs on par with base-
line models that assume perfect roadgraph information.

5. Conclusions
To promote sensor-based motion prediction research, we
have enhanced WOMD with camera embeddings, making
it a large-scale multi-modal dataset for benchmarking.
To efficiently integrate multi-modal sensor signals into
motion prediction, we propose a method that represents the
multi-frame scenes as a set of scene elements and leverages
large pre-trained image encoders and 3D point cloud
networks to encode rich semantic and geometric informa-
tion for each element. We demonstrate that our approach
leads to significant improvements in motion prediction task.

8



References
[1] Yuriy Biktairov, Maxim Stebelev, Irina Rudenko, Oleh Shli-

azhko, and Boris Yangel. Prank: motion prediction based on
ranking. Advances in neural information processing systems,
33:2553–2563, 2020. 2

[2] Thibault Buhet, Emilie Wirbel, Andrei Bursuc, and Xavier
Perrotton. Plop: Probabilistic polynomial objects trajec-
tory planning for autonomous driving. arXiv preprint
arXiv:2003.08744, 2020. 2

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In CVPR, 2020. 2

[4] Sergio Casas, Wenjie Luo, and Raquel Urtasun. Intentnet:
Learning to predict intention from raw sensor data. In CoRL,
2018. 2

[5] Sergio Casas, Cole Gulino, Renjie Liao, and Raquel Urta-
sun. Spagnn: Spatially-aware graph neural networks for
relational behavior forecasting from sensor data. In 2020
IEEE International Conference on Robotics and Automation
(ICRA), pages 9491–9497. IEEE, 2020. 2

[6] Sergio Casas, Abbas Sadat, and Raquel Urtasun. Mp3: A
unified model to map, perceive, predict and plan. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14403–14412, 2021. 2

[7] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir
Anguelov. Multipath: Multiple probabilistic anchor trajec-
tory hypotheses for behavior prediction. In CoRL, 2019. 2

[8] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir
Anguelov. Multipath: Multiple probabilistic anchor trajec-
tory hypotheses for behavior prediction. In CoRL, 2019. 2

[9] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jag-
jeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter
Carr, Simon Lucey, Deva Ramanan, et al. Argoverse: 3d
tracking and forecasting with rich maps. In CVPR, 2019. 2

[10] Kan Chen, Runzhou Ge, Hang Qiu, Rami Al-Rfou,
Charles R Qi, Xuanyu Zhou, Zoey Yang, Scott Ettinger,
Pei Sun, Zhaoqi Leng, et al. Womd-lidar: Raw sensor
dataset benchmark for motion forecasting. arXiv preprint
arXiv:2304.03834, 2023. 2

[11] Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger,
Andreas Geiger, and Hongyang Li. End-to-end au-
tonomous driving: Challenges and frontiers. arXiv preprint
arXiv:2306.16927, 2023. 2

[12] Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni,
Piotr Padlewski, Daniel Salz, Sebastian Goodman, Adam
Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-
scaled multilingual language-image model. arXiv preprint
arXiv:2209.06794, 2022. 5

[13] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou,
Tsung-Han Lin, Thi Nguyen, Tzu-Kuo Huang, Jeff Schnei-
der, and Nemanja Djuric. Multimodal trajectory predictions
for autonomous driving using deep convolutional networks.
In ICRA, 2019. 2

[14] Nemanja Djuric, Henggang Cui, Zhaoen Su, Shangxuan Wu,
Huahua Wang, Fang-Chieh Chou, Luisa San Martin, Song

Feng, Rui Hu, Yang Xu, et al. Multixnet: Multiclass mul-
tistage multimodal motion prediction. In 2021 IEEE Intelli-
gent Vehicles Symposium (IV), pages 435–442. IEEE, 2021.
2

[15] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 12873–12883, 2021. 3, 7

[16] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi
Liu, Hang Zhao, Sabeek Pradhan, Yuning Chai, Ben Sapp,
Charles R. Qi, Yin Zhou, Zoey Yang, Aurélien Chouard, Pei
Sun, Jiquan Ngiam, Vijay Vasudevan, Alexander McCauley,
Jonathon Shlens, and Dragomir Anguelov. Large scale in-
teractive motion forecasting for autonomous driving: The
waymo open motion dataset. In ICCV, 2021. 2, 5, 6

[17] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi
Liu, Hang Zhao, Sabeek Pradhan, Yuning Chai, Ben Sapp,
Charles R Qi, Yin Zhou, et al. Large scale interactive mo-
tion forecasting for autonomous driving: The waymo open
motion dataset. In ICCV, 2021. 2

[18] Sudeep Fadadu, Shreyash Pandey, Darshan Hegde, Yi Shi,
Fang-Chieh Chou, Nemanja Djuric, and Carlos Vallespi-
Gonzalez. Multi-view fusion of sensor data for improved
perception and prediction in autonomous driving. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pages 2349–2357, 2022. 2

[19] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir
Anguelov, Congcong Li, and Cordelia Schmid. Vectornet:
Encoding hd maps and agent dynamics from vectorized rep-
resentation. In CVPR, 2020. 2

[20] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan
Stanciulescu, and Fabien Moutarde. Home: Heatmap output
for future motion estimation. In 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC), pages
500–507. IEEE, 2021. 2

[21] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bog-
dan Stanciulescu, and Fabien Moutarde. Gohome: Graph-
oriented heatmap output for future motion estimation. In
2022 international conference on robotics and automation
(ICRA), pages 9107–9114. IEEE, 2022. 2

[22] Junru Gu, Chen Sun, and Hang Zhao. Densetnt: End-to-end
trajectory prediction from dense goal sets. In ICCV, 2021. 2

[23] Junru Gu, Chenxu Hu, Tianyuan Zhang, Xuanyao Chen,
Yilun Wang, Yue Wang, and Hang Zhao. Vip3d: End-to-end
visual trajectory prediction via 3d agent queries. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5496–5506, 2023. 2

[24] Cole Gulino, Justin Fu, Wenjie Luo, George Tucker, Eli
Bronstein, Yiren Lu, Jean Harb, Xinlei Pan, Yan Wang, Xi-
angyu Chen, et al. Waymax: An accelerated, data-driven
simulator for large-scale autonomous driving research. arXiv
preprint arXiv:2310.08710, 2023. 2

[25] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,
and Alexandre Alahi. Social gan: Socially acceptable tra-
jectories with generative adversarial networks. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2255–2264, 2018. 2

9



[26] Steffen Hagedorn, Marcel Hallgarten, Martin Stoll, and
Alexandru Condurache. Rethinking integration of predic-
tion and planning in deep learning-based automated driving
systems: A review. arXiv preprint arXiv:2308.05731, 2023.
2

[27] Joey Hong, Benjamin Sapp, and James Philbin. Rules of the
road: Predicting driving behavior with a convolutional model
of semantic interactions. In CVPR, 2019. 2

[28] Anthony Hu, Zak Murez, Nikhil Mohan, Sofı́a Dudas, Jef-
frey Hawke, Vijay Badrinarayanan, Roberto Cipolla, and
Alex Kendall. Fiery: Future instance prediction in bird’s-
eye view from surround monocular cameras. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 15273–15282, 2021. 2

[29] Shengchao Hu, Li Chen, Penghao Wu, Hongyang Li, Junchi
Yan, and Dacheng Tao. St-p3: End-to-end vision-based au-
tonomous driving via spatial-temporal feature learning. In
European Conference on Computer Vision, pages 533–549.
Springer, 2022. 2

[30] Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima,
Xizhou Zhu, Siqi Chai, Senyao Du, Tianwei Lin, Wenhai
Wang, et al. Planning-oriented autonomous driving. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17853–17862, 2023. 2

[31] Xiaosong Jia, Yulu Gao, Li Chen, Junchi Yan,
Patrick Langechuan Liu, and Hongyang Li. Driveadapter:
Breaking the coupling barrier of perception and planning
in end-to-end autonomous driving. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 7953–7963, 2023. 2

[32] Xiaosong Jia, Penghao Wu, Li Chen, Yu Liu, Hongyang Li,
and Junchi Yan. Hdgt: Heterogeneous driving graph trans-
former for multi-agent trajectory prediction via scene encod-
ing. IEEE transactions on pattern analysis and machine in-
telligence, 2023. 2

[33] Xiaosong Jia, Penghao Wu, Li Chen, Jiangwei Xie, Con-
ghui He, Junchi Yan, and Hongyang Li. Think twice be-
fore driving: Towards scalable decoders for end-to-end au-
tonomous driving. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
21983–21994, 2023. 2

[34] Alexey Kamenev, Lirui Wang, Ollin Boer Bohan, Ishwar
Kulkarni, Bilal Kartal, Artem Molchanov, Stan Birchfield,
David Nistér, and Nikolai Smolyanskiy. Predictionnet: Real-
time joint probabilistic traffic prediction for planning, con-
trol, and simulation. In 2022 International Conference on
Robotics and Automation (ICRA), pages 8936–8942. IEEE,
2022. 2

[35] Siddhesh Khandelwal, William Qi, Jagjeet Singh, Andrew
Hartnett, and Deva Ramanan. What-if motion prediction
for autonomous driving. arXiv preprint arXiv:2008.10587,
2020. 2

[36] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023. 2, 3, 5, 6, 7,
13

[37] Stepan Konev, Kirill Brodt, and Artsiom Sanakoyeu. Mo-
tioncnn: A strong baseline for motion prediction in au-
tonomous driving. In CVPRW, 2021. 6

[38] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chong-
hao Sima, Tong Lu, Yu Qiao, and Jifeng Dai. Bevformer:
Learning bird’s-eye-view representation from multi-camera
images via spatiotemporal transformers. In European con-
ference on computer vision, pages 1–18. Springer, 2022. 2

[39] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song
Feng, and Raquel Urtasun. Learning lane graph represen-
tations for motion forecasting. In ECCV, pages 541–556.
Springer, 2020. 2

[40] Ming Liang, Bin Yang, Wenyuan Zeng, Yun Chen, Rui Hu,
Sergio Casas, and Raquel Urtasun. Pnpnet: End-to-end per-
ception and prediction with tracking in the loop. In CVPR,
2020. 2

[41] Jerry Liu, Wenyuan Zeng, Raquel Urtasun, and Ersin Yumer.
Deep structured reactive planning. In 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 4897–4904. IEEE, 2021. 2

[42] Minghua Liu, Yin Zhou, Charles R Qi, Boqing Gong, Hao
Su, and Dragomir Anguelov. Less: Label-efficient semantic
segmentation for lidar point clouds. In European conference
on computer vision, pages 70–89. Springer, 2022. 3

[43] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2017. 14

[44] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furi-
ous: Real time end-to-end 3d detection, tracking and motion
forecasting with a single convolutional net. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recog-
nition, pages 3569–3577, 2018. 2

[45] Wenjie Luo, Cheol Park, Andre Cornman, Benjamin Sapp,
and Dragomir Anguelov. Jfp: Joint future prediction with
interactive multi-agent modeling for autonomous driving. In
Conference on Robot Learning, pages 1457–1467. PMLR,
2023. 2

[46] Jiageng Mao, Yuxi Qian, Hang Zhao, and Yue Wang.
Gpt-driver: Learning to drive with gpt. arXiv preprint
arXiv:2310.01415, 2023. 2

[47] Francesco Marchetti, Federico Becattini, Lorenzo Seidenari,
and Alberto Del Bimbo. Mantra: Memory augmented net-
works for multiple trajectory prediction. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 7143–7152, 2020. 2

[48] Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth
Goel, Khaled S Refaat, and Benjamin Sapp. Wayformer:
Motion forecasting via simple & efficient attention networks.
In 2023 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 2980–2987. IEEE, 2023. 2, 5, 6, 7,
8, 13

[49] Jiquan Ngiam, Benjamin Caine, Vijay Vasudevan, Zheng-
dong Zhang, Hao-Tien Lewis Chiang, Jeffrey Ling, Rebecca
Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal, et al.
Scene transformer: A unified architecture for predicting mul-
tiple agent trajectories. arXiv preprint arXiv:2106.08417,
2021. 2

10



[50] Jiquan Ngiam, Benjamin Caine, Vijay Vasudevan, Zheng-
dong Zhang, Hao-Tien Lewis Chiang, Jeffrey Ling, Rebecca
Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal, David
Weiss, Ben Sapp, Zhifeng Chen, and Jonathon Shlens. Scene
transformer: A unified architecture for predicting multiple
agent trajectories. In ICLR, 2022. 6

[51] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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Figure 6. Additional qualitative comparison between MoST and
Wayformer [48] baseline. The agent boxes are colored by their
types: gray for vehicle, red for pedestrian, and cyan for cyclist.
The predicted trajectories are ordered temporally from green (+0s)
to blue (+8.0s). For each modeled agent, the models predict 6
trajectory candidates, whose confidence scores are illustrated by
transparency: the more confident, the more visible. Ground truth
trajectory is shown as red dots. Note that the vehicle indicated by
the red arrow is entering a plaza which has no map coverage. Since
our model has access to the rich visual signals, it correctly predicts
the vehicle’s possible trajectory which includes follows the arrow
and turn right. Wayformer, on the other hand, completely missed
this possibility due to the lack of road graph information in that
region.

Appendix

A. Additional Qualitative Results

An additional qualitative comparison can be found in Fig-
ure 6. In this scenario, the model is asked to predict the
future trajectory of a vehicle entering a plaza which is not
mapped by the road graph. Our model with access to visual
information correctly predicts several trajectories following
the arrow painted on the ground and turning right.

B. WOMD Camera Embeddings

VQGAN Embedding To extract VQGAN embedding for
an image, we first resize the image into shape of 256× 512.
Then we horizontally split the image into two patches and
apply pre-trained ViT-VQGAN [70] model on each patch
respectively. Each patch contains 16 × 16 tokens so each
camera image can be represented as 512 tokens. The code-
book size is 8192.

SAM-H Embedding For each camera we extract SAM
ViT-H [36] embedding of size 64 × 64 × 256. Compared
to VQGAN embeddings, SAM features are less spatially
compressed due to its high-resolution feature map. The vi-
sualization of SAM Embedding can be found in Figure 8.
We release the SAM features pooled per-scene-element.

Figure 7. Examples of reconstructed driving images from ViT-
VQGAN codes. We show 3 cameras at 3 consecutive timestamps.
We are able to decode high quality images from VQGAN codes.

Figure 8. Examples of SAM feature. The first row shows camera
images and the second row illustrates the SAM feature map visu-
alized by PCA reduction from 256 to 3 dimensions.

C. Implementation Details

Model Detail We use N agent
elem = 128, N open-set

elem = 384,
N gnd

elem = 256, and Npts = 65536 in our experiments. We
use sensor data from past 10 frames that correspond to the
1 second history and the current frame (i.e. T = 11). Fol-
lowing Wayformer [48], we train our model to output K
modes for the Gaussian mixture, where we experiment with
K = {6, 64}. During inference, we draw 2048 samples
from the predicted Gaussian mixture distribution, and use
K-Means clustering to aggregate those 2048 samples into 6
final trajectory predictions.
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Variable name Description Tensor Shape

Npts
The total number of

LiDAR points after down-sampling.
1

Nelem The total number of scene elements. 1
T The total number of frames. 1
D The feature dimension. 1

Pxyz

The aggregated
LiDAR points from all frames

after downsampling
Npts × 3

Pind
The scene element index

and frame index for each LiDAR point
Npts × 2

Fpts The per point image feature. Npts ×D

B
The box attributes, including box
center, box size, and box heading.

Nelem × T × 7

Fimg
The per scene-

element image feature.
Nelem × T ×D

Fgeo
The per scene-

element geometry feature.
Nelem × T ×D

ftemporal The learnable temporal embedding. 1× T ×D

Table 9. Descriptions for variables used in the main paper.

Training Detail For all experiments, we train our model
using AdamW [43] on 64 Google Cloud TPUv4 cores1 with
a global batch size of 512. We use a cosine learning rate
schedule, where the learning rate is initialized to 3 × 10−4

and ramps up to 6 × 10−4 after 1,000 steps. The training
finishes after 500,000 steps.

Notations Please refer to Table 9 for a summary of the
notations used in the main paper.

1https://cloud.google.com/tpu
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